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Abstract

Uncertainty hinders many interesting applications of plan-
ning – it may come in the form of sensor noise, unpredictable
environments, or known limitations in problem models. In
this paper we explore heuristic guidance for forward-chaining
planning with continuous random variables, while ensuring a
probability of plan success. We extend the Metric Relaxed
Planning Graph heuristic to capture a model of uncertainty,
providing better guidance in terms of heuristic estimates and
dead-end detection. By tracking the accumulated error on nu-
meric values, our heuristic is able to check if preconditions
in the planning graph are achievable with a sufficient degree
of confidence; it is also able to consider acting to reduce the
accumulated error. Results indicate that our approach offers
improvements in performance compared to prior work where
a less-informed relaxation was used.

1 Introduction
Many compelling applications of planning arise from sce-
narios that are inherently uncertain. In some cases it is possi-
ble to adequately capture the dynamics of the world without
modeling uncertainty, and thus to employ classical planning
techniques. However, in many other cases it is impossible
to ignore uncertainty without hindering the planner’s knowl-
edge about the world, and hence obtaining sub-par solutions.

In this paper, our focus is on finding plans for mod-
els where there is uncertainty in the outcomes of numeric
effects, each governed by a continuous distribution. Here,
the task is to find a plan where all the preconditions are
met, and the goals are reached, with some confidence θ.
This paradigm has been explored by previous work, e.g.
(Beaudry, Kabanza, and Michaud 2010; Coles 2012), but
heuristic guidance is an open challenge. A planning model
without uncertainty cannot always provide reliable plans –
similarly, a heuristic without a model of uncertainty cannot
always provide useful guidance. A good heuristic would be
better able to indicate which actions are suitable, and offer
better state pruning by recognizing dead ends sooner.

We present an extension to the Metric Relaxed Planning
Graph heuristic (Hoffmann 2003) that incorporates a model
of uncertainty for two purposes. First, basic information
about uncertainty on variables thus far is used to determine
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which preconditions are true in the planning graph. Second,
where remedial actions are available to reduce uncertainty,
the heuristic is able to include them in the relaxed plan.

To demonstrate the efficacy of this new heuristic, we
present empirical results that indicate it is effective in a num-
ber of interesting domains, reducing the search effort needed
to find acceptable solution plans.

2 Background
In this work, we build upon the state-progression semantics
of the planner RTU (Beaudry, Kabanza, and Michaud 2010).
Here, a planning problem is a tuple 〈F,v, I, G,A, θ〉 where:

• F is a set of propositional facts;
• v is a vector of numeric variables;
• I is the initial state: a subset of F and assignments to

(some) variables in v;
• A condition is a first-order logic formula over facts in F

and Linear Normal Form (LNF) constraints on v, each
written: (w.v op l), where op ∈ {>,≥}; l ∈ �; and w
is a vector of real values.

• G describes the goals: a set of conditions. Each g ∈ G has
an associated cost c(g) ∈ �+ if g is not true at the end of
the plan. For compulsory (hard) goals, c(g) =∞.

• A is a set of actions, each a ∈ A, with:

– Pre(a): a (pre)condition on its execution;
– Eff −(a), Eff +(a): propositions deleted (added) by a;
– Eff num(a): a set of numeric variable updates that oc-

cur upon applying a. Each is of the form 〈v op D(v)〉
where op ∈ {+=,=} and D is a (possibly de-
terministic) probability distribution that governs the
range of outcomes of the effect. For instance,
〈battery += N (−10, 22)〉 means ‘decrease battery by
an amount with mean 10 and standard deviation 2’.

• θ ∈ [0.5, 1) is a confidence level.

A Bayesian network (BN) is used to define the belief of
each v, and as actions are applied, the network is updated
with additional variables. In a state Si, for each vj ∈ v, a
variable vji is associated with the belief of v. If an action
a is applied, leading to a state Si+1, then for each numeric
effect 〈vj op D(v)〉, two random variables are added to
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Figure 1: Possible probability distributions: Arbitrary (left)
and Gaussian (right).

the network. The first of these, Dj
i+1, represents D(v). The

second, vji+1, is associated with the belief of v in Si+1, and
it is determined by either:

• vji+1 = vji +Dj
i+1, if op is +=;

• vji+1 = Dj
i+1, if op is =.

The BN is key to determining whether a plan meets the
required confidence level θ. An action a is applicable in a
state Si if Pre(a) is satisfied. A sequential (linear) solution
is a sequence of steps [a0, .., an], implying a state trajectory
[I, S0, .., Sn]. We use the BN to ensure that with P ≥ θ, in a
given execution of the plan, each action’s preconditions are
met and Sn satisfies any hard goals.

The state progression formalism of Beaudry et al was
adopted and extended by Coles (2012) as the basis of an
over-subscription planning approach. A forward-chaining
planner following these semantics was used to find a single
plan, onto which branches were added by making additional
calls to the planner. A range of other approaches have been
adopted for planning under uncertainty, such as those based
on the use of Markov Decision Processes, e.g. (Meuleau et
al. 2009; Mausam and Weld 2008; Rachelson et al. 2008);
these approaches are particularly useful when a policy needs
to be found. For this paper, as our contribution is on the
heuristic inside a forward-chaining planner, our focus will
be on planning under the semantics of RTU described above.

3 Relaxing Numeric Uncertainty
In deterministic forward-chaining numeric planning, one
way to guide search is the Metric Relaxed Planning Graph
(RPG) heuristic (Hoffmann 2003). This performs a forward
reachability analysis that estimates the number of actions
needed to reach goals by relaxing the effects of actions. For
numeric state variables, this amounts to estimating reachable
bounds on the values of variables, by optimistically assum-
ing that increase effects only increase the upper bound, and
decrease effects only decrease the lower bound.

When working with RTU’s semantics, Coles (2012)
adapted this to assume for heuristic purposes that each vari-
able takes its median value. From Jensen’s inequality, we
know that if θ ≥ 0.5, this is guaranteed to be a relaxation.
However, as θ becomes large, it also means the heuristic is
increasingly unrealistic: a numeric condition might be true
assuming variables take their median values; but not when
accounting for the uncertainty in their values. In this section,
we will present two strategies that improve on this:

• we incorporate the shape of the distribution on variables’
values in the heuristic evaluation, rather than discarding it
and using the median;

• for Gaussian distributions, we explicitly track the uncer-
tainty of variables in the relaxed planning graph.

3.1 Heuristic Guidance with Monotonically
Worsening Uncertainty

Uncertainty can affect problems in two ways: it either gets
worse monotonically (error accumulates and no action can
rectify it); or it may be purposefully corrected (there may be
actions that reduce the error, such as recharging batteries to
a fixed value, or visiting a precise weighing station).

We first discuss the case of monotonically worsening un-
certainty. Outside the heuristic, each precondition is of the
form w.v ≥ c, and a Monte Carlo simulation is used to
estimate the probability distribution of w.v. Using this dis-
tribution, we can test whether the condition is satisfied with
probability θ, i.e. whether the (1 − θ)’th percentile of w.v
is ≥ c. We represent this percentile as follows:

p1−θ(w.v) = median(w.v)− offsetθ(w.v)

In effect, offsetθ is the margin of error that must be toler-
ated, for the precondition to be true with probability θ. We
illustrate the intuition behind this margin in Figure 1. The
condition itself can then be rewritten:

median(w.v) ≥ c+ offsetθ(w.v)

We define that uncertainty is monotonically increasing if
offsetθ can never decrease. In this case, it is still a relax-
ation to use the offset values when determining which pre-
conditions are true in the heuristic – the only way to make
the condition true would be to apply actions that affect the
values of v, as no actions that decrease offsetθ exist.

An illustrative example would be an autonomous car with
a certain amount of fuel, which is used gradually until it runs
out; refueling is not possible. The activities performed by
the car (e.g. start engine, accelerate, stand still, park) each
require fuel, but the amount varies non-deterministically. As
the plan is constructed, uncertainty and hence offsetθ accu-
mulates monotonically. We can thus heuristically evaluate a
state by assuming offsetθ is constant, and takes its current
value; this is guaranteed to be a relaxation, as offsetθ can
never become smaller.

3.2 Heuristic Guidance with Gaussian
Uncertainty

So far, we explained how to incorporate distributions on the
left-hand side of preconditions (w.v) into heuristic compu-
tation, by using the offsetθ value to capture uncertainty in-
formation. The relaxation holds when error accumulates and
cannot be lowered. However, problems may contain actions
such as recharge-batteries or visit-weigh-station, which re-
duce uncertainty.

The challenge in these sorts of problems is to ensure the
heuristic remains a relaxation. This is possible in a useful
subset of domains, where the uncertainty is due to indepen-
dent Gaussian-distributed effects on variables, and therefore
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Figure 2: Example Relaxed Planning Graph, comparing the heuristic here to that in Coles (2012).

has an analytic form. We can utilize this form and extend the
Metric RPG to additionally track the variance on each vari-
able, σ2(v). The expansion phase, building the RPG, pro-
ceeds as follows:

• For each variable v ∈ v, we track the upper and lower
bound on its median value. In the first RPG layer, these
are equal to the value of v in the current state S. We ad-
ditionally track σ2(v), the variance on v. In the first RPG
layer, this is the value according to the BN for S.

• In a regular RPG, if a numeric effect is applied that in-
creases (decreases) some v ∈ v, the upper (resp. lower)
bound on v at the next fact layer is updated accordingly.
Now, additionally, if a numeric effect decreases σ2(v), the
lower bound on σ2(v) at the next fact layer is decreased1.

• To decide which actions are applicable in each layer, we
take variance into account when checking precondition
satisfaction, as follows. For a precondition of the general
form w.v ≥ c, we can use the additive properties of Gaus-
sians to compute the variance of w.v:

σ2(w.v) =
∑

w.v∈w.v

w2.σ2(v)

We obtain the offset using the Gaussian quantile function:

offsetθ(w.v) = σ(w.v).Φ−1(θ)

Hence, from Section 3.1, the precondition becomes:

median(w.v) ≥ c+ σ(w.v).Φ−1(θ)

This gives us everything we need to build an RPG. We
can be confident that the offsetθ values used are relaxations,
because smaller values of variance result in smaller values
of the Gaussian quantile function Φ−1; and the semantics of
the RPG guarantee we will underestimate variance.

The next step is to extract a relaxed plan from the RPG;
we illustrate this in Algorithm 1. The first thing to note is
on lines 5 and 6, where we compute the offsetθ necessary
for the condition to be met. Actions are then chosen in the

1Effects increasing σ2(v) are ignored. If θ ≥ 0.5, adding more
uncertainty never contributes towards preconditions becoming true,
so it suffices to track only the smallest reachable values of variance.

standard way to attempt to meet the precondition, given this
value of offsetθ. Then, if line 13 is reached and the precon-
dition is still not true, it must mean that a decrease in vari-
ance caused it to become true at layer l (having been false at
layer l-1). We now need to choose actions that decrease vari-
ance enough to achieve this. On line 15, we work out what
offsetθ needs to be reduced to in order to make the precon-
dition true; we then compute its corresponding variance on
line 16. This variance can then be used to construct a new
condition to be satisfied at this layer: this causes actions to
be added to the relaxed plan in order to reduce variance on a
later iteration of the loop.

Algorithm 1: RPG Solution Extraction
Data: RPG , a relaxed planning graph
Result: p, a relaxed plan
last ← last layer index in RPG ;1
goals[last ]← G (i.e. the problem goals);2
for l ∈ [last ..0] do for (w.v ≥ c) ∈ goals[l] do3

prev ← max value of w.v in fact layer l-1;4

prev σ2 ← min value of σ2(w.v) in fact layer l-1;5

prev offsetθ ← prev σ.Φ−1(θ);6
if prev ≥ c+ prev offsetθ then7

add (w.v ≥ c) to goals[l-1]; continue;8

for (w.v) ∈ w.v where w 	= 0 do9
Choose actions from action layer l-1 that10
increase (w.v);
Add them to the relaxed plan and subtract their11
effects from c;
if prev ≥ c+ prev offsetθ then break;12

if prev ≥ c+ prev offsetθ then13
add (w.v ≥ c) to goals[l-1]; continue;14

max offset ← prev − c;15

max σ2 ← (max offset/Φ−1(θ))2;16

add (−σ2(w.v) ≥ −max σ2) to goals[l];17
add (w.v ≥ prev) to goals[l-1];18

As a result of the algorithm described above, the relaxed
plan now contains uncertainty-reducing actions. This makes
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(a) Rovers (b) TPP (c) AUV

Figure 3: Nodes generated to solve problems in the three evaluation domains. Axes are logarithmic, comparing prior work (X
axis) with the new heuristic (Y axis). The Two-Tailed Wilcoxon Signed-Rank Test confirms results are significant to P ≥ 0.95.

for a better-informed heuristic, which is able to provide im-
proved guidance and dead-end detection to the search, as
will be demonstrated in the following section.

Figure 2 shows an example relaxed planning graph for
a planetary rovers domain, where navigation uses power (v)
and increases σ2(v). In the first layer, the only applicable ac-
tion is recharge: whilst there are 10 units of power, the con-
dition v ≥ 8 is not true until the next action layer, as σ2(v)
is too high to allow it to be true with confidence θ. Con-
versely, without our modifications to the heuristic, the RPG
would effectively be offset by one layer: the fact and action
layers below the dotted line would apply, and v = 10 would
satisfy v ≥ 8 as the value of σ2(v) is not taken into ac-
count when determining which numeric conditions are true.
The effect is that the new relaxed plan recognises the need
to recharge, whilst the old one would not. If (recharge A)
was unavailable, then the modified heuristic detects a dead-
end which the old one does not: there would be no way of
making v ≥ 8 true, accounting for σ2(v).

4 Evaluation
We evaluate on three domains: Rovers and AUV from (Coles
2012); and a variant of TPP from (Gerevini et al. 2009). In
Rovers, the activities of a planetary rover are constrained
by battery usage, which has Gaussian uncertainty, and the
battery can only be recharged at certain locations. In TPP,
the domain is modified to model the acquisition of suffi-
cient amounts of bulk materials (e.g. coal), and trucks can
visit weighing stations at some suppliers (Khajiit) to top up
or shed excess load, which reduces uncertainty. AUV is an
over-subscription problem where the activities of an under-
water vehicle must be planned with a strict bound on total
time taken, and with normally distributed activity durations.
Tests were performed on 3.5GHz Core i5 machines with a
limit of 4GB of memory and 1800s of CPU time. We com-
pare our new heuristic with the metric RPG-based heuristic
used by Coles (2012).

Overall, the new heuristic leads to a substantial reduction
in nodes generated to solve problems, and time taken: scat-

terplots for nodes generated are shown in Figure 3, and the
time-to-solve scatterplots have the same shape. The extra
computational work (tracking variances etc.) does not ad-
versely affect the time taken to heuristically evaluate a state.
Thus, because significantly fewer states are generated, and
per-state evaluation times are comparable, the performance
of the planner is significantly better.

For the Rovers domain (Figure 3a), most striking are the
points on the far right of the graph – these indicate prob-
lems that were previously unsolvable but can now be solved.
In part, this is because the new heuristic is able to recog-
nize many more states as being dead ends, because it does
not disregard uncertainty on the battery level when evaluat-
ing preconditions. In contrast, by ignoring uncertainty, the
old relaxed plans relied on moving somewhere to recharge,
even though in reality uncertainty made it impossible for that
move action to be applied. The new heuristic often avoids
this pitfall by accounting for uncertainty to a greater extent.

In TPP (Figure 3b), all the problems could be solved by
both the old and the new heuristic. However, by not ac-
counting for uncertainty, the old heuristic can reach states
in which the relaxed plan does not need to buy any more
of any goods. In these states, the heuristic value is 0. As
acquiring additional goods requires combinations of travel
and buy actions, a substantial amount of search must be per-
formed with no effective heuristic guidance. Unlike Rovers,
there are no dead ends due to these travel actions, so this
blind search will succeed, but is very time consuming – in
problems furthest from the line y = x, the majority of nodes
evaluated have an old heuristic value of 0.

AUV is an over-subscription problem: search reports a so-
lution plan every time it finds one that solves more goals
than the best so far. We are hence interested in the search
effort to find progressively better solutions. Figure 3c com-
pares the nodes generated by each configuration to find the
2nd, 3rd and 4th solutions. (These correspond to satisfying
1, 2, and 3 goals respectively.) The relaxed plans produced
by the old heuristic, by ignoring uncertainty, more often use
actions that there is actually no time to complete. Disregard-
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ing uncertainty is less of an impediment than in Rovers and
TPP, as there is no scope for planning actions that reduce un-
certainty (unlike battery charge or goods purchased, actions
cannot create more time). Nonetheless, the new heuristic is
generally able to find better solutions more quickly. If left to
run for long enough, search with the old heuristic will tend
to find solutions as good as search with the new heuristic,
but loses out earlier in the search.

As a concluding remark for our results, we note that so far
we assumed θ = 0.99. At θ = 0.8, the improvements from
using the new heuristic are still noticeable, but not as sub-
stantial. By θ = 0.6, which is close to the median (θ = 0.5),
there is no statistically significant difference between the
two, as uncertainty has only a modest effect on the heuris-
tic, or indeed search itself. This confirms that our heuristic
meets our headline aim of being able to better guide the plan-
ner when the consequences of uncertainty bear a significant
effect upon what is a reasonable solution plan.

5 Conclusions
In this paper, we presented a novel search heuristic that ex-
tends the Metric Relaxed Planning Graph to include infor-
mation about uncertainty, in a useful subset of problems.
For cases where uncertainty is monotonically increasing, we
note how offsetθ values obtained from the Bayesian network
for a state can be incorporated into the heuristic evaluation
for that state, to better reflect the margin of error that must
be allowed for when determining whether preconditions are
true. For cases where actions are available to reduce uncer-
tainty, and uncertainty is Gaussian, we detail how the vari-
ance on variables’ values can be explicitly modeled in the
RPG; and how RPG expansion and solution extraction can
be updated to build relaxed plans that use such actions.

The promising results indicate that including information
about uncertainty in this way can improve the performance
of forward-chaining planning, when the aim is to find a sin-
gle plan that is overwhelmingly likely to succeed. In future
work we will revisit and extend the ideas of using such a
planning algorithm as a kernel within a plan-with-branches
approach (Coles 2012), where sensing actions at execution-
time can choose which branch to take; and as an exten-
sion of work on contingent planning with discrete (rather
than continuous) outcomes on actions’ effects (Muise, Belle,
and McIlraith 2014; Albore, Palacios, and Geffner 2009;
Little, Aberdeen, and Thiébaux 2005), and work on online
probabilistic planning (Yoon et al. 2010).
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