
Numeric Planning with Disjunctive Global Constraints via SMT

Enrico Scala1 Miquel Ramirez1 Patrik Haslum1,2 Sylvie Thiebaux1,2

1Research School of Computer Science, ANU
2National ICT Australia

Canberra ACT 2601, Australia
firstname.lastname@anu.edu.au

Abstract

This paper describes a novel encoding for sequential numeric
planning into the problem of determining the satisfiability of a
logical theory T . We introduce a novel technique, orthogonal
to existing work aiming at producing more succinct encod-
ings that enables the theory solver to roll up an unbounded
yet finite number of instances of an action into a single plan
step, greatly reducing the horizon at which T models valid
plans. The technique is then extended to deal with problems
featuring disjunctive global constraints, in which the state
space becomes a non-convex n dimensional polytope. In or-
der to empirically evaluate the encoding, we build a plan-
ner, SPRINGROLL, around a state–of–the–art off–the–shelf
SMT solver. Experiments on a diverse set of domains are fi-
nally reported, and results show the generality and efficiency
of the approach.

Introduction

Planning for realistic domains requires expressive models
of the world. While classical planning systems scale up
w.r.t. problem size, their limited expressiveness remains and
makes it difficult to guarantee that solutions conform to
specific constraints, a commonplace requisite for plans to
control a real world system. In response to this problem,
extensions to classical planning languages have been de-
veloped (Fox and Long 2003; Smith, Frank, and Cushing
2008), generating highly expressive, and hard to solve, mod-
els. Notable advances have been achieved (Coles et al.
2010; Fox, Long, and Magazzeni 2011; Löhr et al. 2012;
Ivankovic et al. 2014; Francès and Geffner 2015), although
scalability and effective support for complex forms of nu-
meric reasoning still remain challenging when dealt with
in an integrated fashion (Dornhege et al. 2012). It is our
view that simpler forms of planning, such as the models
entailed by PDDL 2.1 Level 2, have not received enough
attention. We are convinced that scaling up in these sim-
pler models will help overcoming open challenges in hy-
brid planning, analogously to the way scaling up in classical
planning has helped scale up non–deterministic and partially
observable planning (Muise, McIlraith, and Beck 2012;
Bonet and Geffner 2014).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This work focuses on sequential numeric planning, where
dynamics is governed directly and explicitly by action ef-
fects, with continuous and discrete state variables involved
in conditions that can be expressed both locally, in an ac-
tion precondition or the goal, and globally by means of sets
of disjunctive constraints. State variables can be either ba-
sic, set by action effects or initial states, or derived, with
their valuation in a given state inferred from the global con-
straints they have to satisfy. This added expressiveness al-
lows us to compactly interconnect plan generation with the
dynamics of complex systems, such as those of power sys-
tems (Piacentini et al. 2013; Ivankovic et al. 2014). While
planners supporting global numeric (Ivankovic et al. 2014)
or finite-domain (Francès and Geffner 2015) constraints do
exist, these constraints are always given in conjunctive form.
By handling directly disjunctive constraints we support a
very broad class of domains, where the state space is a non–
convex structure, such as the ones entailed by the underwater
UAV domain discussed by Li (2011).

This paper contains two contributions. The first one is a
novel encoding of classical action theories with numeric ef-
fects that exploits the expressive power of certain fragments
of first–order logic (CP, SMT, etc.) and aims at greatly re-
ducing the planning horizon at which the theory models
valid plans. This reduction is achieved by rolling up sev-
eral instances of an action to be executed in one single plan
step. We provide a theoretical analysis of the conditions that
enable rolling up actions, addressing the interaction of the
technique with global constraints. This relationship turns
out to be non-trivial, and requires to derive automatically
specific axioms from the description of action effects and
constraints, that guarantee that constraints are not violated
while rolling up actions. The second contribution is a for-
mal model of planning tasks that unifies the extensions to
classical planning already mentioned, and enables to ap-
proach in a uniform, fully declarative way a highly diverse
and expressive set of domains. In order to implement the
above, we build on top of well-known techniques for com-
piling classical planning into SAT (Kautz and Selman 1999;
Rintanen, Heljanko, and Niemelä 2006) and CP (Lopez
and Bacchus 2003) and we present a compilation of this
model into SMT (Barrett et al. 2008), a highly expressive
decision problem with several publicly available, and ef-
ficient solvers such as Z3 (de Moura and Bjorner 2008),

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

276

recharge x 5
Start

recharge x 7

take soil sample x 2, recharge x 9

take picture, recharge x 7

take picture, recharge
Goal

t1

t2 t3
t4

Figure 1: A GEOMETRIC ROVERS example instance, show-
ing the starting and goal locations of the rover, areas where
tasks can be performed (blue) and obstacles (orange) and
a plan solving the task (green). The red box indicates the
bounds of the environment.

which we use off–the–shelf. We build a planner to test our
scheme, SPRINGROLL, and measure its performance over
several domains previously reported in the literature (Long
and Fox 2003; Ivankovic et al. 2014; Francès and Geffner
2015), as well as a novel domain featuring disjunctive global
constraints. Results show SPRINGROLL to find plans of
length unimaginable with traditional encodings, e.g. on the
order of tens of thousands for some domains like COUN-
TERS (Francès and Geffner 2015).

Motivating Example

Before beginning with the presentation of the details of our
approach, it is useful to consider a reformulation of the well
known ROVERS domain from the numeric track of the 3rd
International Planning Competition (Long and Fox 2003)
that exemplifies the challenges posed by adopting a more
true to nature representation of planning problems. Figure 1
illustrates an instance of the reformulated ROVERS domain
(GEOMETRIC ROVERS from now on). The rover is required
to travel between two given locations on the map, perform-
ing some tasks along the way. The rover can move along
any of the eight compass directions by a certain amount δr,
a fraction of the extent of the map. The rover battery gets
discharged as it moves around, and can be recharged any-
where by a fixed amount, yet this requires the rover to be
stationary. We consider two types of tasks: collecting soil
samples from designated areas (the quadrilaterals t3 and t4)
and taking pictures of specific locations, within a maximum
distance and relative angle to the target (the triangles t1 and
t2). The preconditions of the latter actions require the rover
to be inside the appropriate polygon, and are given by

∧

i

Aixr +Biyr ≤ Ci

where Ai, Bi and Ci are the coefficients of the line equation
corresponding to the i-th edge of the polygon and xr, yr are
the rover coordinates. No-go areas are modeled by introduc-
ing disjunctive global constraints

∨

i

Aixr +Biyr ≥ Ci

that intuitively assert that the rover needs to be outside of
them at every point in time.

Figure 1 shows the plan computed by SPRINGROLL in a
schematic form. Lines represent movement, text represents
tasks and recharging cycles. The plan (with 370 actions and
requiring a planning horizon of 14 steps) is found in about
40 seconds and starts by navigating all the way to the area
where tasks t3 and t4 can be performed, recharging the bat-
tery as necessary, then proceeds to perform t1 and finishes
by performing t2. The number of time steps depends on the
number of turns, on the tasks to be performed and on the
maximum battery level.

Background and Formalisation

Our model is mostly based on the characterisation of plan-
ning with numeric fluents in the PDDL 2.1 (Fox and Long
2003) specification, with some notable extensions (global
constraints, derived state variables), dropping the notion of
undefined values for numeric fluents and adopting a slightly
different, but equivalent characterisation of action precondi-
tions and effects. The planning tasks we consider are for-
mally described as follows:

Definition 1 (Planning Problem). A planning problem Π is
a tuple 〈Xb, Xd, D, s0, A,G, C〉 where:
• Xb and Xd are state variables (fluents), split into basic

and derived sets,
• D is a function mapping x ∈ Xb∪Xd to possible values,
• s0 the initial state, is an assignment to the variables in
Xb ∪Xd,

• A is a set of actions a = 〈prea, effa〉,
• G the goal, and C the set of global constraints, are both

CNF formulas over Xb ∪Xd.

The previous definition separates the set of state vari-
ables into so-called basic and derived variables depending
on whether they are directly affected by actions, or not.
Unlike previous work on planning with derived predicates
(Thiébaux, Hoffmann, and Nebel 2005), but analogously to
a more recent extension (Ivankovic et al. 2014), derived vari-
ables in our approach can be numeric and their valuation is
defined intensionally, meaning that they can have any value
as long as they satisfy the set of global constraints C. In the
problems considered by this paper D maps variables into ei-
ther the set {�,⊥} or Q. A state of the system is an assign-
ment for each variable x ∈ Xb ∪Xd to a value v ∈ D(x).
Action preconditions prea are a conjunction of numeric
and propositional conditions c. Each condition c can be ei-
ther a propositional formula over boolean fluents, or an arith-
metic formula over numeric fluents

φ ≤ φ′|φ < φ′|φ = φ′|φ > φ′|φ ≥ φ′

277

φ, φ′ are linear expressions of the form
∑

i wixi + k, where
wi and k are rational constants and xi is a numeric fluent.
We use lhs(c) to refer to φ, rhs(c) to refer to φ′ and χ(c) to
the set of variables in φ and φ′.
Action effects effa are a set of tuples e = 〈y, ξ〉, y ∈ Xb

being the affected variable and ξ the effect expression. Nu-
meric effects are s.t. ξ is of the form

∑
i wixi + k and

D(xi) = D(y), ∀xi, propositional effects are s.t. ξ is a
constant v ∈ D(y)1. Semantics of effects are defined be-
low. While propositional effects are state-independent (as in
STRIPS), the interpretation of the numeric effects is state-
dependent, and we use [ξ]s to denote the evaluation of the
expression ξ in a given state s. A numeric effect where all the
coefficients wi are equal to 0 is considered to be an assign-
ment. We use the short-hand lhs(e) to refer to the affected
fluent y, and rhs(e) to refer to the expression ξ denoting the
next value for y. With aff(y) we refer to the set of actions
having an effect e for which lhs(e) = y. We assume that
each action affects any variable at most once.
Global constraints impose restrictions on the states that can
be reached. Global constraints C in our model are repre-
sented by a conjunctive formula (set), where each conjunct
C ∈ C can be a condition as for an action precondition, or
a disjunction of conditions c ∨ c′, defined over sets of nu-
meric fluents, χ(C) ⊆ Xb ∪Xd. This allows us to account
for highly expressive planning formalisms as the one intro-
duced recently by Ivankovic et al (2014).
Semantics.We say that an action a can be applied in a state s
whenever s |= prea. If applicable, the execution of a results
in a state s′ such that:
• [y]s

′
= [ξ]s iff a ∈ aff(y) and 〈y, ξ〉 ∈ effa

• [y]s
′
= [y]s iff a /∈ aff(y), y ∈ Xb

• s′ |= C
A solution for Π, or valid plan, is a sequence of actions
π = {a0, a1, .., an−1} for which there exists a sequence of
states {s0, ..., sn} such that s0 |= prea0

, si ∈ si−1[ai−1]
and si−1 |= preai−1

for each 1 ≤ i ≤ n, and sn |= G.
We use s[a] to intensionally denote the set of successors
states of s using a. Each state s′ ∈ s[a] is s.t. it satisfies
the action execution conditions as mentioned above (i.e., ac-
tion effects, inertia and global constraints), s[a] being empty
for invalid transitions. Even though s[a] represents a set
of states, actions still have to be interpreted as determinis-
tic transitions, where each successor state is implicitly de-
fined according to the satisfiability of conditions imposed
by the global constraints and the resulting course of ac-
tions. This handling of derived fluents is indeed less intu-
itive than the inductive representation used by planning lan-
guages such as PDDL 2.2 (Edelkamp and Hoffmann 2004;
Thiébaux, Hoffmann, and Nebel 2005). On the other hand,
this deductive formulation allows us to compactly ramify
over infinite sets of indirect action effects.

From Planning to SMT
Even if the contributions presented in the next two Sections
are independent of specific solvers and modeling languages,

1Note that this formulation subsumes STRIPS effects. It suf-
fices to consider the domain of y made up of {�,⊥}

so far as the fragment of first-order logic they capture is ex-
pressive enough, we have chosen to present them in the con-
text of SMT. The reasons for doing so are two. First, SAT is
a framework well-known by the planning community, and
we consider SMT to be a parsimonious extension of SAT.
SMT is the decision problem for logical formulas w.r.t. com-
binations of background theories expressed in classical first-
order logic plus equality. Amongst the many background
theories discussed in the literature, of specific interest and
relevance to this paper are the theory of arithmetic over
real and integer numbers (Barrett et al. 2008). Second, the
SMT community uses a standardised set of tools for model-
ing problems, and those provide a clear declarative interface
between the planning and satisfiability components, facili-
tating experimentation with existing SMT solvers and adop-
tion of the state–of–the–art as it is pushed forward.

The reduction we are going to present is a generalisa-
tion of the boolean SAT encoding (Kautz and Selman 1999).
Concerning the classical numeric part it builds on the pio-
neering work of TM-LPSAT (Shin and Davis 2005), hereby
extended to handle global numeric constraints over derived
variables and, as we will see, to account for a novel plan
execution semantic that allows for the same action to be ex-
ecuted a finite but unbounded number of times in a given
plan step. The set of valid plans for the planning problem
Π = 〈Xb, Xd, D, s0, A,G, C〉 with horizon N is encoded by
the theory T (Π, N) where, for each time step i ∈ {0,. . .,N},
SMT functions model state variables and the actions (up to
N−1) to execute. We partition A into two sets, NA and PA.
NA is the subset of numerically interesting actions, namely,
those actions a with effa featuring at least one effect of the
form 〈y,∑i wixi + k〉, whereas PA is defined as A \ NA

and denotes the set of actions with no numeric effects. We
use φ[x/xi] to denote the substitution of each occurrence
of all variables x ∈ Xb ∪ Xd in formula φ by their cor-
responding time-indexed function xi. T (Π, N) is then built
upon three sets of functions, for every time step: (1) boolean
or real functions xi, x ∈ Xb ∪ Xd, 0 ≤ i ≤ N , denoting
values of state variables at time step i, (2) integer functions
bi, b ∈ NA,0 ≤ i ≤ N − 1, number of instances of an
action b ∈ NA executed at time step i, and (3) boolean func-
tions ai, a ∈ PA,0 ≤ i ≤ N − 1, denoting whether actions
a ∈ PA are executed at time step i. T (Π, N) axioms, ex-
cept those accounting for action roll–ups and their interac-
tion with global constraints, which are introduced in the next
two sections, are:

A1. Init: x0 = v for x ∈ Xb and s0 |= x = v, v ∈ D(x).

A2. Actions : For i = 0, 1, . . . , N − 1, a ∈ PA

• ai ⇒ prea[x/x
i]

• ai ⇒ yi+1 = v, for each 〈y, v〉 ∈ effa,

and for actions b ∈ NA, bi ≥ 0 and

• bi = 1 ⇒ preb[x/x
i]

• bi = 1 ⇒ yi+1 = χ, for each 〈y, ξ〉 ∈ effb

278

A3. Frame: for each xi ∈ Xb

xi �= xi+1 ⇒
∨

a∈aff(x),a∈PA

ai

∨
∨

b∈aff(x),b∈NA

bi > 0

A4. Interferences: If a, d interfere, for i = 0, . . . , N − 1
• ¬ai ∨ ¬di, a, d ∈ PA,
• ¬ai ∨ di = 0, a ∈ PA, d ∈ NA,
• ai = 0 ∨ di = 0, a, d ∈ NA,
A5. Global Constraints: Cj [x/x

i], for 0 ≤ i ≤ N , Cj ∈ C.
A6. Goal: G[x/xN]

Action interference is established according to PDDL
2.1 (Fox and Long 2003), but extended to account for global
constraints as follows:

Definition 2 (Interference via Global Constraints). We say
that actions a and b interfere via global constraint C if there
are effects ea and eb s.t. lhs(ea) and lhs(eb) both appearing
in C.

We acknowledge that weaker – yet sound – notions of ac-
tion interference may exist, but the present ones suffice to
guarantee the validity of plans, and are sufficient to enable
the execution of several actions in the same plan step whilst
guaranteeing the existence of a valid linear plan as per ∀–
step semantics (Rintanen, Heljanko, and Niemelä 2006).

Rolling up the Repeated Execution of an

Action into a Single Plan Step

A seldom discussed consequence of extending STRIPS
planning to encompass numeric effects, or conditional ef-
fects (Pednault 1986), is that actions are no longer idempo-
tent operations. That is, when doing an action twice in a row,
the effects of the action can be different the second time.
These state dependent effects make numeric planning more
involved than STRIPS, yet allow for very compact grounded
action descriptions. In this Section we present a novel tech-
nique to encode sub–optimal linear plans, that acknowledges
this feature and exploits it by allowing to roll up many in-
stances of a given action with state dependent numeric ef-
fects so they are executed in a single plan step, subject to
constraints that guarantee the validity of the actual plan they
entail. We next formalise the two conditions that enable an
action to be given this treatment, and then we deal with the
difficulties presented by maintaining the truth of precondi-
tions and global constraints through the repeated execution
of such actions.

We use ind(x) = {y ∈ Xd | c ∈ C, x, y ∈ χ(c)} to
denote the set of variables indirectly affected by changing
x. A first condition for an action to be rolled up is that its
effects are not self-interfering. More formally:

Definition 3 (Self-interfering numeric effects). An action a
is said to feature self-interfering numeric effects whenever
at least one of the following conditions hold:

1. for some effect e ∈ effa there is an effect e′ ∈ effa,
e �= e′ s.t. (lhs(e′) ∪ ind(lhs(e′))) ∩ rhs(e) �= ∅

2. there is an effect e ∈ effa s.t. rhs(e) ∩ ind(lhs(e)) �= ∅

An action b having non-interfering effects has the property
that the value of an affected numeric fluent after m execu-
tions of b can be expressed in closed form, and therefore
eligible to have multiple executions rolled up.
Theorem 1. Let b be an action with no self-interfering ef-
fects, and a numeric effect on y of the form αy+

∑
i wixi+k.

The value of fluent y after executing m times action b is given
by the equation

fa
y (m) = αmy +

m∑

r=0

αr(
∑

i

wixi + k) (1)

where when α > 0 the function f b
y(m) is monotonic in m.

Proof sketch. By induction over m, observe that it suffices
to substitute recursively y by the expression of the effect, to
obtain Equation 1

In order to guarantee the generation of valid plans when
allowing an action b to be rolled up, we need first to en-
sure that preb is satisfied throughout every execution. This is
achieved by introducing a set of axioms that are derived au-
tomatically when b is found to satisfy the eligibility criteria
given above. These are obtained by extending the numeric
regression operator presented in a recent work (Scala 2013)
to account for the rolling up of actions and compiling it into
our theory T (Π, N). Given an action b with monotonic ef-
fects affecting the set of fluents Y , and given a condition
c ∈ preb s.t. χ(c) = X ∪ Y , the regression of c through m
repetitions of action b is the following:

cr(b,m) ≡
∑

y∈Y

wyf
b
y(m) +

∑

x∈X

wxx+ k{≥, >,=}0 (2)

where wy , wx are the coefficients associated with fluents x
and y in c. Equation 2 amounts to rewriting the precondition
c so as to account for the effect of each repeated application
of b over each fluent in c. The second condition an action b
needs to comply with in order to admit rolling up execution
is that the left-hand-side of cr(b,m) is a monotone function
over m, and the sufficient conditions for that to be the case
follow
Proposition 2. cr(b,m) in Equation 2 is a monotone function
if at least one of the three following conditions holds for b:

1. ∀y ∈ Y , f b
y(m) is linear

2. |Y | = 1 and α > 0.
3. ∀y ∈ Y , f b

y(m) is monotonically increasing (decreasing).
At this point in the discussion, we find it necessary to

make some important remarks. First, whenever 0 < α < 1
or α > 1, f b

y(m) becomes an exponential function. In
this case, satisfiability of T (Π, N) is only decidable when
approximated within a tolerance parameter δ (Gao, Avi-
gad, and Clarke 2012), and requires specialised solvers.
Alternatively, the SMT framework can be abandoned alto-
gether, adopting CP or Mixed-Integer Non-linear Program-
ming (MINLP) languages and solvers instead. Second, when
α < 0, f b

y(m) oscillates and becomes non-monotonic. In
that case action rolling up can only be applicable after re-
formulating the action model, breaking up action b into ac-
tions dk, so that f b

y(m) is approximated piecewise by mono-
tone functions fdk

y (m). Last, we note that cases α = 1 and

279

α = 0 cover a very general class of dynamics, where rates
of change are described by linear or constant equations.

Definition 4 (Rolling up eligibility). An action b with-
out self-interfering effects is said to be eligible for rolling
up whenever it complies with Proposition 2, and for each
propositional precondition x = k in pre(b), x /∈ aff(b).

Once established all of the above for action b, the follow-
ing Proposition formalises the guarantee that rolling up b
necessarily results in valid plans

Proposition 3. Let b be an action eligible for rolling up, and
let s′ be a state such that s′ |= y = f b

y(m) for some m > 0.
If for all c ∈ pre(b), cr(b,m−1) and preb are satisfied in s,
then the transition between states s and s′ is valid.

Proof sketch. Let [lhs(cr(b,0))]s ≥ 0 and [lhs(cr(b,k))]s ≥ 0.
For the sake of the argument, assume that there exists i, 0 <
i < k s.t. [lhs(cr(b,i))]s < 0. This can only be true whenever
the right hand side of Equation 2 is not a monotone function,
which is in turn only possible when b does not comply with
Proposition 2.

In the absence of global constraints, satisfiability of the
following axioms suffices to enforce Proposition 3:
A7. Rolled-up Preconditions and Effects

bi > 1 ⇒
∧

c∈preb

cr(b,b
i−1)[x/xi] ∧ preb[x/x

i] (3)

bi > 1 ⇒
∧

〈y,∑i wixi+k〉∈effb

yi+1 = f b
y(b

i)[x/xi] (4)

bi > 1 ⇒
∧

〈y,v〉∈effb

yi+1 = v (5)

bi ≤ 1, ∀b not eligible for rolling up (6)

These axioms ensure that the accumulated effects do not
violate c until (possibly) right after the last execution is
done. Equation 5 ensures the propagation of state indepen-
dent effects.

Handling Global Constraints

In the presence of global constraints C, the validity of plans
when rolling an action a depends on each intermediate state
s′ satisfying every Ci ∈ C, or in other words, each transition
made by the sequence of actions being rolled up needs to be
valid. For global constraints Ci involving a single condition,
handling global constraints is a straightforward variation on
axiom 7 introduced in the previous Section:
A8. Rolled-up actions and global conjunctive constraints

bi > 1 ⇒ Cr(b,bi)[x/xi], C ∈ C (7)

where we retain the regression of b and drop the term involv-
ing the precondition.

Handling properly the case when Ci = c1 ∨ . . . ∨ cn is
not trivial, since every disjunct cj can be potentially relevant
to an action b, and this relevance depends on the number of
instances of the action to be rolled up. In Figure 2 we can
see that for the sequence β1,. . .,β8 one disjunct is true (be-
low line c3) all along the sequence. This is the case when

c1 c1

c3 c3

c2

c2

c4

c4

α1

α2

α3

α4

β1 β2 β3 β4 β5 β6 β7 β8

Figure 2: Rectangle in the center represents an obstacle as
modeled in GEOMETRIC ROVERS: c0,...,c3 are the four dis-
juncts in the constraint disallowing actions to end inside the
obstacle. Two executable sequences of instances of actions α
and β, namely, α1,..,α4 and β1,...,β8 are shown to illustrate
how actions interact with disjuncts cj . See text for discus-
sion.

global constraints and action effects are known to be aligned
with the axis – as is the case in Figure 2. When constraints
are oriented along an arbitrary rotation axis or actions al-
low changes in the state that are not parallel or orthogonal
to that rotation axis, it gets complicated. For instance, when
we try to roll up α1, α2 and α3 together, no constraint cj re-
mains true in every intermediate state, precluding rolling up
together those three actions. On the other hand, c1 is always
true for the intermediate states generated by the sequence
α2,α3,α4, and rolling up becomes possible.

In order to ensure the consistency of the implicit trajec-
tory conveyed by a sequence of rolled up actions w.r.t. the
global constraints, each disjunct cj in a global constraint Ci

is substituted with a conjunction, each conjunct asserting the
truth of cj before and after the sequence is executed:

Rb,m
Ci

= (c1 ∧ c
r(b,m)
1) ∨ . . . ∨ (cn ∧ cr(b,m)

n)

This results in a new, automatically generated constraint
Rb,m

Ci
for each action b and disjunctive constraint Ci. This

constraint implicitly creates the commitment that the cumu-
lative effects of the rolled up action, given by Equation 2,
need to be consistent with at least one disjunct of constraint
Ci. The last set of axioms to be added to our theory T (Π, N)
follow directly from Theorem 3:
A9. Rolled-up actions and global disjunctive constraints

bi > 1 ⇒ Rb,bi

Ck
[x/xi], Ck ∈ C (8)

The above guarantees that whenever an action is rolled up
at plan step t, the sequence of actions is sound, that is, can
be executed. But it does not capture all possible ways to roll
up actions. Going back to the example in Figure 2, there is
no reason in principle for not rolling up α1,. . .,α4. Yet the

280

reformulated constraint

(c1 ∧ c
r(α,4)
1) ∨ . . . ∨ (c4 ∧ c

r(α,4)
4)

is false, as well as any instance of axiom A9, for b = α
and m = 4. If the sequence α1,. . .,α4 is part of the valid
plan selected by the solver, we will have α1 at plan step t,
and the rolled up sequence α2,. . .,α4 at plan step t + 1, or
alternatively, α1,α2 in plan step t, and α3,α4 in t+1. Either
way, we will end up doing an additional call to the solver.

Empirical Evaluation

In order to gauge the efficiency of the encoding pre-
sented in the previous sections, we have build the plan-
ner SPRINGROLL, implemented in JAVA, that generates
T (Π, N) automatically from a PDDL 2.1 description of Π,
trivially extending the language to represent global con-
straints, and invokes the SMT solver Z3 (de Moura and
Bjorner 2008) in an off-the-shelf fashion. The algorithm to
search for plans is that of Kautz and Selman (1999). Namely,
we generate theories T (Π, k), k = 0,1,2,. . ., until T (Π, k)
is SAT. We acknowledge existing work that speeds up no-
tably planning times by either tweaking solver variable se-
lection heuristics and clause learning schemes, using smart
strategies for the search of planning horizon k for which
T (Π, k) models a plan (Rintanen 2012), as well as aiming
at the derivation of sets of clauses that implement deductive
lower bounds (Geffner 2004) from the analysis of unsatis-
fiability proofs (Suda 2014). But we leave the investigation
of which heuristics and strategies work best with the kind of
axioms we are generating to future work, and focus instead
on measuring the inherent efficiency of the encoding and our
choice in the representation of derived fluents and compare
it with state–of–the–art heuristic search planners, when such
a system is available.

In order to evaluate SPRINGROLL we have tested it over
a diverse set of benchmarks, discussed next, on an 8–core
i7-4770@3.40Ghz machine using Ubuntu 14.04. We limited
run–time of planners to 500 seconds and memory usage to 2
GBytes, unless otherwise noted.

Benchmarks

The first set of benchmarks we consider are those of
Ivankovic et al. (2014). These allow us to test the effec-
tiveness of SPRINGROLL when dealing with global numeric
constraints that involve both basic and derived variables. The
Power Supply Restoration (PSR) domain, where the number
of global constraints affected by action execution depends
on the state, is taken off–the–shelf. In Hydraulic Blocks
World (HBW) some constraints have been directly encoded
as action effects (e.g., the weight of a box on a piston). Equi-
librium of forces among the pistons has been modeled using
global constraints in a way that is equivalent to the switched
constraints discussed by Ivankovic et al. (2014).

The second set of benchmarks is taken from Francès and
Geffner (2015). This includes a number of domains that take
numeric planning out of the comfort zone by introducing
challenging numeric preconditions and goals, as well as state
constraints (Ferrer-Mestres, Frances, and Geffner 2015). In

Figure 3: Coverage vs Timeout (secs) curve for
SPRINGROLL (continuous line) and HSHP (dashed
line) over HBW (on the left) and PSR (on the right).

the domains GARDENING, PUSHING STONES and GROUP-
ING we have replaced the graph representation of the navi-
gation grid with locations represented by tuples (x, y) ∈ N2.
This alternative formulation does not change the set of valid
and optimal plans. We also generated additional larger in-
stances, increasing the value of the relevant parameters of-
fered by Francès and Geffner’s (2015) problem generators.
Along with these we also considered the domains from the
numeric track of the 3rd International Planning Competi-
tion (Long and Fox 2003) minus the SETTLERS domain2

For the ZENO TRAVEL domain we generated a set of in-
stances with increasingly tighter bounds on the amount of
fuel allowed to be spent, resulting in a set of numerically
challenging instances.

The third and last set consist of hand-crafted instances of
GEOMETRIC ROVERS with increasing numbers of obstacles
(up to 20) and tasks to be performed (up to 5). Besides that
we generated 20 instances without tasks and unlimited bat-
tery charge, with the number of obstacles ranging between
5 and 100. In the instances with more than 50 obstacles the
percentage of map area covered by them is greater than 70%.
Such problems are considered to be challenging by recent
works on motion planning (Plaku 2013).

In all these benchmarks the value of α in Equation 1 is
either 0 or 1.

Results

Ivankovic et al.’s (2014) domains. In Figure 3 the cover-
age of SPRINGROLL is compared with that of the heuris-
tic search hybrid3 planner (HSHP) proposed by Ivankovic
et al. (2014). For both domains, SPRINGROLL was run al-
lowing only one action per time step so as to find optimal
plans, as it is the case for HSHP. On HBW both planners
solved 61 out of 72 solvable instances (where plans are up
to 20 actions), and spent similar average run-times: 135 secs
for SPRINGROLL and 137 secs for HSHP. On the PSR in-
stances, a substantial gap separates SPRINGROLL from

2This domain required non-trivial reformulation of its in-
stances, as it relies on the notion of undefined numeric fluents to
account for objects being dynamically created.

3Since it deals with mixed discrete–continuous state variables.

281

Coverage Plan length Average Time

I Springroll FS0 FF Springroll FS0 FF Springroll FS0 FF

GARDENING 51 24 41 51 89.9 91.6 266.4 83.2 43.17 1

PUSHING STONES 324 87 59 NA 42 70.5 NA 117.3 113 NA

GROUPING 192 192 124 22 43.5 32.8 41 0.1 43.7 21.8

COUNTERS 35 35 12 9 130.4 118.4 118.4 0.1 12.6 142.5

COUNTERS-RND 105 105 36 30 209.9 180.6 192.7 0.1 50 10.4

COUNTERS-INV 35 35 12 6 69.3 61 64.3 0.1 6.6 30.4

Table 1: Coverage, average plan length and time (in seconds)
of FS0 SPRINGROLL and MetricFF on the domains re-
ported by (Francès and Geffner 2015).

HSHP. SPRINGROLL coverage is greater (245 vs 229),
solving all instances in under 100 seconds, much faster
than HSHP. The latter is on average 54 times slower than
SPRINGROLL. The HSHP heuristic is very expensive to
compute in general, and on the larger instances of the bench-
mark, it is not very accurate evaluating 10-100 times more
nodes than are expanded. Plans are very short, and even
without rolling up actions, SPRINGROLL is very efficient.
Francès and Geffner’s (2015) domains. The comparison
between SPRINGROLL, the latest version available of FS04

implementing state constraints, and MetricFF (Hoffmann
2003) is reported in Table 1. With the exception of PUSHING
STONES and GROUPING all planners use the same formula-
tion of the given domain5. MetricFF is not tested on PUSH-
ING STONES since it does not support state constraints. We
tested SPRINGROLL without generating axioms 7–9, there-
fore disabling action roll up entirely. The coverage of the
planner resulting from using axioms 1–6 alone is an insignif-
icant fraction of that attained by SPRINGROLL with rolling
up and the other planners. For instance, SPRINGROLL gen-
erating only axioms 1–6 solves just 15 instances, out of 170,
over all COUNTERS variants.

SPRINGROLL does best on the GROUPING and COUN-
TERS domains. In these, all actions are eligible for be-
ing rolled up, and on top of that, actions seldom inter-
fere with one another. Interestingly, rolling up actions tends
to produce longer plans than FS0 on these two domains.
Since there are no explicit upper bounds on the values that
functions bi can take, the plans SPRINGROLL obtains in
COUNTERS set the counters to arbitrarily high or small val-
ues achieving the same goal condition with more actions
than FS0 plans do. On the domain PUSHING STONES –
a simplified version of SOKOBAN with no fixed obstacles
– SPRINGROLL’s coverage is 50% higher than FS0’s. Ac-
tions interfere often and serialise plans, yet this is bal-
anced by rolling up of actions, that keeps the planning hori-

4https://bitbucket.org/gfrances/fs0
5In those domains, the inequality loc(o) �= loc(o′) used to de-

note compactly that o and o′ should occupy different locations, be-
comes x(o) �= x(o′) ∨ y(o) �= y(o′). At the moment of writing
this, FS0 does not support the ∨ logical connective and only bi-
nary relations over pairs of fluents can be defined intensionally.

Figure 4: Run-times of GEOMETRIC ROVERS with tasks and
limited battery (right) and without (left). The y-axis shows
run-time in seconds, the x-axis is the number of obstacles
(or obstacles and tasks, on the right). Missing data points
denote a time out.

zon manageable for a substantial number of instances. In
GARDENING FS0 and MetricFF coverage doubles that of
SPRINGROLL, and MetricFF solves all the instances. Solv-
ing GARDENING requires finding plans with length linear on
the number of plants to be watered, and actions doing so in-
terfere with every other action. As in PUSHING STONES this
implicitly serialises plans and increases the planning hori-
zon for which valid plans exist, yet in this case rolling up
actions does not allow SPRINGROLL to keep the pace with
the heuristic search planners.
Long and Fox’s (2003) benchmarks. We compared
MetricFF with SPRINGROLL over the 3rd IPC benchmarks.
Across all the tested domains, MetricFF clearly performs
better than SPRINGROLL solving 76 out of 125 total in-
stances while SPRINGROLL only manages to solve 28 in-
stances. A notable exception is for the ROVERS domain,
where both MetricFF and SPRINGROLL solve 12 out of 20
instances. Here, MetricFF Enforced Hill Climbing did not
perform particularly well due to numerous numeric dead-
ends, feature that does not affect SPRINGROLL. For this
class of benchmarks, results are in general consistent with
the experimental results reported by previous works (Bofill,
Espasa, and Villaret 2015; Hoffman et al. 2007). The in-
stances in the benchmarks do not have very tightly con-
strained goals, sometimes making the numeric structure al-
most irrelevant and most action effects are propositional, rul-
ing out action roll ups. In order to verify the former observa-
tion, we took the instances from the ZENO TRAVEL domains
and introduced a hard constraint on the amount of fuel that
valid plans could spend. With this constraint set so that plans
used 90% of the fuel used by MetricFF plans on the original
instances, MetricFF solves half as many problems as it did,
10 out of 23, while SPRINGROLL solves 6 out of 23.
GEOMETRIC ROVERS. Our experiments on the GEOMET-
RIC ROVERS benchmarks are reported in Figure 4. Run-
times increase with the number of obstacles, all of them
aligned with the axis, and tasks (see graph on the right of
Figure 4). The longest plans in these instances consist of up
to 370 actions, a number significantly higher than that of
plans typically feasible for SAT or SMT planners. When lim-
iting run-times to 1, 800 seconds, SPRINGROLL solves all

282

the instances (20) without tasks and unlimited battery, and
16 out of 20 of the instances with tasks and limited battery.
Similarly as for the GARDENING domain discussed above,
actions achieving tasks interfere with moving and recharg-
ing, so the planning horizon increases with the number of
tasks to be performed (and SPRINGROLL’s performance de-
creases accordingly).

We also tested the planner on benchmarks where obstacles
were oriented around an arbitrary rotation axis. The time al-
lowed to the planner in this case was 3, 600 seconds. With
these settings, SPRINGROLL solves problems with as many
as 5 obstacles in tens of seconds, that is one order of magni-
tude slower than when obstacles are all aligned with the axis.
The biggest instance solved features 15 obstacles, in slightly
over 2, 000 seconds. This inability to scale up has two direct
causes. First, as discussed in the previous Section, our ax-
ioms do not guarantee that SPRINGROLL rolls up as many
instances of the same action together as it would be possi-
ble, and we have to deal with more unsatisfiable interme-
diate theories T (Π, i). Second, when obstacles are arbitrar-
ily oriented, Rb,m

Ci
involves both state variables x and y and

the resulting multivariate disjuncts hurt further solver per-
formance. We conjecture that more decisions are required to
propagate implied atoms, i.e. a disjunct of Rb,m

Ci
being true

or false.

Related Work

Compilations of planning over states with numeric vari-
ables into SMT have been reported in the past (Wolfman
and Weld 1999; Shin and Davis 2005; Hoffman et al. 2007;
Bofill, Espasa, and Villaret 2015), yet have not proved so
far a very popular approach, in part due to the reported in-
efficiency of early SMT solvers (Hoffman et al. 2007). We
demonstrate that with an appropriate encoding that exploits
the expressive power of SMT and looks at the fine struc-
ture of the domain dynamics as modeled by action effects,
planning as SMT can be competitive with state–of–the–art
heuristic search planners.

The way we handle the interaction of preconditions and
global constraints with action rolling up is related to the
zero-crossing axioms discussed by Shin and Davis (2005).
TM-LPSAT encodes into a set of constraints the necessary
conditions requiring to insert a new time point, namely, that
a given constraint Ci’s truth value changes between two
given time points the planner has already committed to. In
this work, axioms A7–A9 describe sufficient conditions for
which execution of actions can proceed in a continuous way
without interfering with preconditions or global constraints.
In other words, TM-LPSAT looks at when the derivative of
Ci(t), the function describing the values of constraint Ci

left–hand side change over time, is zero. Our axioms allow
rolling up whenever actions changes on variables relevant to
Ci are such that the derivative of Ci(t) is always positive or
negative, over an interval defined as an arbitrary number m
of discrete time steps of duration ∂t.

To the best of our knowledge, the only other planner
handling unrestricted numeric effects in actions and global
constraints is KONGMING (Li 2011). The KONGMING plan

graph and its encoding as a MINLP is very similar to our
theories T (Π, N), yet not equivalent in the same way as
Kautz & Selman encoding of planning tasks into SAT is
equivalent to GRAPHPLAN (Geffner 2004). Their approach
to the problem of ensuring that continuing, repeating change
complies with global constraints is by constructing over–
approximations of valid plans, or flow tubes (Hofmann and
Williams 2006). Each of these define implicitly many trajec-
tories which are known to be consistent with the global con-
straints, in roughly the same way as our axioms A8 and A9
do. Flow tubes as defined in KONGMING over-approximate
the set of valid trajectories, while our axioms represent a
subset of the possible feasible trajectories within a given
plan step.

Last, our encoding aims at producing more succinct en-
codings of planning tasks, as is the case for ∃–step seman-
tics (Rintanen, Heljanko, and Niemelä 2006). While the for-
mer exploits both the lack or weakness of causal depen-
dencies between actions in a valid plan, we exploit the ob-
servation that actions with numeric state–dependent effects
are not idempotent in general. In both works though, this is
achieved by adding additional constraints, challenging the-
ory solvers in interesting ways (Rintanen 2012).

Discussion & Future Work

This paper presents a novel encoding of expressive nu-
meric planning with disjunctive global constraints that, un-
der some well-defined conditions, produces very compact
theories T (Π, N) modeling valid plans. We instantiate the
approach for the SMT modeling and computational frame-
work and show that it can compete with the state–of–the–art
in non–trivial interesting numeric planning problems, with-
out further optimisations.

While numeric arguments in action schemata could seem
as an alternative to rolling up, we rather see that the contri-
butions in this paper would be solving the problems posed
by selecting values for such arguments and implementing
the transition function for such actions when effects in-
teract with preconditions and global constraints. Handling
global disjunctive constraints is crucial for the GEOMETRIC
ROVERS domain, and rolling up the execution of actions in
the same plan step reduces the horizon N at which T (Π, N)
models a valid plan by an order of magnitude (e.g. a plan
with over 300 actions requires horizon N ≈ 10). GEOMET-
RIC ROVERS is just a concrete example of planning tasks
that require to find a path between two arbitrary points in
the n-manifold resulting from the intersection of an arbi-
trary number of open n-manifolds representing the points
that satisfy global constraints. Our work assumes that such
paths (plans) can be described in a piecewise form by con-
catenating monotone functions, i.e. the accumulated effects
of rolled up actions.

As immediate future work, besides investigating the im-
pact of recent orthogonal optimisations and other heuristic
techniques in the efficiency of SMT solvers on the theories
we generate, we aim at developing better heuristic estima-
tors (Löhr et al. 2012) for hybrid planning that exploit the
ability to roll up many discrete changes into a plan step.

283

Acknowledgments
This research is supported by the ARC Discovery Project
“Robust AI Planning for Hybrid Systems” (DP140104219)
and NICTA. NICTA is funded by the Australian Govern-
ment through the Department of Communications and the
Australian Research Council through the ICT Centre of Ex-
cellence Program. We would also like to thank the anony-
mous reviewers and Alban Grastien for their constructive
and helpful comments.

References
Barrett, C.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C. 2008.
Satisfiability modulo theories. In Handbook of Satisfiability.
IOS Press. 737–797.
Bofill, M.; Espasa, J.; and Villaret, M. 2015. The RANTAN-
PLAN planner: System description. In Proc. of Workshop on
Constraint Satisfaction Techniques for Planning and Schedul-
ing (COPLAS), 1–10.
Bonet, B., and Geffner, H. 2014. Belief tracking for planning
with sensing: Width, complexity and approximations. Journal
of Artificial Intelligence Research 50:923–970.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proc. of ICAPS, 42–49.
de Moura, L., and Bjorner, N. 2008. Z3: An efficient SMT
solver. Lecture Notes in Computer Science 4963:337–340.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.; and
Nebel, B. 2012. Semantic attachments for domain-independent
planning systems. In Towards Service Robots for Everyday En-
vironments. 99–115.
Edelkamp, S., and Hoffmann, J. 2004. Pddl 2.2: The language
for the classical part of the 4th international planning compe-
tition. Technical report, Albert-Ludwigs-Universität Freiburg,
Institüt for Informatik.
Ferrer-Mestres, J.; Frances, G.; and Geffner, H. 2015. Plan-
ning with state constraints and its application to combined task
and motion planning. In Proc. of Workshop on Planning and
Robotics (PLANROB), 13–22.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic con-
struction of efficient multiple battery usage policies. In Proc. of
IJCAI, 2620–2625.
Francès, G., and Geffner, H. 2015. Modeling and computation
in planning: Better heuristics from more expressive languages.
In Proc. of ICAPS, 70–78.
Gao, S.; Avigad, J.; and Clarke, E. M. 2012. δ-complete deci-
sion procedures for satisfiability over the reals. In Automated
Reasoning. Springer. 286–300.
Geffner, H. 2004. Planning Graphs and Knowledge Compila-
tion. In Proc. of Principles of Knowledge Representation and
Reasoning (KR).
Hoffman, J.; Gomes, C.; Selman, B.; and Kautz, H. 2007. SAT
encodings of state-space reachability problems in numeric do-
mains. In Proc. of IJCAI, 1918–1923.
Hoffmann, J. 2003. The Metric-FF planning system: Translat-
ing ”ignoring delete lists” to numeric state variables. Journal
of Artificial Intelligence Research 20:291–341.

Hofmann, A., and Williams, B. C. 2006. Robust execution of
temporally flexible plans for bipedal walking devices. In Proc.
of ICAPS, 386–389.
Ivankovic, F.; Haslum, P.; Thiébaux, S.; Shivashankar, V.; and
Nau, D. S. 2014. Optimal planning with global numerical con-
straints. In Proc. of ICAPS, 145–153.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
Graph-based planning. In Dean, T., ed., Proc. of IJCAI, 318–
327. Morgan Kaufmann.
Li, H. X. 2011. Kongming: A Generative Planner for Hybrid
Systems with Temporally Extended Goals. Ph.D. Dissertation,
Dept. of Aeronautics and Astronautics, Massachussets Institute
of Technology.
Löhr, J.; Eyerich, P.; Keller, T.; and Nebel, B. 2012. A planning
based framework for controlling hybrid systems. In Proc. of
ICAPS, 164–171.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. Journal of Artificial Intelli-
gence Research 1–59.
Lopez, A., and Bacchus, F. 2003. Generalizing graphplan by
formulating planning as a csp. In Proc. of IJCAI, 954–960.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
Non-deterministic Planning by Exploiting State Relevance. In
Proc. of ICAPS.
Pednault, E. P. D. 1986. Formulating multiagent, dynamic-
world problems in the classical planning framework. In Rea-
soning about actions and plans. 47–82.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2013. Com-
bining a temporal planner with an external solver for the power
balancing problem in an electricity network. In Proc. of ICAPS.
Plaku, E. 2013. Robot motion planning with dynamics as hy-
brid search. In Proc. of the National Conference on Artificial
Intelligence (AAAI), 1415–1421.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Planning
as satisfiability: parallel plans and algorithms for plan search.
Artificial Intelligence Journal 170(12-13):1031–1080.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Artifi-
cial Intelligence Journal 193:45–86.
Scala, E. 2013. Numeric kernel for reasoning about plans in-
volving numeric fluents. In AI*IA 2013: Advances in Artificial
Intelligence, 263–275.
Shin, J.-A., and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. Artificial Intelligence Journal
166(1):194–253.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML lan-
guage. In The ICAPS-08 Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS).
Suda, M. 2014. Property directed reachability for automated
lanning. Journal of Artificial Intelligence Research 50(1):265–
319.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense of
PDDL axioms. Artificial Intelligence Journal 168(1-2):38–69.
Wolfman, S. A., and Weld, D. S. 1999. The lpsat engine & its
application to resource planning. In Proc. of IJCAI, 310–317.

284

