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Abstract

Hierarchical Task Network (HTN) planning is a formal-
ism that can express constraints which cannot easily be ex-
pressed by classical (non-hierarchical) planning approaches.
It enables reasoning about procedural structures and domain-
specific search control knowledge. Yet the cornucopia of
modern heuristic search techniques remains largely unincor-
porated in current HTN planners, in part because it is not clear
how to estimate the goal distance for a partially-ordered task
network. When using SHOP2-style progression, a task net-
work of yet unprocessed tasks is maintained during search.
In the general case it can grow arbitrarily large. However,
many – if not most – existing HTN domains have a certain
structure (called tail-recursive) where the network’s size is
bounded. We show how this bound can be calculated and
exploited to automatically translate tail-recursive HTN prob-
lems into non-hierarchical STRIPS representations, which al-
lows using both hierarchical structures and classical planning
heuristics. In principle, the approach can also be applied
to non-tail-recursive HTNs by incrementally increasing the
bound. We give three translations with different advantages
and present the results of an empirical evaluation with several
HTN domains that are translated to PDDL and solved by two
current classical planning systems. Our results show that we
can automatically find practical bounds for solving partially-
ordered HTN problems. We also show that classical plan-
ners perform similarly with our automatic translations versus
a previous hand-bounded HTN translation which is restricted
to totally-ordered problems.

Introduction

Hierarchical task network (HTN) planning has found con-
sistent success in many real-world applications (Nau et al.
2005), which include games (Jacopin 2014; Ontañón and
Buro 2015), robotics (Weser, Off, and Zhang 2010), and
web service composition (Sirin et al. 2004). The success
of this approach can be attributed to two primary advan-
tages it has compared with non-hierarchical planning ap-
proaches. First, it is strictly more expressive than classical
(non-hierarchical) planning (Erol, Hendler, and Nau 1996;
Geier and Bercher 2011; Höller et al. 2014; 2016; Alford,
Bercher, and Aha 2015a), which means that it allows spec-
ifying problems that cannot be expressed using the classi-
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cal planning formalism. Second, the task hierarchy in HTN
planning can encode domain-specific search control, which
is essential because there are only a few approaches for
domain-independent heuristic search in hierarchical plan-
ning (Elkawkagy et al. 2012; Bercher, Keen, and Biundo
2014). In contrast, a large number of classical planning
heuristics and search strategies have been studied during the
past 15 years. In this paper we address this disparity by
presenting translations that encode tail-recursive HTN prob-
lems into classical planning problems.

Alford, Kuter, and Nau (2009) highlighted the importance
of bridging this gap and introduced a translation from HTN
problems to PDDL. However, their work was limited to a
severely restricted case of HTN planning problems: their
translation is only applicable to totally-ordered HTN prob-
lems and required a bound on recursion that had to be spec-
ified by hand. In this paper, we extend the class of translat-
able HTN problems to include partially-ordered problems
that are tail-recursive (Alford, Bercher, and Aha 2015a).
Furthermore, we automate the translation so that it no longer
depends on a user-specified bound.

This fully automatic translation has several benefits. First,
when the planning process itself is not of importance,
then there is no compelling need to design and imple-
ment specialized HTN planning systems if we have only
tail-recursive problems, as they can be solved using non-
hierarchical planning systems using our translation. Second,
the task hierarchy can be limited to encode structural con-
straints on solutions (Höller et al. 2014; 2016) – i.e., search
control must not be included into the task hierarchy due to
the use of domain-independent classical planning heuristics.
Third, even with modeled search control, search in the trans-
lated classical setting might be faster than in the original
HTN setting as the control knowledge as well as classical
planning heuristics may be exploited.

The paper is structured as follows. We first explain pre-
liminaries for classical and HTN planning. Then, we de-
scribe our three translations for tail-recursive HTN problems
to PDDL. They all require a certain bound as parameter. Our
first translation is quadratic in the bound and only requires
the standard STRIPS language feature of PDDL. Our second
translation is for the special case of totally ordered HTNs,
and is linear in the bound. The last translation is both linear
in the bound and applies to partially-ordered problems, but
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requires the ADL language feature (derived predicates and
quantified effects). The next two sections then provide poly-
time algorithms to calculate approximations for the lower
and upper bound required for the translation. Finally, we
present an empirical evaluation with two modern planners,
BFS(f) (Lipovetzky et al. 2014) and Jasper (Xie, Müller, and
Holte 2014), and show that they can efficiently reason with
the translated knowledge.

Background
PDDL Planning Problems The most common descrip-
tion language for classical planning is PDDL (Fox and Long
2003). PDDL is an expressive and feature-rich language.
We use the notation of Helmert (2009) to describe the sub-
set of PDDL used in this paper.

A PDDL operator o is a tuple (χ, e), where χ is a first-
order logic formula called the precondition of o, and e,
called the effect of o, is a conjunction of literals that is op-
tionally universally quantified over some of its variables.
The free variables in χ and e form the parameters of o.

A PDDL derived predicate d is a tuple (φ, ψ), where φ
is a first-order atom called the head of d and ψ is a first-
order formula called the body of the axiom. Intuitively, the
head atom of d must hold in any state where ψ holds. For
the semantics of derived predicates to be well-defined, a set
of derived predicates must be stratifiable and the head of
any derived predicate may not appear in the effect of any
operator (Thiébaux, Hoffmann, and Nebel 2005).

A PDDL problem P is a tuple (L,D,O, s,G), where:
• L is a function-free first-order language,
• D is a set of stratifiable derived predicates,
• O is a set of PDDL operators,
• s in L is a set of grounds atoms called P’s initial state,
• G is a first-order formula called the goal of P .

The semantics of PDDL problems is defined through
grounding. Given that L is function-free, we can create a
ground planning problem P = (L,D,O, s,G), where:
• L is a propositional language created from L,
• D is the grounding of D, where the head of each derived

predicate is a ground atom and the body of each derived
predicate is a variable-free formula.

• O is the grounding of O, where each operator o = (χ, e)
is a pair of a propositional formula χ and a conjunction
e of a set of propositional literals. We use add(o) and
del(o) to refer to the positive and negative literals of e,
respectively.

• G is the variable-free grounding of G.
The operators and derived predicates form an implicit

state transition function γ : 2L ×O → 2L, where:
• A state is any subset of the ground atoms in L. The finite

set of states of a planning problem is denoted by 2L.
• γ(s, o) is defined iff (s,D) |= prec(o); and if γ(s, o) is

defined, then γ(s, o) = (s \ del(o)) ∪ add(o).
P is solvable iff (s,D) |= G or there is an operator o ∈ O,

such that γ(s, o) = s′ and (L,D,O, s′, G) is solvable.

HTN Planning Problems We use the lifted HTN plan-
ning formalism from Alford, Bercher, and Aha (2015a), aug-
mented with method preconditions. Note that method pre-
conditions can be compiled away into effect-free primitive
operators that are constrained to come before the rest of the
method’s tasks.

In our formalization, every task has a task name, which is
syntactically a first-order atom. Given a set of task names
X , a task network is a tuple tn = (T,≺, α), such that:

• T is a finite (possibly empty) set of task instance symbols.

• ≺ is a partial order over T .

• α : T → X is a mapping from the task instance symbols
to a finite set of task names.

The task instance symbols function as place holders for task
names, allowing multiple instances of a task name to exist in
a task network. A task instance t ∈ T is unconstrained if no
other instance is required to come before it, i.e., ∀t′∈T t

′ ⊀ t.
Conversely, we say that t is the last task if ∀t′∈T t

′ ≺ t.
An HTN problem is a tuple (L,D,O,M, s, tn), where:

• L is a function-free first order language.

• D is set of stratifiable derived predicates, as given before.

• O is a set of HTN operators, where each o ∈ O is a triple
(n, χ, e), where n is a (primitive) task name not occurring
in L, and (χ, e) is a PDDL operator.

• M is a set of HTN methods, where each m ∈ M is a
triple (c, χ, tn), where c is a (non-primitive or compound)
task name not occurring in O or L, χ is the precondi-
tion of m, and tn is a task network. We say a task name
n is reachable from a task name c if there is a method
(c, χ, tn) ∈ M where n is a task name occurring in tn,
or if there is a third task name c′ such that n is reachable
from c′ and c′ is reachable from c.

• s is the initial ground state and tn is the (initial) task net-
work with task names from O and M.

As with PDDL planning problems, we define the se-
mantics of HTN planning through grounding. Given L,
we can create a ground HTN planning problem P =
(L,D,O,M, s, tn′) where L is a propositional language,
and D, O, M , and tn′ are all variable-free (see the paper
by Alford, Bercher, and Aha (2015b) for a more detailed de-
scription of the grounding process). The ground operators
O form a state-transition function γ, defined as before.

In the grounded HTN problem P above with ini-
tial task network tn = (T,≺, α), we can apply a
ground operator o = (n, χ, e) if there is an uncon-
strained task instance t ∈ T such that α(t) = n
and (s,D) |= χ. Then the result is a new problem
P ′ = (L,D,O,M, s′, tn′), where s′ = γ (s, o) and tn′ =
(T \ {t} , {(t1, t2) ∈ ≺ | t1 �= t} , {(t1, n) ∈ α | t1 �= t}).
We denote this operator application with P −→o

a P
′.

We can decompose P ’s task network tn = (T,≺, α) in
a state s if there is an unconstrained task instance t ∈ T
such that α(t) is a non-primitive task name and there is a
corresponding methodm = (α(t), χ, (Tm,≺m, αm)) ∈M ,
such that (s,D) |= χ. Assume WLOG that T ∩ Tm = ∅.
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Then the decomposition of tn by m on t is given by the task
network tn′ = (T ′,≺′, α′) with:

T ′ := (T \ {t}) ∪ Tm
≺′ := {(t′, t′′) ∈ ≺ | t′, t′′ �= t} ∪ ≺m ∪

{(t1, t2) ∈ Tm × T | (t, t2) ∈ ≺}
α′ := {(t′, n) ∈ α | t′ ∈ T \ {t}} ∪ αm

This results in a new problem P ′ with the same initial state
as P , but with the new task network tn′. We denote this
decomposition by P −→m

d P ′.
Given a planning problem P , both an operator application

P −→o
a P

′ and a decomposition P −→m
d P ′ is called a pro-

gression, denoted by P −→x
p P

′, where x ∈ {o,m} denotes
the applied operator or method, respectively. Any finite se-
quence of progressions P0 −→x1

p P1 −→x2
p . . . −→xn

p Pn is
called a progression as well and denoted by P0 −→∗

p Pn. The
corresponding sequence x̄ = x1, . . . , xn is called a (pro-
gression) solution for P if Pn has an empty task network.
Finding a solution using progression is then a process of
searching through possible sequences of progressions. Note
that in our definition of progression, the applied sequence
of methods is also specified, whereas HTN solutions typi-
cally only consists of the task network that is produced by
the respective method applications. From the plan-existence
point of view, progression is strictly equivalent to purely
decomposition-based definitions of HTN solvability (Alford
et al. 2012).

We can translate HTN problems into PDDL planning
problems (also cf. Thm. 2) whenever we can bound the size
of the task network needed to find a solution:

Definition 1 (Progression Bound). Given a solution x̄ to
an HTN problem P and the corresponding progression
P −→∗

p P
′, we define x̄’s progression bound as the largest

number of tasks in any task network visited by P −→∗
p P

′.
The smallest (largest) progression bound of any solution of
P is called P ’s minimum (maximum) progression bound.

The progression bounds of a task network tn are the
bounds of P where the initial task network is replaced by
tn. The progression bounds of a task name n are the bounds
of P where the initial task network is replaced by a task net-
work containing only n.

Not all problems have a finite maximum progression
bound, but all solvable problems have a finite minimum pro-
gression bound. Note that a problem’s progression bounds
are not directly related to the length of a problem’s solutions,
other than that the minimum progression bound is smaller
than the optimal plan length.

Three translations

The set-theoretic definition of HTN progression provides a
convenient base for any translation of HTN problems into
PDDL. However, support for universally-quantified precon-
ditions and conditional effects is spotty, and there are plan-
ners with otherwise quite useful capabilities that lack sup-
port for even disjunctions and negations in preconditions
(Benton, Coles, and Coles 2012). Therefore, we start with

a translation that uses only positive, conjunctive precondi-
tions with standard STRIPS-style effects. We make three
assumptions about HTN problems, all of which can be en-
forced without loss of generality:
• Every non-empty method must have a last task instance

(if none exists, a no-op is inserted as an artificial last
task). Empty methods ((c . . .) , χ, (∅, ∅, ∅)) will instead
be treated as an operator ((c . . .) , χ, ∅).

• Every variable appearing in a method or operator must be
typed. Equivalently, every such variable must appear in at
least one positive atom in the negation-normal form of its
respective precondition.

• There is a single ground initial task.

An HTN to STRIPS translation

Given an HTN problem P = (L,D,O,M, s, tn) and a pro-
gression bound b ∈ N, we define the HTN2STRIPS transla-
tion as the PDDL problem P ′

b = (L′,D,O′, s′,G′) as fol-
lows. L′ is the union of L along with:
• Constants t0, . . . , tb+1 representing instance symbols.
• The predicate (taskname ?x1 . . .?xn ?t) for each primi-

tive and abstract task name (name ?x1 . . .?xn), where ?t
associates the task name with a task instance symbol.

• A predicate (< ?i ?j) for specifying a total order over
t0, . . . , tb+1, and (next ?i ?j), representing an ordered
list of instance symbols not currently used for a task,
where t0 and tb+1 are placeholders for the beginning and
end of the list.

• A predicate (consents ?i ?j), which is true for every
task instance ti, tj (1 ≤ {i, j} ≤ b and not including
t0, tb+1), such that ti ≺ tj is not true in the current task
network.
Let (init c1 . . . cn) be the initial task name. Then, the

new initial state s′ and goal G′ (stating that all instance sym-
bols are free) are:

s′ = s ∪ {(taskinit c1 . . . cn t1) , (next t0 t2)}
∪ {(next ti ti+1) | 2 ≤ i ≤ b}
∪ {(< ti tj) | 0 ≤ i ≤ b, i < j ≤ b+ 1}
∪ {(consents ti tj) | i, j ∈ {1..b}}

G =
∧

0≤i≤b (next ti ti+1)

For each HTN operator o = ((o . . .) , χ, ψ) ∈ O, O′
contains the PDDL operator o′ = (χ ∧ χ′, ψ ∧ ψ′), where:

χ′ = (tasko . . . ?t) ∧ (next ?tp ?tn)

∧ (< ?tp ?t) ∧ (< ?t ?tn) ∧
∧

1≤i≤b (consents ti ?t)

ψ′ = ¬ (tasko . . . ?t) ∧ ¬ (next ?tp ?tn) ∧ (next ?tp ?t)

∧ (next ?t ?tn) ∧
∧

1≤i≤b (consents ?t ti)

The precondition χ′ contains χ along with the tasko
predicate to bind the task parameters to an associated in-
stance symbol in the state, as well as consents predicates
to ensure that there are no preceding tasks, referencing each
instance symbol by its constant. The remainder of the pre-
condition with < and next symbols are for locating where
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in the list of free instance symbols ?t should be reinserted
in order to preserve the list ordering with respect to < to
limit the increase in reachable states associated with the free
list. The effect ψ′ removes the task predicate, reinserts the
instance symbol in the free list, and asserts that the instance
symbol no longer precedes any other task.

For each method m = ((c . . .) , χ, tn) ∈ M, where
tn = ({t1, . . . , tn} ,≺, α), t1 is tn’s last task, and α(ti) =
(mi v1, . . . , vki) for 1 ≤ i ≤ n and terms vj , 1 ≤ j ≤ ki, O′
contains the PDDL operator m′ = (χ′, ψ′), where:
χ′ = χ ∧ (taskc . . . ?t1) ∧

∧
1≤i≤b (consents ti ?t1)

∧ (next t0 ?t2) ∧
∧

2≤i≤n (next ?ti ?ti+1)

ψ′ = ¬ (taskc . . . ?t1) ∧ (next t0 ?tn+1)

∧ ¬ (next t0 ?t2) ∧
∧

2≤i≤n ¬ (next ?ti ?ti+1)

∧∧
1≤i≤n (taskmi

v1 . . . vki
?ti)

∧∧
ti≺tj

¬ (consents ?ti ?tj)

Here, again, χ′ contains χ, the method’s task symbol
that binds the instance variable ?t1, and the appropriate
consents predicates. The effects remove n − 1 instance
symbols from the ‘next’ list, which are used to assert the
method’s task network into the state, and remove consents
atoms whenever there is a precedence constraint between
two tasks. Critically, ψ′ reuses ?t1 for the last task, keeping
its consents constraints, ensuring the last task constrains
any task previously constrained by ?t1.

Taken together, each operator in O′ represents either an
HTN operator or method, and implements the definition of
progression accordingly. Most classical planners should be
able to handle the output since the transformation only adds
a conjunction of positive literals to the preconditions and
simple adds and deletes to the effects. The cost of this,
though, is that operator schemata grow linearly with the cho-
sen progression bound, while the initial state grows quadrat-
ically. We also had to ensure each method had a last task.
This can increase the progression bound for some problems.
Next we show that our transformation retains the same set of
solutions. We proof our claim only for the first translation
and omit the proof for the other two for the sake of brevity.
Theorem 2 (Solution Equivalence). Let P be an HTN plan-
ning problem. For every solution x̄ to P there is some b ∈ N,
such that P ’s HTN2STRIPS translation P ′

b has a solution x̄′
that is equivalent to x̄. Further, for all b ∈ N and all solu-
tions x̄ to the respective HTN2STRIPS translation P ′

b, P has
a solution x̄′ that is equivalent to x̄.

Proof sektch. Let x̄ be a solution to P and P = P1 −→x1
p

P2 −→x2
p . . . −→xn−1

p Pn be a corresponding progression.
Let b = maxni=1 |tn(Pi)| be the maximal size of the visited
task networks. Then, x̄′ (x̄′ being equivalent to x̄) is a valid
solution to the HTN2STRIPS translation P ′

b.
Let b ∈ N and x̄′ = x′1, . . . , x

′
n be a solution of the

HTN2STRIPS translation P ′
b. As P ′

b simulates progres-
sion, the sequence P −→x1

p P1 −→x2
p . . . −→xn

p Pn (with
x̄ = x1, . . . , xn being equivalent to x̄′) is a valid progression
sequence for P . Since x̄′ is a solution to P ′

b, the task network
of Pn must be empty and x̄ forms a solution to P .

For the remaining two translations, we don’t give the re-
spective theorems, as their proofs work analogously.

A TOHTN to STRIPS translation

HTN problems where the initial task network and all the
methods’ networks are totally ordered are called totally-
ordered HTNs, or TOHTNs. Any progression of a TOHTN
problem is still totally-ordered, and a totally-ordered task
network can be represented as a simple list with only one
unconstrained task at a time, simplifying our translation.

Given a TOHTN problem P = (L,D,O,M, s, tn) and a
progression bound b ∈ N, we define the TOHTN2STRIPS
translation of P as the PDDL problem (L′,D,O′, s′,G′)
as follows. L′ is defined as the union of L with the in-
stance symbols t0, . . . , tb, the task and < predicates, but
not the permits or next predicates. Instead, we repurpose
< as a stack with a new unary predicate (head ?t) as the
stack pointer. The initial state s′ contains s, the < ordering
of t0, . . . , tb, the initial (taskn . . . t1) atom, and the atom
(head t1). The goal G′ is simply (head t0).

For each operator ((o . . .) , χ, ψ) ∈ O, O′ contains the
PDDL operator (χ′, ψ′), where:

χ′ =χ ∧ (tasko . . . ?t) ∧ (head ?t) ∧ (< ?tp ?t)

ψ′ =ψ ∧ ¬ (tasko . . . ?t) ∧ ¬ (head ?t) ∧ (head ?tp)

Then O′ is applicable when o’s task is at the head of
the stack. The effects retract the task name from the state
and decrement the stack pointer, and otherwise behave as ψ.
Again, empty methods are translated as operators.

For each non-empty method ((c . . .) , χ, tn) where tn ≺
. . . ≺ t1 is the total ordering of instance symbols in tn,
(mi v1, . . . , vki) is the task name associated with each ti, O′
contains the PDDL operator (χ′, ψ′), where:

χ′ = χ ∧ (taskc . . . ?t1) ∧ (head ?t1)

∧∧
1≤i≤n−1 (< ?ti ?ti+1)

ψ′ = ¬ (taskc . . . ?t1) ∧ (head ?tn) ∧ ¬ (head ?t1)∧
1≤i≤n (taskmi

v1 . . . vik ?ti)

This method only needs to retract its current task name, as-
sert the list of subtasks, and move the pointer accordingly.

This translation is closely related to the translation of
totally-ordered problems found in (Alford, Kuter, and Nau
2009), which we refer to here as TOHTN09 translation. That
translation relies on a user-specified bound of non-tail recur-
sion, which is closely related to our progression bounds. The
TOHTN2STRIPS translation adds fewer predicates and op-
erators than the TOHTN09 translation, though this does not
necessarily mean fewer operators and preconditions in the
grounded domain, since any bound on progression will be
larger (polynomially) than a corresponding bound on non-
tail recursion.

An HTN to ADL translation

The set-theoretic definition of progression is directly and
trivially representable with the quantified preconditions and
quantified conditional effects provided by ADL. We omit the
full definition of our HTN2ADL translation due to lack of
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space, but it roughly follows the outline provided by the
HTN2STRIPS translation, with the exception that it uses
consents’s converse predicate (constrains t1 t2), which
is true whenever t1 ≺ t2 holds in the current task net-
work. Since the translation directly uses the definition of
decomposition, which has a quantified condition in assert-
ing decomposed task constraints, we no longer need the re-
striction that every method has a last task. Enforcing that
condition entails adding place-holder subtasks to methods,
which can increase the minimum progression bound, mean-
ing the HTN2ADL translation can solve some partially-
ordered problems with a smaller progression bound than the
HTN2STRIPS translation.

Automatic bounds for tail-recursive HTNs

Since HTN planning is in general undecidable (Erol,
Hendler, and Nau 1996; Geier and Bercher 2011), not every
HTN problem will have a finite progression bound. Even for
problems that do have a finite progression bound, finding ei-
ther the minimum or maximum progression bounds may be
as difficult as solving the problem itself. In the rest of the
section, we show that, for a large class of HTN planning
problems (those that are tail-recursive), we can approximate
the upper and lower progression bounds in poly-time. Our
approach is also applicable to non tail-recursive planning
problems (see examples in the evaluation). Here the bound b
used in the translation has to be increased until a solution is
found. Due to the undecidability of HTN planning, we can-
not stop at any point if the translated problem is unsolvable
and hence cannot prove unsolvability with this technique.

Tail-Recursive HTN Planning

Many HTN problems are tail-recursive, in that any task can
only recurse through the last task instance of any of its as-
sociated methods. Tail-recursive problems are guaranteed
to have a finite progression bound, and they can be identi-
fied through a syntactic test called ≤r-stratifiability (Alford
et al. 2012). An HTN problem P is ≤r-stratifiable if there
exists a total preorder ≤r on the task names appearing in
the grounded problem P of P such that for every method
(c, χ, (T,≺, α)) in P :

• If there is a last task tr ∈ T , then α(tr) ≤r c.

• For all non-last tasks t ∈ T , α(t) <r c.

The above conditions ensure that methods in ≤r-stratifiable
problems can only recurse through their last task. Totally-
ordered and partially-ordered tail-recursive problems have
worst-case progression bounds that are polynomial and ex-
ponential in the height of shortest stratification, respectively.

We note that a ≤r-stratification of the predicate sym-
bols appearing in P implies the existence of a polynomial-
height ≤r-stratification of P without having to generate the
grounded model.

Determining the upper bound

The worst-case upper bounds for tail-recursive problems are
only very rough estimates of the actual maximum progres-
sion bound, but calculating the exact maximum progression

is as hard as the planning problem itself. We present an algo-
rithm to compute the exact maximum progression bound of
the state relaxation of a problem P in time polynomial to its
stratification. The state relaxation is achieved by deleting all
preconditions occurring in P , effectively making states irrel-
evant. The maximum progression bound of the state relax-
ation overestimates the actual maximum progression bound.

For the rest of this section and the next, we will assume
that the problem we are calculating the bounds for has been
state-relaxed. First, we show how to bound the progression
of a task network assuming we already know the maximum
progression bounds of all tasks contained in it.

Let tn = (T,≺, α) be a task network, and let w (·) be
a function assigning a maximum progression to each task
name appearing in T .

Lemma 3. A task t ∈ T contributes exactly 0, 1, orw (α(t))
to the maximum progression bound of tn

Proof. The maximum progression bound of tn is the size
of the largest task network on the way to progressing all
tasks out of tn. Assume at this point that t is not al-
ready progressed out (0) nor has predecessors (1). That
t has a maximum progression bound and that the problem
is state-relaxed implies that there is a sequence of progres-
sions that can decompose it into a total of w (α(t)) tasks.
So tn’s weight is not less than w (α(t)) plus the remaining
tasks.

Definition 4 (Independent set). For a graph G = (V,E),
an independent set I ⊆ V is a set of vertices of G, such that
∀x,y∈I there is no edge (x, y) ∈ E.

For a task network tn = (T,≺, α), the partial order ≺
forms a transitive DAG, and so a set I ⊆ T is independent if
and only if ∀i,j∈I i ⊀ j. An independent set of tn represents
a set of tasks that be unconstrained simultaneously during
progression. Let I be the set of all independent sets of T .

Corollary 5. Let I ∈ I and define PBw : I → N as

PBw(I) = |{j ∈ T | ∃i∈I i ≺ j}|+
∑

i∈I

w (α(i))

The progression bound of tn is maxI∈I PBw(I).

Proof. Since each I is independent, we can always progress
out all the proceeding tasks, so the progression bound is at
least the sum of Lemma 3 for each remaining task.

By Lemma 3 again, the maximum bound can only be the
sum over the tasks of 0, 1, or w (α(t)), and all of the latter
term must come from independent tasks.

We can find the bound by transforming it into the prob-
lem of finding maximum weighted independent sets in
transitively closed DAGs. The following proposition pro-
vides a formal definition of the problem and states that
it is poly-time computable (Kagaris and Tragoudas 1999;
Golumbic 2004) by applying a maximum flow algorithm.

Proposition 6. LetG = (V,E) be a transitively closed DAG
with vertex weights w : V → N. G′s maximum weighted
independent set can be determined in poly-time.
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Our reduction of maximum progression bounds for task
networks is given in the proof of the following theorem:

Theorem 7. The maximum progression bound of a task net-
work tn = (T,≺, α) can be computed in poly-time.

Proof. Let G = (V,E) be a DAG representation of T and
≺ weighted with w(·). As ≺ is transitively closed, so is G.

We define a new graph G∗ = (V ∗, E∗) which will be the
input for the independent set algorithm by

V ∗ = {v+, v− | v ∈ V }
E∗ = {(a+, b+), (a−, b+) | (a, b) ∈ E} ∪

{(v−, v+) | v ∈ V }
All vertices v+ retain the weight of v – representing that a
vertex is in the progression-front, while v− has the weight 1
– representing a vertex that is a successor of a progression-
front vertex. The construction of the graph ensures that if a
vertex v is in the progression-front none of its predecessors
can be counted towards the weight of the progression-front.

We compute the maximum weight of an independent set
of G∗ and claim that it is equivalent to the maximum pro-
gression bound of tn. The constructed graph is transitively
closed. Also for any vertex v, the vertex v+ does not have
an edge to any w− where w is a successor of v, i.e., both
can be part of an independent set at the same time. Similarly
including v− in an independent set excludes any vertex w+

where w is a successor of v.
Let P ⊆ V be an independent set in G. Then the set

I = {v+ | v ∈ P} ∪ {v− | ∃w ∈ P and (w, v) ∈ V } is
independent in G∗. Moreover, PBw(P ) =

∑
i∈I w(i).

Conversely, let I � V ∗ be an independent set in G. If
I contains a vertex a− such that (a−, a+) is the only edge
to a+, then a+ must have weight 1. So WLOG, assume I
contains a+ in such cases. Let P = {v | v+ ∈ I}. Then P
is an independent set in G, and

∑
i∈I w(i) = PBw(P ).

So any maximal independent set in G∗ has the same
weight as the maximum progression bound of tn.

Let S = S0S1 . . . Sn be a maximal ≤r-stratification of a
state-relaxed problem P , in the sense that two task names c1
and c2 are on the same stratum if and only if c1 ≤r c2 ≤r c1
(i.e., they are tail-recursive with each other).

We define progression bounds over the strata in a domain
in a bottom-up fashion: If a stratum contains a primitive task
name (singular, by dint of maximality), the maximum pro-
gression bound for that task is 1. In the special case where
no method associated with a stratum references tasks from
lower strata or have an empty task network, the tasks on
that network are unsolvable. We assign them a progression
bound of −∞, since there is no solution through them.

Otherwise, for strata Si, let MSi be the set of methods
associated with the non-primitive task names in Si. We
can calculate provisional maximum progression bounds for
each task network using the (already computed) maximum
progression bounds from lower strata, and assigning 1 as a
bound for any task name occurring in Si. Since the methods
are tail-recursive and the stratification is maximal, for any

given task name c, we can progress from a network contain-
ing just c to the task network from any method in MS , but
not before progressing out any other tasks introduced along
the way. So the maximum progression bound for all task
names in S is the max of the provisional maximum progres-
sion bounds of the methods.

Finally, the maximum progression bound for P is just the
maximum progression bound of its initial task network cal-
culated using the bounds from S.

Determining the lower bound

In many cases, it may not be feasible to use the upper bound
for the translation. Instead smaller bounds can be used for
which a solution might exist, but non-solvability of the trans-
lation does not imply that the original problem does not have
a solution and plans may be non-optimal. A similar tech-
nique is commonly used in SAT-planning. By computing
a lower bound to the minimum progression bound we can
determine the smallest bound we can reasonably use.

The minimum progression problem can be solved by a
fix-point approach. We compute the minimum progression
mp(t) of the planning problem that only contains t in its
initial task network. For any primitive task this value is 1
and we initialize all other values with ∞. We repeatedly it-
erate over the set of compound tasks c and recompute their
value by iterating through all their methods (c, tn) and their
minimum progressions based on the current values mp(·).
For every tn we have to determine the minimum progres-
sion when progressing through it. Progressing through two
of tns tasks simultaneously instead of one at a time can only
increase the size of intermediate task networks in the pro-
gressions. The minimum progression is achieved by pro-
gression through the tasks of tn is some topological order.
While progressing through a task t, the largest task network
of the process has as many tasks as the minimum progression
of t plus the number of tasks that are behind t in the topo-
logical ordering. This leads to the following graph problem.

Definition 8 (Min-Order problem). Given a DAG G =
(V,E) with weights on its vertices w : V → N. Is
there a topological ordering (v1, . . . , vn) of V such that
∀1≤i≤|V |w(vi) + |V | − i ≤ k?

Theorem 9. MIN-ORDER is in P.

Proof. Ensuring the property w(vi) + |V | − i ≤ k for all
vertices is equivalent to w(vi)− i ≤ k′ for k′ = k−|V |. We
can decide whether there is a topological ordering fulfilling
the criterion in a greedy fashion. Given a DAG G = (V,E)
we select any source vi – a vertex without an ingoing edge
– such that vi − 1 ≤ k′ to be the first vertex of the topo-
logical ordering. Then the vertex is removed from G and
the weights of all remaining nodes are decreased by 1, re-
sulting in a new graph G′. The topological ordering of G′
constitutes the remainder of the topological ordering of G.

Suppose the algorithm fails to construct an ordering, but a
valid one exists. Then at any point during the algorithm the
current graph G had a solution, but the newly constructed
graph G′ does not. Let (v1, . . . , vn) be a topological order-
ing ofG that fulfills the criterion and let vi be the vertex that
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was selected by our greedy algorithm. Since vi is a source
(v1, . . . , vi−1, vi+1, . . . , vn) is a valid topological ordering
of G′. For the nodes v1, . . . , vi−1 we have wG′(vj) − j =
wG(vj) − 1 − j ≤ k, since they have the same index in the
ordering for G. The index for all other nodes has decreased
by 1, which is canceled out by decreasing the weight of the
nodes. Thus the ordering (v1, . . . , vi−1, vi+1, . . . , vn) also
fulfills the criterion. Contradiction.

HTN planning without preconditions is a degenerate form
of delete-free HTN planning with task insertion (Alford et
al. 2014), which means there is always an acyclic series of
progressions that can derive a witness for the lower bound
(Alford, Bercher, and Aha 2015b). This means there is no
necessary interdependence between rows of mp(t), and so
at least one correct and final lower bound is calculated in
every iteration. Thus, the mp(t) calculation iterates at most
|C| times, where C is the set of non-primitive task names.

Experiments

Our work presents two questions: Is our translation
amenable to current classical planning techniques, and do
we find reasonable automatic bounds for HTN problems.
We chose two recent IPC (Vallati, Chrpa, and McCluskey
2015) planners with distinct code bases: Jasper (Xie, Müller,
and Holte 2014) deriving from Fast-Downward (Helmert
2006), and BFS(f) (Lipovetzky et al. 2014) deriving from
LAPKT and FF (Ramirez, Lipovetzky, and Muise 2015;
Hoffmann and Nebel 2001). We ran all problems on a Xeon
E5-2639 with a per problem limit of 8 GB of RAM and 45
minutes of planning time. While Jasper can handle ADL,
BFS(f) is restricted to the HTN2STRIPS and TOHTN trans-
lations (as with many other IPC planners).

To evaluate the translation, we used the three domains
from the evaluation of the TOHTN09 translation (Alford,
Kuter, and Nau 2009). The first is an HTN adaptation of the
well-known Blocksworld domain. In the Towers of Hanoi
domain, the task hierarchy encodes the solution strategy that
can be described easily as hierarchical procedural knowl-
edge. In the Office Delivery domain, a robot has to move
through rooms, open and close doors and deliver some ob-
ject. For more details like the number of tasks and meth-
ods, we refer to the paper by Alford, Kuter, and Nau (2009).
We translated the above problems using the automated maxi-
mum progression bound with each of our three translations1.

We present coverage results in Tab. 1 and Fig. 1 compar-
ing planner coverage and CPU time against the base action
model and the previous TOHTN09 translation. Both plan-
ners performed well against the base action model, showing
that the reduction in branching factor overcame the overhead
of planning with methods. All HTN translations have iden-
tical search spaces, so we have no proof that the modest per-
formance differences with the TOHTN09 translation stem
from anything other than planner implementation minutiae.

All of the above problems had a maximum progression
bound of 2, in part because they were designed to work
well with the TOHTN09 translation. To evaluate whether

1http://github.com/ronwalf/HTN-Translation

our automatic bounding algorithm finds reasonable bounds
on “natural” HTN problems, we collected 60 problems from
four domains in hybrid planning (Bercher, Keen, and Bi-
undo 2014). Here, compound tasks are not symbols as in the
given formalism, but they describe abstract state transitions
by means of preconditions and effects. Methods map the
respective compound task to an “implementing” plan (Bi-
undo and Schattenberg 2001). In these plans, causality is
represented using causal links, a concept known from POCL
planning. We removed these hybrid planning features to ob-
tain simplified models. Two of these domains, Satellite and
Woodworking, were well-known IPC domains and extended
for hybrid planning. The UM-Translog domain describes a
logistics problem and was originally designed for hierarchi-
cal planning systems such as UMCP (Andrews et al. 1995)
and then adapted to hybrid planning. The SmartPhone do-
main was directly modeled for hybrid planning. It describes
the operation of a modern cell phone (Biundo et al. 2011).

Our automatic bounding found minimum progression
bounds (PBs) between 1 and 17 for these problems (Tab. 2).
Not all problems were tail recursive, so we separate out these
results. For tail-recursive problems, we found maximum
progression bounds of 3 to 40. The inclusive range between
minimum and maximum PB form a feasible set of PBs. We
ran BFS(f) and Jasper 10 times on each useable combination
of translation and feasible PB, arbitrarily capping the PB of
non-tail-recursive problems at twice their minimum PB.

Some combination of planner, translation, and PB solved
all but one problem (the largest non-tail-recursive Smart-
Phone). Overall, Jasper with HTN2ADL solved 74% of
the translated instances, Jasper with HTN2STRIPS solved
57%, and BFS(f) with HTN2STRIPS solved 40%. Limited
to the tail-recursive instances translated with their maximum
PB, solution rates were 78%, 64%, and 54%, respectively.
The lower completion rate for partially-ordered problems
matches with their theoretical difficulty (Alford, Bercher,
and Aha 2015a).

We observed that at least 18 of the 60 original problems
had solutions that matched their theoretical maximum PB
and 25 problems had solutions that matched their theoretical
minimum (5 had matching minimum and maximum PBs).
We conclude that our bounding techniques are often suf-
ficient to find feasible progression bounds for translation,
though there is significant room for improvement.

Related & Future Work

Relatedly, Fritz, Baier, and McIlraith (2008) described the-
oretical translations of HTNs into ConGolog and ConGolog
into a variant of PDDL, but the translation into PDDL re-
quires unbounded state structure (e.g., function symbols in
the operator parameters and the state would be sufficient).
Given the equivalence between HTNs and ConGolog (Gold-
man 2009), our work makes it possible to provide an auto-
matic bounded translation of tail-recursive ConGolog pro-
grams into PDDL. Whether such translations are useful is
left to future work.

Some difficulties in planning with our HTN translations
are undoubtedly due to the size of the method schemas.
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No HTN HTN2STRIPS HTN2ADL TOHTN2STRIPS TOHTN09
Planner Domain # # (s) # (s) # (s) # (s) # (s)
Jasper Blocksworld 575 561 64.3 575 2.2 575 2.6 575 1.2 575 1.5
Jasper Towers 120 110 272.6 120 77.4 120 29.7 120 9.4 120 14.4
Jasper Office Delivery 500 441 245.0 500 6.5 500 3.9 500 8.6 500 7.2
BFS(f) Blocksworld 1000 447 212.5 1000 1.4 – – 1000 0.4 1000 0.5
BFS(f) Towers 120 80 254.1 110 18.1 – – 120 2.9 120 5.2
BFS(f) Office Delivery 500 500 109.2 500 11.6 – – 500 27.6 497 44.3

Table 1: Planner coverage (#) per domain variant (the column “No HTN” denotes the (non-hierarchical) base action model)
and planner, along with average time in seconds (s) for problems solved by all domain variants by the planner. For Jasper on
Blocksworld, 425 problems were tossed when at least one variant segfaulted or erroneously reported the problem unsolvable.

Figure 1: Log-scale comparison of planning time on Blocksworld, Robot Navigation, and Towers of Hanoi with HTN trans-
lations vs. planning time for the original domains (left) and our HTN translations vs. TOHTN09 translation (right). Circles,
boxes and triangles indicate instances using the HTN2STRIPS, HTN2ADL and TOHTN2STRIPS translation, respectively.

Problem Translated Theoretical PB Observed PB Jasper-STRIPS Jasper-ADL BFS(f)-STRIPS
Domain Count Instances Min Max Min Max # (s) # (s) # (s)
Satellite 26 3340 1 – 8 5 – 40 4 14 1745 232.8 2378 229.9 1156 232.1
SmartPhone 4 190 4 – 6 8 – 11 4 8 190 2.1 190 0.5 190 0.7
SmartPhone* 3 350 6 – 17 6 16 86 145.5 161 184.3 70 214.6
UM-Translog 15 390 5 – 8 5 – 16 5 11 360 30.1 390 6.4 280 37.0
UM-Translog* 7 530 6 – 8 6 11 310 29.9 420 15.2 250 6.2
Woodworking 5 220 3 – 6 3 – 10 3 7 152 34.8 185 18.9 39 75.1
Total 60 5020 2843 3724 1985

Table 2: Planner coverage (#) per domain variant and planner with mean time in seconds (s) of solved problems for partially-
ordered domains. The “*” domains contained non-tail-recursive problems. BFS(f) and Jasper were run 10 times on each feasible
combination of progression bound and translation type (neither planner is deterministic). On non-tail-recursive problems, we
capped the progression bounds at twice the minimum progression bound.

Work on automatic action splitting may reduce the difficulty
of grounding the translated domains (Areces et al. 2014).

Conclusion

In this paper we showed how a broad class of HTN plan-
ning problems can be automatically translated into classical
planning problems. While such a translation is impossible in

general (due to the undecidability of HTN planning), there is
a special case that often occurs in practice for which it is pos-
sible: tail-recursive problems. In such planning problems,
tasks may only recurse through the last task in a method’s
task network. As a consequence, the size of any task net-
work that is produced by SHOP2-style HTN progression is
bounded. We provided a poly-time algorithm that calculates
an overestimation of this bound. To increase the practical
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efficiency of the translation, we also provided an algorithm
to determine the lower bound. We describe translations that
take such a bound as input and produce a classical planning
problem that simulates the progression search of the origi-
nal HTN problem up to the specified bound. We extended
a previous translation that worked only for totally-ordered
planning problems to work with arbitrary task ordering. It
can be applied to any HTN planning problem, provided a
suitable progression bound is given. Our empirical evalua-
tion with two planning systems showed that the additional
domain knowledge increases the planning performance and
that the new translation is competitive to the previous one.
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Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014. Lan-
guage classification of hierarchical planning problems. In Proc. of
ECAI, 447–452. IOS Press.
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