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Abstract

In this work, we consider RCPSP/max with durational uncer-
tainty. We focus on computing robust Partial Order Sched-
ules (or, in short POS) which can be executed with risk
controlled feasibility and optimality, i.e., there is stochas-
tic posteriori quality guarantee that the derived POS can be
executed with all constraints honored and completion be-
fore robust makespan. To address this problem, we propose
BACCHUS: a solution method on Benders Accelerated Cut
Creation for Handling Uncertainty in Scheduling. In our pro-
posed approach, we first give an MILP formulation for the
deterministic RCPSP/max and partition the model into POS
generation process and start time schedule determination.
Then we develop Benders algorithm and propose cut genera-
tion scheme designed for effective convergence to optimal-
ity for RCPSP/max. To account for durational uncertainty,
we extend the deterministic model by additional considera-
tion of duration scenarios. In the extended MILP, the risks
of constraint violation and failure to meet robust makespan
are counted during POS exploration. We then approximate
the uncertainty problem with computing a risk value related
percentile of activity durations from the uncertainty distri-
butions. Finally, we apply Pareto cut generation scheme and
propose heuristics for infeasibility cuts to accelerate the algo-
rithm process. Experimental results demonstrate that BAC-
CHUS efficiently and effectively generates robust solutions
for scheduling under uncertainty.

Introduction

Most research on project scheduling focus on a perfectly
pre-defined scheduling environment. However, durational
uncertainty in real world projects may always happen and
make deadline-driven project management a challenging
and difficult task. Thus, effectively handling durational un-
certainty in project scheduling is of realistic and practical
importance.

Broadly, one may classify the decision-making ap-
proaches for tackling uncertainty in scheduling into two cat-
egories: Proactive scheduling computes an apriori buffered
schedule or policy before uncertainty occur. Reactive
scheduling provides online decisions on starting next ac-
tivity when uncertainty occurs. For a survey of existing
works on project scheduling uncertainty, one may refer
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to (Fu, Lau, and Varakantham 2015; Bidot et al. 2009;
Lombardi and Milano 2009; Beck and Wilson 2007; Her-
roelen and Leus 2005). In this paper, we are concerned with
proactive scheduling. Instead of a baseline schedule, we are
interested in a Partial Order Schedule (POS) which is a set of
partially ordered activities such that any embedded temporal
feasible solution is also guaranteed resource feasible (Poli-
cella et al. 2009). Within a POS, each activity retains a set
of feasible starting times which provides temporal flexibility
against uncertainty. A simulation based approach to evaluate
the expected makespan of POSs was considered in (Bonfi-
etti, Lombardi, and Milano 2014).

The concrete problem addressed in this paper is Resource
Constrained Project Scheduling Problem with minimum and
maximum time lags (abbrev. RCPSP/max). Extended from
RCPSP, the introduction of temporal separation constraints,
particularly maximum time lags between activities offers a
wide range of modelling capabilities like activity deadlines,
setup times, etc. But it also exemplifies the problem setting
at a much higher level of complexity where the feasibility
problem is already NP-complete (Bartusch, Mohring, and
Radermacher 1988).

Akin to a few existing proactive approaches for con-
sidering uncertainty in JSP (Beck and Wilson 2007) and
RCPSP/max (Varakantham, Fu, and Lau 2016; Fu et al.
2012), we consider a risk management objective. Specifi-
cally, given a risk parameter α (0 ≤ α ≤ 1) which can be
prescribed by the planner, we are interested in computing
the robust POS which minimizes the α-quantile makespan
distribution. We refer to the least α-quantile also as the α-
robust makespan.

In (Fu et al. 2012), heuristic techniques based on lo-
cal search were provided for generating robust POS for
RCPSP/max under durational uncertainty. However, the lim-
itation of that work is that the derived POS may not meet
maximum temporal constraints for certain uncertainty real-
isations during execution. This work is motivated by effec-
tively managing risk on temporal constraint violation and
failure to meet robust makespan during POS construction.
Instead of a local search algorithm, we design a Mixed
Integer Linear Programming (MILP) model for POS con-
struction and develop a Benders decomposition algorithm
and heuristic approximation for efficient robust makspan
calculation. In (Varakantham, Fu, and Lau 2016), a start
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time schedule with robust makespan was explored through a
proactive sampling based technique. In that work, the prob-
ability of failure is counted when resource capacity con-
straints are violated. The characteristic feature of our pro-
posed algorithm is the effort to effectively account for risk
controlled feasibility and solution quality in terms of robust
makespan. Thus, we manage the risks when temporal con-
straint is violated, and/or the actual execution fails to meet
the robust makespan.

More specifically, we propose an approach, Benders
Accelerated Cut Creation for Handling Uncertainty (BAC-
CHUS). BACCHUS consists of five components:
• An MILP formulation for the deterministic RCPSP/max

and partition of POS generation process from scheduling
decision making.

• An effective cut generation mechanism explored for re-
solving constraints conflicts used in Benders decomposi-
tion algorithm.

• An extension of the exact MILP model for solving the
deterministic problem with sampling approximation for
accommodating additional durational uncertainty.

• A scalable solution to robust optimization for solving
RCPSP/max with durational uncertainty.

• Cut generation enhancements during iteration process for
accelerating Benders algorithm.

The Deterministic RCPSP/max

The RCPSP/max consists of N activities {a1, · · · , aN} and
K types of renewable resources limited by capacity Ck,
where k = 1, · · · ,K. Each activity ai requires rik units of
resources of type k to be executed for a duration of pi time
units without preemption.

Generalized temporal constraints for RCPSP/max can
specify a minimal or maximal time lag between any pair of
activities. A minimal time lag Tmin

i,j specifies that activity j
can only be started (or finished) when activity i has already
started (or finished) for a certain time period of Tmin

i,j . A
maximal time lag Tmax

i,j specifies that activity j should be
started (or finished) at the latest a certain number of Tmax

i,j
time units beyond the start (or finish) of activity i. Thus,
there exist four types of generalized temporal constraints:
start-start, start-finish, finish-start and finish-finish. In the
deterministic setting, the different types of constraints can
be represented in standardized start-start form by using the
transformation rules (Bartusch, Mohring, and Radermacher
1988).

The two types of constraints involved in the RCPSP/max
can be summarized as follows:
• Generalized Temporal Constraints (s ≤ T):

Tmin
i,j ≤ sj − si ≤ Tmax

i,j , ∀i, j.
• Resource Capacity Constraints:

∑
{i|si≤t≤si+pi}

rik ≤ Ck, ∀t, k.

A schedule S = (s1, · · · , sN ) is an assignment of start
times to all activities, where si represents the start time

min
y

vy

s.t. Pr((vy(p̃) ≥ vy) ∨ (s > T)) ≤ α

Table 1: BACCHUS: Optimization Model

of activity ai. The goal of the deterministic RCPSP/max
is to determine a feasible schedule, such that the project
makespan, which is defined as the start time of the final
dummy activity aN+1, is minimized.

RCPSP/max with Durational Uncertainty

In this work, we consider project scheduling under uncer-
tainty, where the stochastic characteristics apply to the ac-
tivity durations. In the deterministic setting, makespan can
be used to evaluate the performance of a project. How-
ever, when uncertainty is involved, the makespan itself be-
comes a random variable. Similar to existing work (Fu et al.
2012), we employ the metric of α-robust makespan as the
project objective. As indicated earlier, α-robust makespan
for a scheduling project can be defined as the minimum α-
quantile value over all possible makespan distributions of
POSs.

Formally, given a value of risk α (0 ≤ α ≤ 1), our goal
is to find a POS y with the makespan achieving the value of
α-robust makespan. Let vy represent the α-quantile of the
makespan distribution represented by POS y, i.e.,

Pr((vy(p̃) ≥ vy) ∨ (s > T)) ≤ α

where vy(p̃) is a random variable that denotes the makespan
distribution represented by POS y and p̃ denotes the uncer-
tain activity durations. Therefore, the α-robust makespan v∗,
which is also the least value of vy over all possible makespan
distributions, can be computed by solving the robust opti-
mization problem in Table 1.

Solving the Deterministic RCPSP/max

Inspired by the work in (Artigues, Michelon, and Reusser
2003) on a flow-based continuous time formulation for
RCPSP, we give an MILP formulation for RCPSP/max for
POS construction and schedule determination. This model
would be extended to handle durational uncertainty in the
stochastic scheduling problem presented in the following
section.

The Model

We define the following decision variables:

• xk
ij : resource flow variables representing the number of

resource units of type k transferred directly from activity
ai to activity aj .

• yij : sequencing variables used for POS construction,
yij = 1 if and only if activity ai precedes activity aj .

• si: scheduling variables for determining the start time of
activity ai.
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v =min sn+1

s.t. sj − si ≥ Tmin
ij ∀(i, j) ∈ Tmin (1)

sj − si ≤ Tmax
ij , ∀(i, j) ∈ Tmax (2)

sj ≥ si + p0i −M(1− yij) ∀i, j (3)
si ≥ 0 ∀i (4)

xk
ij ≤ min{rik, rjk}yij ∀i �= 0, j �= n+ 1, k (5)

xk
0j ≤ rjk ∀j, k (6)

xk
in+1 ≤ rik ∀i, k (7)
∑

j

xk
ij =

∑

j

xk
ji = rik ∀i �= 0, n+ 1, k (8)

∑

j

xk
0j =

∑

j

xk
jn+1 ≤ Ck ∀k (9)

xk
ij ≥ 0, ∀i, j, k (10)

yij ∈ {0, 1} ∀i, j (11)
yij + yji ≤ 1 ∀i, j (12)

Table 2: RCPSPMax(p0)

Table 2 presents the MILP formulation. Constraints 1 and
2 express the generalized temporal constraints with mini-
mum and maximum time lags between the starting times of
two activities. Constraint 3 links the starting times of activi-
ties ai and aj with sequencing variables yij . In other words,
the constraint constructs POS in terms of yij . It is active
when yij = 1 which enforces the precedence relationship
sj ≥ si + p0i . Otherwise, the constraint is always satisfied if
there is no precedence relationship between ai and aj , i.e.,
yij = 0. In that case, no resource flows are carried from ai to
aj which sets xk

ij = 0. But if ai precedes aj , the maximum
resource flow sent ai to aj is forced to be min{rik, rjk},
as shown in Constraint 5. The constraint also expresses that
if there is a positive resource flow transfer from ai to aj ,
i.e., xk

ij > 0, then the precedence relation is enforced with
yij = 1. Constraints 6 and 7 handle boundary conditions.

Constraints 8-10 are flow conservation constraints where
Constraint 8 states that the total flows sent to and from non-
dummy activity ai equal to its resource requirement of the
corresponding resource type, rik. The total resource of type
k for dispatching into the project network from the starting
dummy node a0 and collected at the sink dummy node an+1

is upper bounded by its capacity, Ck as represented in Con-
straint 9. Constraints 11 and 12 are constituted for POS con-
struction. Constraint 12 covers the total three relationships
between two activities, either ai precedes aj , or aj precedes
ai, or ai and aj are executed in parallel.

Benders Decomposition Algorithm

Benders Decomposition (Benders 1962) is a solution ap-
proach for large scale combinatorial optimization problem,
based on the idea of partition and cut generation. One may
refer to (Li and Womer 2009) and (Costa 2005) for its suc-
cessful application in solving multi-skilled personnel and
network design problem. In this work, we developed this de-

Master −MILP (ρ){
min z

s.t. Constraints 5− 12

z ≥ ατ (y) ∀τ = 1, ...ρ (13)
βτ (y) ≥ 0 ∀τ = 1, ...ρ (14)

}

Table 3: The Master Problem

v(ȳρ) =min sn+1

s.t. sj − si ≥ Tmin
ij ∀(i, j) ∈ Tmin (15)

sj − si ≤ Tmax
ij , ∀(i, j) ∈ Tmax (16)

sj ≥ si + p0i −M(1− ȳρij) ∀i, j (17)

si ≥ 0 ∀i (18)

Table 4: The Slave Problem

composition algorithm for solving RCPSP/max.
In the MILP formulation of Table 2, there are three types

of decision variables. The flow variable x and starting time
variables s are continuous, but the sequencing variables y
are complicating in taking binary integers. To provide an ef-
ficient solution method for solving large scale RCPSP/max,
we partition those decision variables into two sets, (x&y, s).
x&y are involved in the master problem where a resource
feasible precedence decision rule is generated. For a fixed
decision rule, the slave focuses on generating the optimal
schedule by deciding the starting times s.

At each iteration, we solve a relaxed master problem and
generate a resource feasible POS. For a fixed POS y, the
slave problem decides starting time schedule with the goal of
minimizing the project makespan. The Master problem and
the Slave problem at the ρth iteration are given in Table 3
and Table 4, respectively. An each iteration, new cuts (to
be explained in next section) as in Constraint 13 (optimal-
ity cuts) and Constraint 14 (global cuts and feasibility cuts)
are added to the master problem and then make it progress
towards an optimal solution.

Cut Generation Scheme

The way of generating effective cuts during iteration pro-
cess is always the key to the success of a Benders decompo-
sition algorithm. In this work, we developed three types of
cuts for guiding master to generate good candidate POSs for
converging to optimality: Global Cuts, Optimality Cuts and
Feasibility Cuts.

Global Cuts

We first explore the static global cuts before the main algo-
rithm iterations start. The main feature of our proposed cuts
generation scheme is to explore problem structures and build
constraints to avoid conflicting assignments to the sequenc-
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ing variables y. The role of solving the slave problem is to
trigger the violated constraints and infer the cuts to the mas-
ter problem. In the following, we infer cuts from the causes
of infeasibility by temporal analysis and precedence transi-
tivity analysis.

Temporal Analysis For activities ai, aj and am, we first
update the existing temporal constraints between activities
by using the following formulas:
• Tmax

ij ≥ Tmax
im +Tmax

mj =⇒ Tmax
ij = Tmax

im +Tmax
mj ∀i, j,m

• Tmin
ij ≤ Tmin

im + Tmin
mj =⇒ Tmin

ij = Tmin
im + Tmin

mj ∀i, j,m
• Tmax

ij ≥ Tmax
mj −Tmin

mi =⇒ Tmax
ij = Tmax

mj −Tmin
mi ∀i, j,m

• Tmin
ij ≤ Tmin

mj −Tmax
mi =⇒ Tmin

ij = Tmin
mj −Tmax

mi ∀i, j,m
The idea is, to reconstruct the temporal time lags between

activities if tighter lags can be inferred. Based on the tem-
poral analysis designed for resolving resource conflicts, we
have the following observations and such constraints must
be satisfied for all feasible solutions.

• Tmin
ij ≥ p0i =⇒ yij = 1 ∀i, j

For activities ai and aj , if the minimum time lags Tmin
ij

is no less than the duration of activity i, ai must be executed
before aj to guarantee the solution feasibility. For this case,
we add the cut yij = 1.

• Tmax
ij < p0i =⇒ yij = 0 ∀i, j

If the maximum time lag Tmax
ij is less than the duration of

activity ai, then aj cannot be executed after ai and we set
yij = 0.
• ∃ resource k, rik + rjk > Ck =⇒ yij + yji = 1 ∀i, j, k
If there exists a resource type k, of which the overall con-
sumption of activities ai and aj exceeds the capacity Ck,
then both activities cannot be executed in parallel in or-
der to respect resource constraints. In such a case, either
ai precedes aj or aj precedes ai. Thus, we add the cut
yij + yji = 1 to remove the parallel case.

• p0i + p0m > Tmax
in + Tmax

mj =⇒ yij + ymn ≤ 1 ∀i, j,m, n

Proof. Suppose yij+ymn > 1, i.e., yij = ymn = 1, we then
have sj ≥ si + p0i and sn ≥ sm + p0m. The summation of
these two inequations imply that (sn − si) + (sj − sm) ≥
p0i + p0m. Given the definition of temporal constraints, we
then have Tmax

in + Tmax
mj ≥ p0i + p0m. Hence proved.

This type of cut resolves the problem that pairs of activi-
ties cannot be sequentially connected simultaneously due to
relationship between activity durations and time lags.
• p0i + p0m > Tmax

in − Tmin
jm =⇒ yij + ymn ≤ 1 ∀i, j,m, n

As above.
• Tmax

ij < p0i + p0m, =⇒ yim + ymj ≤ 1 ∀i, j,m
Proof. Suppose yim + ymj > 1, i.e., yim = ymj = 1, we
then have sm ≥ si + p0i and sj ≥ sm + p0m. The summation
of these two inequations imply that sj−si ≥ p0i +p0m. Given
sj − si ≤ Tmax

ij , we then obtain Tmax
ij ≥ p0i + p0m. Hence

proved.

max
∑

i,j!=i

(Tmin
ij λij − Tmax

ij μij + (p0i −M(1− ȳij))γij)

s.t.
∑

j|j �=i,i �=n+1

(λij − λji − μij + μji + γij − γji) ≥ 0 ∀i (19)

∑

j|j �=i,i=n+1

(λij − λji − μij + μji + γij − γji) ≥ −1 (20)

λij , μij , γij ≥ 0, ∀i, j, i �= j (21)

Table 5: The Slave Dual

Precedence Transitivity Analysis

• yim ≥ yij + yjm − 1 ∀i, j,m
The set of cuts are used to capture the transitivity of the

ordering relations: if ai precedes aj and aj precedes am,
then we have ai precedes am.

Optimality Cuts

For a fixed policy y, if the slave is feasible, the minimization
objective achieved at that iteration would be an upper bound
to the optimization problem. Optimality cuts can then be de-
rived and added to the master in next iteration to improve
the approximation of the master objective from the optimal
solution.

To examine the slave MILP model, we introduce non-
negative dual variables λij , μij and γij for Constraints 15,
16, and 17, respectively. Table 5 shows the dual LP of the
slave problem. Suppose that the primal LP in Table 4 is al-
ways feasible for every policy y chosen, then the dual LP
has a bounded feasible region. Let set U contain the extreme
points of the polyhedron D defined by the constraints of Ta-
ble 5 then we can instantiate Constraint 13 in the master
by updating optimal cuts as provided in the following con-
straint:

αρ(y) =
∑

i,j �=i

(Tmin
ij λρ

ij − Tmax
ij μρ

ij + (p0i −M(1− yij))γ
ρ
ij)

(22)

where (λ, μ, γ) ∈ U .
Every time a slave generates an optimal solution, an opti-

mal cut can be constructed in terms of the dual values of the
slave. Such constraints are then added to the master problem
to improve the lower bound of the optimization problem.

Feasibility Cuts

However, it is possible that during iterating process, the gen-
erated POS from a relaxed master cannot produce a feasible
schedule in the slave model. The feasibility cuts need to be
inferred to deal with such cases. The feasibility cuts for iter-
ation ρ have the general form in the following constraint:

∑

i,j|ȳρ
ij=1

(1− yij) +
∑

i,j|ȳρ
ij=0

yij ≥ 1. (23)

The idea is that, once infeasibility occurs at POS ȳρ, the
total number of binary variables flipping their value with re-
spect to ȳρ either from 1 to 0 or from 0 to 1 is at least 1.
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Let UB and LB represent the upper bound and the lower
bound of the optimal solution, respectively. Algorithm 1 pro-
vides pseudocode of the extended benders decomposition al-
gorithm for RCPSP/max.

Algorithm 1: Extended Benders Decomposition Algo-
rithm (RCPSP/max Instance)

1: LB ← 0, UB ← ∞, ρ ← 0
2: Temporal analysis to obtain global cuts in

Constraint 14;
3: terminate ← false
4: while terminate = false do
5: Solve master problem and obtain ȳρ;
6: if z(ρ)= UB then
7: terminate ← true;
8: else
9: LB ← z(ρ);

10: Update constraints in the Slave problem;
11: Solve the slave problem;
12: if The slave problem is feasible then
13: Update UB;
14: Generate optimality cuts in Constraint 13;
15: else
16: Generate feasibility cuts in Constraint 14;
17: end if
18: Add cuts to master problem;
19: end if
20: ρ ← ρ+ 1
21: end while

Solving RCPSP/max with Durational

Uncertainty

Let sqi represent the scheduling variable for determining the
start time of activity ai on sample q, where q = 1, ...Q and
Q is the total number of samples. The indicator variable zq
equal to 1 if and only if the constructed POS cannot be ex-
ecuted feasibly or efficiently on sample q. As POS is gen-
erated from the master problem where resource feasibility
were accommodated during construction, the temporal as-
pect is the only concern for feasibility. With the objective of
robust optimization problem in Table 1 being generating a
POS with the best robust makespan value, in the stochastic
model of Table 6, we consider both feasibility and efficiency
properties during POS exploration.

Specifically, Constraints 27-29 control the potential prob-
ability of failure during the POS construction. As the in-
troduction of resource flow variables would already guaran-
tee resource feasibility during schedule generation, zq = 0
enforces the temporal constraints of maximum time lags,
thus, it guarantees the schedule feasibility, as shown in Con-
straint 27. Let α represent the risk threshold that can be
prescribed by the planner. Constraint 28 measures solution
quality in terms of successful execution on Q different sce-
narios of realized uncertainty, and Constraint 29 considers
the makespan for performance evaluation. zq = 1 if the re-
alized makespan of sample q termed as sqn+1 reaches beyond

min RM

s.t. Constraints 5− 12

sqj ≥ sqi + pqi −M(1− yij) ∀i, j, q (24)

sqj − sqi ≥ Tmin
ij ∀(i, j) ∈ Tmin, q (25)

sqi ≥ 0 ∀i, q (26)
sqj − sqi ≤ Tmax

ij + zqM ∀i, j, q (27)
∑

q

zq ≤ αQ ∀q (28)

Mzq > sqn+1 −RM ∀q (29)

Table 6: RCPSPMaxUnc ({pq}q=1,...Q)

the robust makespan RM .
Though a very useful model for representing uncertainty

in durations, as the problem scale increases, the depen-
dency on number of samples employed gets the scalabil-
ity issue of the multi-sample model worsened and it can
hardly find solutions with only 20 samples adopted for
J20 and J30 instances within a 10 minute time limit. To
overcome the scalability problem, we adopt the idea of
percentile sample approximation as in (Varakantham, Fu,
and Lau 2016) and summarize the scenario sample set by
using one (1 − α)-percentile duration sample. The dura-
tion of activity ai in the percentile sample can be pre-
sented as p̂i = PERCENTILE1−α(pi), where pi =

{p1i , · · · , pqi , · · · pQi } and pqi is the duration of activity ai in
sample q. The idea is to entail that at least in (1 − α) · Q
number of samples, duration of activity ai is lower than p̂i.
Therefore, the stochastic model in Table 6 can be summa-
rized in RCPSPMaxUnc (p̂) with the implementation to be
shown in next section.

Experimental Results

In this section, we conducted computational experiments
to test the performance of BACCHUS and compare with
the existing best known approaches SORU-H (Varakantham,
Fu, and Lau 2016) and FPVL (Fu et al. 2012) for generating
α-robust makepan for RCPSP/max under durational uncer-
tainty.

The problem instances we run BACCHUS on are
extended from benchmark sets J10 J20 and J30 for
RCPSP/max from PSPlib (Kolisch, Schwindt, and Sprecher
1998). Each data set contains 270 instances and each in-
stance has 5 types of resources available. The number of
activities for instances in J10, J20 and J30 are 10, 20 and
30, respectively. We assume the processing time pi of activ-
ity ai is normally distributed with mean value corresponding
to the deterministic duration p0i given by benchmarks and
standard deviation denoted as σ. The duration scenarios are
generated by sampling from normal distributions with three
different duration variabilities σ = {0.1, 0.5, 1}. We im-
plemented BACCHUS in Java and Cplex studio on a Core
i7-4790 CPU 3.60GHz processor with 32.0 GB RAM and
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Figure 1: Robust Makespan VS Risk α and Standard Devia-
tion σ

max
∑

i,j!=i

(Tmin
ij λij − Tmax

ij μij + (p0i −M(1− ȳ0
ij))γij)

s.t.

Constraints 19− 21

v(ȳ) =
∑

i,j!=i

(Tmin
ij λij − Tmax

ij μij + (p0i −M(1− ȳij))γij)

Table 7: Pareto optimal Cuts Generation

average the results over 10 runs for each problem instance.
We first run experiments on three data sets across increas-

ing levels of risk ε = {0.05, 0.1, 0.2} and varying standard
deviations. For open problem instances that cannot be solved
to optimality, we report the best results obtained within a 10-
minute time limit. Figure 1 summarizes the average values
of robust makespans over 270 instances in J10 with vary-
ing α and ε. We observe that, the value of robust makespan
increases as the level of risk decreases. In other words, the
lower risk value the decision maker is willing to take, the
higher robust makespan for the POS generated. The lower
degree of durational perturbation, the better value of robust
makespan obtained.

Then, we explore heuristic enhancements for generat-
ing effective cuts and improving the algorithm efficiency.
During the procedure of Benders iterations, it may hap-
pen that the slave solution is not unique, especially when
the slave optimization suffers from degeneracy. To reduce
the number of iterations towards convergence during Ben-
ders processing, the impact of stronger cuts were examined
in (T. L. Magnanti 1981). In our experiments, we adopt
the same idea and implement Pareto optimal cut genera-
tion for exploring stronger cuts. At iteration ρ, a cut gen-
erated from extreme point (λρ1, μρ1, γρ1) is said to dom-
inate a cut generated from extreme point (λρ2, μρ2, γρ2),
if αρ(ȳ, λ

ρ1, μρ1, γρ1) ≥ αρ(ȳ, λ
ρ2, μρ2, γρ2) defined in

Equation 22 with strict inequality at least one ȳ. A cut
dominated by no other cuts is said to be Pareto optimal. A
Pareto optimal cut can be generated by solving the model
in Table 7, where v(ȳ) is the optimal solution value of the

slave problem at current iteration. The objective maximizes
strength of the cut for relative interior y0 of the feasible
space defined in master constraints, and constraints of the
model specify the feasible space of the slave problem. We
implement Pareto optimal cut generation scheme on large
scale instances of J20 and J30 and observe an average reduc-
tion of 18.6% and 23.9% of running time required to solve
to optimality, respectively.

When the slave problem becomes infeasible during iterat-
ing process, an alternative way is to change sequencing de-
cisions on a (a > 1) pairs of activities simultaneously with
respect to the current POS ȳ generated, rather than only one
pair of activities, as of the RHS parameter of Equation 23.
In other words, the feasibility cut can be improved as

∑

i,j|ȳρ
ij=1

(1− yij) +
∑

i,j|ȳρ
ij=0

yij ≥ a. (30)

The motivation for varying step size a is that, for large scale
problem instances, restricting only one sequencing decision
to be revised at each iteration may not be efficient enough to
restore feasibility. We vary the value of a from 1 to 5, and
observe that the number of infeasible iterations for almost all
instances get reduced to some extent. But there is no strict
monotonicity between the running time and values of a. To
show this trend, we randomly pick one instance from each
data set and report the running time in logarithm value with
different a values in Figure 2. We observe that, as the step
size slightly increases from 1, the running times required for
all instances decreases obviously. But as a increases, there
seems exist a threshold where step size taking higher values
would bring negative effect on algorithm efficiency. Unfor-
tunately, we are not able to find a universal optimal value
of a for best algorithm performance, because it is highly in-
stance dependent. Note that in Figure 2, the running time
was solved optimality for all instances, except for J10 in-
stance at a = 5, where optimality is comprised and higher
robust makespan is returned. One direct insight from our ob-
servation is that, a large step size a may be over-corrected
for restoring feasibility during benders iterations, especially
for small scale problems. But it would still be promising
to design a good step size value for improving algorithm
efficiency for specific problem, especially when the size is
large.

Now we compare BACCHUS with the existing ap-
proaches SORU-H (Varakantham, Fu, and Lau 2016) and
FPVL (Fu et al. 2012) to solving RCPSP/max with du-
rational uncertainty. All three works aim for exploring α-
robust makepan. Thus, a straightforward metric to perform
a computational comparison is on the value of α-robust
makespan. Table 8 summaries the average values of α-robust
makespan obtained from BACCHUS, FPVL, SORU-H over
270 instances of all three benchmark sets for α = 0.1 and
σ = 0.5. We first compare values of robust makespan with
FPVL as both solutions returned in BACCHUS and FPVL
are POSs. The experimental results show that BACCHUS
outperforms FLPV in generating more robust POSs.

Instead of scheduling policy exploration, SORU-H fo-
cuses on generating the start time schedule. Though BAC-
CHUS has the same robust makespan objective, the ways of
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gorithm Efficiency

BACCHUS FLPV SORU-H

J10 47.26 51.3 48.43
J20 82.34 84.6 79.8
J30 107.27 113.3 103.2

Table 8: Comparison with FLPV and SORU-H on α-robust
makespan

tackling uncertainty in BACCHUS and SORU-H are totally
different. In SORU-H, temporal constraints are always hon-
ored and resource violation is the only concern for sched-
ule infeasibility. BACCHUS solves instead hard resource
constraints and soft temporal constraints. Given the differ-
ence of solution results and approaches between SORU-H
and BACCHUS, robust makespan may not be a proper in-
dex for making comparison of solution performances. A
promising direction of our future work is to implement the
resulted solutions from BACCHUS and SORU-H in real
world scheduling environment and evaluate the performance
by examining the real probability of failure under differ-
ent uncertainty scenarios. Thus, though the values of robust
makespan for BACCHUS is slightly higher than SORU-H
for J20 and J30, we still believe that BACCHUS can provide
an alternative solution in the form of more flexible POSs
for decision makers to efficiently tacking project scheduling
problem under uncertainty.

Conclusion

In this work, we proposed BACCHUS: a solution method
for handling uncertainty in scheduling, consisting of four
phases: 1) modeling RCPSP/max in the form of MILP
and partition into the POS determination and the start time
scheduling process; 2) developing Benders decomposition
algorithm and proposing cut generation scheme by explor-
ing the problem structure of RCPSP/max; 3) computing for
robust POSs that can be executed within risk controlled per-
formance guarantee of feasibility and optimality; 4) accel-
erating Benders iterations from heuristic based techniques.
Experimental results demonstrate BACCHUS outperforms
the best approach on robust POS generation by deriving bet-

ter robust makepan. This is also the first work that potential
risk on temporal constraint violations are proactively man-
aged in POS construction to hedge against uncertainty.
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