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Abstract

State memoization is critical to the good performance of
heuristic forward search planners, which represent a signif-
icant proportion of the current state-of-the-art planning ap-
proaches. In non-temporal planning it is sufficient to discard
any state that has been generated before, regardless of the
path taken to reach that state, with the only side-constraint
being plan cost. We begin this paper by demonstrating that
the use of this technique in temporal planning can lead to
loss of optimality with respect to metrics involving makespan
and that in the case of more expressive domains can lead
to loss of completeness. We identify the specific conditions
under which this occurs: states where actions are currently
executing. Following from this we introduce new memoiza-
tion techniques for expressive temporal planning problems
that are both completeness and optimality preserving, solving
the challenging problem of determining when two states in
temporal planning can be considered equivalent. Finally, we
demonstrate that these have significant impact on improving
the planning performance across a wide range of temporal
planning benchmarks in the POPF planning framework.

1 Introduction
Forward search planners explore the planning state space by
building a tree forwards from the initial state. In general,
however, the underlying state space is a directed graph, so in
generating a tree the planner will encounter states more than
once. Expanding these duplicate states would dramatically
increase the size of the search space, so most (if not all)
forward search planners make use of state memoization –
recording which states have already been seen. When new
states are generated, these are kept only if they have not
already been memoized.

This technique is a crucial element of the performance of
planners, but receives little attention: in classical planning,
memoization is memoryless, and two states can be considered
to be equivalent if the same facts are true. The only resid-
ual consideration might be which was reached with lowest
cost. While there is some work looking at how to efficiently
store the set of memoized states (Schmidt and Zhou 2011),
memoization within contemporary classical planners is rarely
discussed in the literature, as it is more often thought to be
an implementation detail.
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As planners are asked to solve increasingly expressive
problems, particularly with an explicit model of time, the
challenge of deciding whether two states can be considered
equivalent becomes much more significant. We can no longer
compare states based only on facts and/or the values of nu-
meric variables, as the temporal constraints of the plan that
reaches a state have a direct effect on whether the goals can
be reached. In effect, memoization is no longer memoryless –
the path that reaches some combination of facts and variable
values, now matters – and determining whether two plans are
equivalent is therefore much more challenging.

In this paper, our contributions are twofold. We first ex-
plore in depth the issues of memoization in temporal planning,
presenting cases where classical memoization is incomplete,
and where it precludes finding optimal solutions. Second, we
propose alternative completeness and optimality preserving
approaches to state memoization for temporal planning. We
present empirical results demonstrating the performance of a
temporal planner using these approaches, and we discuss the
trade-offs between pruning more liberally; and maintaining
optimality and completeness.

2 Problem Definition

In this paper we consider PDDL2.1 (Fox and Long 2003)
Temporal Planning Problems. Two classes of actions are
available in this formalism: instantaneous, and durative.

Each instantaneous action A has precondition pre(A)
which must be true for A to be applied. If A is applied
its effects are realized. eff+(A) and eff−(A) denote propo-
sitions added and deleted. effnum(A) denotes the numeric
effects.

Each durative action A has three sets of preconditions:
pre�A, pre↔A, pre�A. These represent the conditions that
must hold at its start, throughout its execution (invariants),
and at the end, respectively. Instantaneous effects can occur
at the start or end of A: eff+�A (eff−�A) denote propositions
added (resp. deleted) at the start; effnum� A denotes any nu-
meric effects. Similarly, eff+�A, eff−� and effnum� record ef-
fects at the end. Finally, the action has a duration constraint:
a conjunction of numeric constraints applied to a special vari-
able durA denoting its duration. Here we assume that durA
does not appear in numeric effects of actions.

Following (Long and Fox 2003a), a durative action A
can be split into two instantaneous snap-actions, A� and
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A�, representing the start and end of the action respectively,
and a set of constraints (invariant and duration constraints).
Action A� has precondition pre�A and effects eff+�A, eff−�A,
effnum� A. A� is the analogous action for the end of A.

We adopt the state progression semantics of the planner
POPF (Coles et al. 2010). The successive application of plan
steps yields a partial-order plan, with ordering constraints
between steps based on the facts and variables they refer to.
To facilitate this, in each state, each fact p and variable v is
annotated with information relating it to the plan steps:

• F+(p) (F−(p)) is the index of the plan step that most
recently added (deleted) p;

• FP+(p) is a set of pairs, each 〈i, d〉, used to record steps
with a precondition p. i denotes the index of a plan step,
and d ∈ {0, ε}. If d=0, then p can be deleted at or after
step i: this corresponds to the end of an invariant condition.
If d=ε, then p can be deleted ε after i or later.

• FP−(p), similarly, records negative preconditions on p.

• V eff (v) gives the index of the step in the plan that most
recently had an effect upon variable v;

• VP(v) is a set containing the indices of steps in the plan
that have referred to the variable v since the last effect on
v. A step depends on v if it either has a precondition on v;
an effect needing an input value of v; or is the start of an
action with a duration depending on v.

Application of actions to states produces ordering con-
straints based on the annotations and updates their values.

• Steps adding p are ordered ε after F−(p); those deleting
p, after F+(p). Hence, the effects on a fact are totally or-
dered. Preconditions are fixed within this ordering: a step
with precondition p is ordered after F+(p); and recording
it in FP+(p) ensures the next deletor of p will, ultimately,
be ordered after it. Similarly, the precondition ¬p is or-
dered after some F−(p) and before the next F+(p).

• Steps modifying v are totally ordered, and steps referring
to v are fixed within this order (due to effects on v being
ordered after the pre-existing VP(v)).

• If step j ends an action A that began at step i, the interval
[i, j] must respect the duration constraints of A.

A partial-order plan in this form maps to a Simple Tempo-
ral Network (STN) – a labelled directed graph 〈A, T 〉 where:

• The vertices A = [a0..an] are the steps of the plan;

• Each edge 〈aj , ai, c〉 ∈ T corresponds to either:

– An edge 〈aj , ai, c ∈ {0,−ε}〉 representing an ordering
constraint that j must be 0 or ε time units after i due to
the aforementioned partial ordering constraints.

– One of a pair of edges 〈aj , ai,−lb〉,〈ai, aj , ub〉, encod-
ing that the duration of an action that started at i and
finished at j must lie in the range [lb, ub].

Search immediately discards states with inconsistent STNs:
those with negative-length cycles. The task of planning is to
find a sequence of steps that transforms the initial state into a
goal state such that all preconditions/invariants are met; the

STN is consistent; and there are no open actions: actions that
have started but not yet finished.

Our work explores pruning in temporal planning, based
on memoization: identifying states that can be deemed
equivalent to those already seen. This is related to the
idea of identifying symmetries. Existing work has looked
at eliminating symmetric states, e.g. (Fox and Long 1999;
Pochter, Zohar, and Rosenschein 2011; Domshlak, Katz, and
Shleyfman 2012); and identifying plan permutation symme-
tries e.g. (Long and Fox 2003b). The latter is most related
to our approaches, that look for equivalences between plans,
though the prior work is not within temporal planning.

Throughout this paper we discuss our new techniques
within the framework of POPF. We rely on a single key as-
sumption: that each new action added to the plan is only ever
ordered after existing actions and never explicitly ordered
before them: this assumption holds for any planner perform-
ing forward search. CRIKEY and COLIN can be thought of as
restrictions of POPF where each step i is ordered ε after step
i-1, regardless of whether the steps interact in any way. The
same restriction applies in decision-epoch planners, such as
TFD (Eyerich, Mattmüller, and Röger 2009) and Sapa (Do
and Kambhampati 2003), but in addition these planners do
not use an STN; instead, as a simplification, when an action is
started, its timestamp is fixed, and its end added to the event
queue to occur at some fixed future time. All arguments that
refer to POPF apply to any of the above planners because
POPF’s plan representation is a generalisation of the plans
that can be represented by other planners (the converse is not
true). A totally ordered plan can be converted to a POPF plan
representation by applying the steps in order using the POPF
annotation update rules, thereby yielding an STN. Thus we
present our techniques within the POPF framework allowing
generalisation to all the above planners.

3 Memoization: Completeness & Optimality
In classical propositional planners, state memoization is very
effective for avoiding redundant search. If two sequences of
actions P = [p0..pn] and Q = [q0..qm] reach the same state
– i.e. the same facts are true – then only one of these must be
kept. Simply, all plan extensions that would reach the goal
from P would do so from Q, and vice-versa.

When planning with numeric state variables, the the prin-
ciple is the same, but static analysis can additionally reveal
dominance constraints on state variables, which can be ex-
ploited to do better than asserting that two states are interest-
ingly different if their numeric state variable values differ in
any way (Hoffmann 2003; Kvarnström, Doherty, and Haslum
2000). If it can be proven that larger values of v are better (in
terms of preconditions referring to v, as an input to effects on
other variables, and according to the plan quality metric) then
for two states P and Q identical modulo the value of v, and
where P.v > Q.v, only P need be kept. Any plan extension
from Q would work from P , and would reach a state with
better or equal cost; but not vice-versa. In general, we can say
that for states in which the same facts are true, and variables
for which there is no clear dominance hold identical values,
then we need only keep the Pareto front of these states – any
such state that is Pareto-dominated by another, can be pruned.
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Figure 1: Left: Example Driverlog Problem. Right: STN for Solution Plan with Shifts; actions and parameters are abbreviated
with their first letter, except disembark which is labelled A (alight). (For instance ‘DDTCE’ is (drive driver truck C E).)
Some STN edges that are subsumed transitively by others have been omitted for clarity.

In the remainder of this paper we refer to memoization of
this nature, with Pareto dominance for numeric variables if
present as STRIPS memoization, and use STRIPS(S) to refer
the projection of the state S onto only its facts and numeric
variables.

The introduction of durative actions changes the problem
fundamentally. In the classical setting, if two permutations of
actions reach the same state, only one permutation needs to be
kept. In temporal domains, however, the presence of temporal
constraints invalidates the assumption that all extensions of
states S and S′, where STRIPS(S)=STRIPS(S′), will reach
the goals from both S and S′.

3.1 STRIPS Memoization is Sub-Optimal

To demonstrate sub-optimality we use a problem in the
Driverlog domain, with the initial state shown in Figure 1
(left) (Long and Fox 2003c). The numbers on edges are
the time taken to drive between the respective locations;
board, load and unload all have duration 0.1 (recall that
loading and unloading packages does not require the driver).
The goal is that the package is at E. The planner may
find the following plan (written in terms of snap-actions):

0:(board driver truck A)� 1:(board driver truck A)�
2:(load pkg truck A)� 3:(load pkg truck A)�
4:(drive driver truck A B)� 5:(drive driver truck A B)�
6:(drive driver truck B C)� 7:(drive driver truck B C)�
8:(drive driver truck C E)� 9:(drive driver truck C E)�
10:(unload pkg truck E)� 11:(unload pkg truck E)�
Suppose STRIPS memoization is employed in search, and

having applied snap actions 0–7, the state S is reached and
memoized. If search later considers an alternative plan, where
the truck moves from A to D to C, instead of going via B,
the state S’ reached by this alternative plan will be pruned:
STRIPS(S)=STRIPS(S′). However, it is on the path to a
plan with a better makespan, in this case the optimal solution,
which would now be pruned from the search space. Of course
this is a simple example to illustrate the point but in general,
if we wish to preserve optimality and we have two plans that
reach states S and S′ where STRIPS(S)=STRIPS(S′), we
can only prune S′ if we have already seen S and the plan via
S will admit a solution of better or equal quality according
to the metric.

Temporal Fast Downward (Eyerich, Mattmüller, and Röger
2009) addresses this optimality concern by comparing states
by facts, makespan, and how long it is until the end of any
open actions. This is appropriate when performing Decision
Epoch Planning (Cushing et al. 2007); but as this is incom-

plete in PDDL2.1 domains with required concurrency, this is
not a general-purpose solution. In general, a single makespan
figure is not a sufficient criterion for determining whether
one state is better than another; and there is no fixed schedule
of when actions are due to end.

Of course not all plans that lead to the same STRIPS state
are interestingly different. Suppose we add to our running
Driverlog example a second package at A, to be delivered
to location D. There is no useful distinction between plans
that permute starting to load p1 and p2 onto the truck. This
would trivially be captured by STRIPS memoization, as the
plans reach the same facts. However, in the general case
for temporal planning, we cannot prune permutations unless
the plans also have equivalent temporal constraints. Cur-
rently the POPF family of planners has to keep both states.
Memoisation in decision epoch planners prunes a state S′
with timestamp t(S′), if a state S has been seen where
STRIPS(S)=STRIPS(S′), t(S′) ≥ t(S), and the event queue
in S is the same as that in S′. In a decision-epoch planner,
starting to load p1 before p2 or vice versa leads to states S, S′
where STRIPS(S)=STRIPS(S′), but the times of the queued
ends of actions are different by ε – so both states must be
kept. This is a significant source of inefficiency, where our
advanced memoisation techniques can improve efficiency for
all of these approaches; we return to this later.

3.2 STRIPS Memoization is Incomplete

So far we have seen that optimality can be compromised
when using STRIPS memoization in temporal planning; but
worse, even completeness is not guaranteed. Suppose we
modify our Driverlog instance in Figure 1 to model the
shifts worked by drivers, similar to the Driverlog Shift do-
main (Coles et al. 2009b). We add an action work (applicable
only once) of duration 6 that adds (working driver) at the
start, and deletes it at the end. This fact then becomes an
invariant condition of the board and drive actions.

An STN for a temporally invalid plan for this problem is
shown in Figure 1 (Right). An STN is invalid iff it contains
a negative cycle, which in this case (highlighted in bold) is
due to attempting to schedule 7 time units of drive actions,
within the 6 time units allowed by work. An alternative valid
plan is to drive via D rather than C, reducing the total drive
time to 5, thus eliminating the highlighted inconsistency.

Let us consider what happens during building this tempo-
rally invalid plan. We begin with the first 6 steps:
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0:(work driver)�
1:(board driver truck A)� 2:(board driver truck A)�
3:(load pkg truck A)� 4:(load pkg truck A)�
5:(drive driver truck A B)�
At this point our intuition tells us that the planner has

made a mistake that now means no extension of this plan
can reach the goal. Unfortunately, the planner cannot detect
this: in the general case it is quite possible that some plan
exists starting with these actions, and proving otherwise has
the same complexity as Plan Existence. The planner can
therefore continue to extend this plan, applying the steps:

6:(drive driver truck A B)�
7:(drive driver truck B C)� 8: (drive driver truck B C)�
...and then memoize the resulting state S: the truck is at

C; containing the driver and package. This is an important
point: the valid plan, driving via D, must pass through a state
S′ where STRIPS(S)=STRIPS(S′). Note that even adding
facts to note which actions are open in a state (Long and Fox
2003a) would not make STRIPS(S) �=STRIPS(S′). Thus, if
the plan via S is generated before that via S′, STRIPS mem-
oization will prevent generation of the valid plan. However,
again the planner is not able to detect this problem so will
carry on searching. (Note that the plan is still temporally
consistent, and would remain so even if work� were applied
as step 9.) The planner now applies the final actions:

9:(drive driver truck C E)� 10:(drive driver truck C E)�
11:(unload pkg truck E)� 12:(unload pkg truck E)�
13:(work driver)�

3.3 STRIPS Memoization is Complete for States
with No Open Actions

There are certain conditions in temporal planning where us-
ing STRIPS memoization preserves completeness but not
optimality; specifically, in states with no open actions. As
we have seen, incompleteness due to STRIPS memoization
arises in a specific situation: two plans lead to S and S′
where STRIPS(S)=STRIPS(S′); but only one of these can
be extended to produce a temporally consistent plan. We
therefore begin by considering the conditions under which a
plan may be pruned due to temporal inconsistency.

First, observe that during state expansion in POPF, de-
scribed in Section 2, all temporally invalid plans are imme-
diately discarded; so if we are applying an action in a state,
the incumbent STN must be temporally consistent. Second,
new actions can only be demoted (ordered after) existing plan
steps with which they have a conflict: ordering them before
existing actions is not permitted. This is consistent with the
forward nature of search. Adding a start snap action B� to a
plan [a0..an] can therefore only introduce STN constraints of
the form 〈an+1, ai ∈ [a0..an], {0,−ε}〉. To make the incum-
bent STN become inconsistent we need to create a negative
cycle; since there were none beforehand, any new cycle must
go via the new vertex B�. But, we cannot create a temporal
inconsistency this way, because B� has no incoming edges:
no actions are yet ordered after B�, as it can never be ordered
before existing steps; and no later steps have been applied
after it yet.

Temporal inconsistencies can, however, occur when an
end snap action C� is applied: it can be constrained to be or-

dered after existing steps, but crucially, a maximum-duration
constraint 〈C�, C�, ub〉 is added to the STN. This bounds
the time available for activities ordered to occur between
these points. Of course, because applying C� necessarily
implies a commitment to eventually applying C�, the plan ef-
fectively becomes temporally inconsistent at the point where
an action has been applied that implies this maximum dura-
tion constraint will be violated. For instance, in the example
in previous section, when (drive driver truck A B)� was
applied, there was no longer time to complete the requisite ac-
tivities before (work)�. However, this issue is only detected,
and the plan only pruned, when (work)� is actually applied:
until that point we do not know which actions it will need to
be ordered after in order to satisfy its end preconditions.

Recall, for incompleteness to arise, there must be some
plan extension that would lead to a temporally valid solution
from S′, but not from S; but STRIPS(S)=STRIPS(S′), and
search encountered S first. Let π be the plan reaching some
state Sπ, nominally the current state, and 〈A, T 〉 be the cor-
responding STN as generated by POPF for π. Let π′ be any
future extension of π comprising actions applied after we
reach Sπ , leading to a state SP with STN 〈A′, T ′〉, and plan
P = (π : π′). We define the subsets of T ′ containing only
edges that start and end in π and π′, respectively, as:

T ′(π) = {〈i, j, c〉 ∈ T ′ | i ∈ π ∧ j ∈ π}
T ′(π′) = {〈i, j, c〉 ∈ T ′ | i ∈ π′ ∧ j ∈ π′}

If SP is temporally invalid either:
1. T ′(π) contains a negative-cost cycle;
2. T ′(π′) contains a negative-cost cycle;
3. There is a negative-cost cycle in T ′ due to edges between

steps in π and steps in π′.
In case 1 the state Sπ would never be considered for ex-

tension or memoized, as it would have immediately been
discarded. In case 2, because π′ is itself inconsistent it can-
not be a valid extension to any plan: π′ is never a temporally
valid extension of π from Sπ , regardless of the actions in π.

This leaves us with case 3. For a cycle to occur between the
vertices for π and π′, there must be some edge from a vertex
in T ′(π) to one in T ′(π′); and another from T ′(π′) to T ′(π).
As noted above, applying the steps π′ after π introduces
ordering constraints – these are all backwards edges from
T ′(π′) to T ′(π), as threats are resolved and preconditions
are met by ordering new actions after existing actions. The
only forward edges that could go from T ′(π) to T ′(π′) are
the maximum duration constraints of actions. So, for there to
be an edge from T ′(π) to T ′(π′) there must be an action A
where A� is in π and A� is in π′; that is, there was an open
action in Sπ .

This makes intuitive sense: if we have started an action
but not yet finished it, we have a commitment to respect the
duration constraint of that action, and could potentially make
the plan temporally invalid if we do not do so. However, if all
actions have already finished then applying an action cannot
possibly break any of the existing constraints, as it will only
be ordered after the existing actions.

At first glance it might seem that the potential impact of
this observation is limited as for all durative actions we must
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apply the start, and then apply the end at some later time,
thereby passing through a state with an open action. However,
POPF identifies compression safe actions: those whose end
can be added to the plan immediately after its start without
compromising completeness (Coles et al. 2009a).

We will now show that if we apply A� immediately after
A� we cannot create negative cycles in the STN. Suppose
A� is ordered after some snap-action B. Because A� can
only be ordered after previous actions, and there was no op-
portunity to apply an action between A� and A�, then either
B=A� or B was already in the plan before A�. In the former
case, a negative cycle would imply that the action’s duration
constraints contradicted themselves: the lower bound is in
excess of the upper bound. We can reasonably assume such
an action would not even be started, as it is not applicable.
Thus, we focus on the latter case. For there to be a negative
cycle involving A� and A� there must be a path from A� to
A� via B. However, there cannot be an edge from B to A�
because B was already in the plan before A� was applied; so
if A� needed to be ordered with respect to B it would have
to come after B. Thus, only edges from A� to B could be
present in the STN: there can be no edges from B to A�, so
applying [A�, A�] cannot cause a negative cycle.

4 Memoization Strategies

We now propose three new techniques all of which preserve
completeness; and two of which preserve optimality.

4.1 Restrict STRIPS Memoization to States with
No Open Actions

As discussed in Section 3, STRIPS memoization in temporal
planning can be incomplete iff it is used to memoize states
with open actions. A minor tweak is as follows: if a state
has no open actions, apply STRIPS memoization; otherwise,
keep it. The advantage of this approach is that as many
domains are compression safe, most of the time STRIPS
memoization will be used. The disadvantage though is that
as soon as this is not the case, for instance in domains with
required concurrency (e.g. envelope actions as in Driverlog
Shift) most states are kept.

4.2 Memoization of Isomorphic Partial Orders

In the general case, permuting the order in which actions are
applied will affect the ordering constraints between them;
and this in turn affects whether it is possible to reach the goal.
However, following the forward partial-order semantics of
POPF, two plan steps ai, ai+1 are only ordered with respect
to each other if they interact in some way: an effect of one
meets or threatens the precondition of the other.

As an example, consider a simple Driverlog problem where
two packages p1, p2 and a truck are at a location. At least
two actions are applicable: start loading p1 onto the truck; or
start loading p2. These would each be ordered after the action
that moved the truck to that location, but would not need to
be mutually ordered. Thus, once both have been applied, in
either order, the resulting partial order plans are isomorphic:
the nodes in the graph are labelled with the same actions, and
the edges carry the same temporal constraints. A cautious

memoization strategy would still keep both plans, though,
as in general, the steps might have been mutually ordered.
But, if they are not, we need only consider one of any set of
plans that have isomorphic partial orders in order to maintain
completeness and optimality.

Detecting plans with partial orders isomorphic to those
already seen corresponds to solving a very restricted form
of coloured graph isomorphism. We can exploit extensively
the fact that the graph corresponds to a partial-order plan
found incrementally by forward state progression. First, we
transform the STN (A, T ) corresponding to a plan P into a
coloured digraph with vertices V and unlabelled edges E.
We define a morphism σ(ai) that maps each vertex ai ∈ A
to some v ∈ V , where v is coloured according to the snap-
action it represents, and the instance of that action in P :

• If ai is the nth instance of an instantaneous action A, σ(ai)
is coloured 〈A, n〉;

• If ai is the nth instance of A� σ(ai) is coloured 〈A�, n〉;
• If ai is the nth instance of A� σ(ai) is coloured 〈A�, n〉.

We also define σ−1 as the inverse of this, that maps a
vertex v ∈ V to some plan step ai ∈ P .

Note that including n within the colour means our ap-
proach will not detect all isomorphisms. If the same snap-
action is added to the plan twice, but there is no mutual
ordering (even transitively), they could in principle be inter-
changeable, but n forces them not to be. For instantaneous
actions that have effects, an instance of A will always be
ordered after earlier instances of A as it affects the same
facts and/or variables, so this is not a concern. For durative
actions, though, we may obtain snap-actions with no effects,
which in turn allow us to self-overlap an action, i.e. to start
it several times before finishing it. In practice, such plans
are uncommon, so this is not a considerable limitation, and
our approach degrades gracefully: it is not complete (will not
find all isomorphisms), but it is sound (guaranteeing we will
never consider two non-isomorphic plans to be equivalent).

An edge 〈σ(ai), σ(aj)〉 ∈ E denotes that step ai precedes
aj . Edges are derived from T as follows:

• If 〈aj , ai, c ∈ {0,−ε}〉 ∈ T , due to an interaction between
steps ai and aj , there is an edge 〈σ(ai), σ(aj)〉 ∈ E. Note
the label is discarded – referring to Section 2, whether the
gap is 0 or ε depends solely on the actions involved; this is
subsumed by the colours of the vertices.

• If 〈aj , ai,−lb〉 ∈ T due to the lower-bound on the duration
of the action that started at ai and finished at aj , then
〈σ(ai), σ(aj)〉 ∈ E. lb is either constant or a function of
the state in which the action was applied. If two partial-
order plans are isomorphic, the state in which the action
was applied is the same, so this edge necessarily has the
same label; and thus the label can be ignored.

• Edges 〈ai, aj , ub〉 ∈ T are ignored. As in the lower-bound
case, the upper-bound depends only on the state in which
the action was applied, and an isomorphic plan would
reach this same state. Further, the n values on vertices
capture the pairing between starts and ends, implicitly
capturing that there is some maximum constraint here.
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Algorithm 1: Canonical Vertex Colour Order
Data: 〈V,E〉, a coloured graph
Result: cs , a canonical sequence of vertex colours
cs ← [];1

while V �= ∅ do2

open ← {v ∈ V | ∀v′ ∈ V.〈v′, v〉 �∈ E};3

next ← (v ∈ open | ∀v′ ∈ open, v′ = v ∨ v < v′);4

append next to cs;5

V ← V \ {next};6

E ← {〈i, j〉 ∈ E | i �= next};7

For a graph 〈V,E〉, we can then derive a canonical form: a
sequence of vertex colours, obtained by visiting the vertices
in a specific order. The vertices are visited by a topological
order traversal; where ties between which vertex to visit
next are broken by using an ordering relationship based on
their colour. To order vertices, each action A is given an
arbitrary but unique identifier id(A)1. We then sort the space
of possible colours in ascending order as follows:

• Colours 〈A, n〉, sorted lexicographically by 〈id(A), n〉 –
i.e. for an action A, (〈A, j〉 < 〈A, k〉) if (j < k).

• Colours 〈A�, n〉, sorted lexicographically by 〈id(A), n〉;
• Colours 〈A�, n〉, sorted lexicographically by 〈id(A), n〉.

With this ordering, we then use the notation v < v′ to
test whether some vertex’s colour is less than another accord-
ing to this order. This is used within the topological-order
traversal shown in Algorithm 1 – at line 4, from the topo-
logically open vertices (those with no incoming edges), the
next vertex chosen is that which is less than all others. We
can be confident this ordering is canonical, as it inherently
preserves topology, and no two vertices have the same colour:
where the same action appears more than once in a plan, the
n values distinguish the respective vertices.

As an example of the output of this algorithm, we refer to
the partial-order plan in Figure 2. Here, the plan [AFCG]
has been extended by applying B as step 4 of the plan. The
coloured graph for this partial order will colour the vertices
according to the actions they denote (A, F , C, G or B), and
the edges will be inverted from those in the partial order:
A → F , F → C, and so on. The canonical sequence,
following Algorithm 1 is then [AFBCG ] – after visiting
A and then F , there are two open vertices, C and B; and
assuming alphabetical order, B < C, so B is chosen first.

There is one task remaining with the canonical sequence:
using σ−1, map it into a canonical permutation of steps from
the original plan P . For a canonical sequence cs = [v0..vn]
we define cp = [σ−1(v0)..σ

−1(vn)]. cp has a partial-order
that is isomorphic to that of P , but the particular snap-action
at a particular step index may have changed, due to the order-
ing constraint between vertex colours. Crucially, we can now
define memoization based on not visiting two plans with the
same partial order, very succinctly:

• For each plan P , compute the canonical plan cp.

1Our implementation assigns these based on grounding order.
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Figure 2: Applying B after AFCG

• If cp has not been seen before memoize it and keep P ;
• If cp has been seen before, prune P .

Thus, with reference to Figure 2, if the plan [AFCGB ] was
considered during search, and was the first where cp =
[AFBCG ], it would be kept, and cp memoized. If the plans
[AFBCG ] or [AFCBG ] (which have partial-orders isomor-
phic to Figure 2) were later considered they would be pruned,
as their canonical orders are also [AFBCG ].

4.3 Memoization using Fact Availability Times

Eliminating plan permutation symmetries is effective at prun-
ing states reached by a different permutation of the same
actions, but does nothing for the case where different ac-
tions reach similar states that are either interchangeable or,
provably, one is better than the other.

For a plan P=[a0..an] that reaches a state S with tempo-
ral constraints T , solving T using a shortest-path algorithm
returns the earliest time at which each step can be applied.
If there are no open actions, and the STN was consistent,
these are acceptable timestamps for these steps in all plans
reachable from S. This follows POPF’s state progression se-
mantics: the only new temporal constraints that appear when
appending new steps to P are either between these new steps;
or order new steps a minimum amount of time (0 or ε) after
steps in P . A maximum amount of time between steps in
P and new steps is never required, so in turn, delaying the
steps in P is never required. Conversely, if there are open
actions, ending an action limits the amount of time between
its start and its end, potentially requiring the start to be de-
layed to satisfy the duration constraint; so we cannot yet fix
the times at which steps occur. Delays may also be beneficial
in problems with continuous or duration-dependent effects,
where the metric is to maximize makespan, or for Timed
Initial Literals (Hoffmann and Edelkamp 2005); but these are
outside the scope of our work.

Given the timestamp t(ai) of each step ai in a plan to reach
a state S with no open actions, and the annotations in states
in POPF, we can derive several timestamp values:

• use(S, p)=max{t(F+(p)), t(F−(p))}: the fact p can be
used after the time of the step that last added/deleted it;

• change(S, p)=max{t(i)+d | 〈i, d〉 ∈ FP+(p)}: p can be
deleted after the latest step of which it is a precondition;

• use(S,¬p)=max{t(F+(p)), t(F−(p))};
• change(S,¬p)=max{t(i)+d | 〈i, d〉 ∈ FP−(p)};
• use(S, v)=t(Veff(v)): v can be used after its last modifier;
• change(S, v)=max{t(i)+d | 〈i, d〉 ∈ VP(v)};
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These values can be defined for every fact p and vari-
able v in the planning task. With these we can now make
meaningful comparisons between states S and S′ where
STRIPS(S)=STRIPS(S′) and no actions are executing. Sim-
ply, if the state S Pareto dominates S′ in terms of these
values, S′ can be discarded.
dom(S, S′)  ∀p( use(S, p) ≤ use(S′, p)

∧ change(S, p) ≤ change(S′, p))
∧∀p( use(S,¬p) ≤ use(S′,¬p)

∧ change(S,¬p) ≤ change(S′,¬p))
∧∀v( use(S, v) ≤ use(S′, v)

∧ change(S, v) ≤ change(S′, v))

The rationale for this definition is intuitive: if the plan to S′
was extended to reach the goal, then the same plan extension
could be applied from S; and no action would be scheduled
any later, because no change or use value in S exceeds its
counterpart in S′, thus optimality is preserved.

The caveat behind these exact definitions of change or use
is that they can substantially underestimate the actual times
at which actions that use or changes facts/variables could be
applied. For instance, in Driverlog, if a truck moves from A
to B, deleting (at t1 A) at time 0 and adding (at t1 B) at
time 3, then change(at t1 A) = 0 and change(at t1 B) =
3. The former of these is a substantial underestimate, but
reflects the fact that in principle, an instantaneous action with
no preconditions and the single effect (at t1 A) could be
applied ε after that time. In reality, though, such an action
does not exist – moving the truck back to A would require
deleting the fact that it was at B, which means coming after
time change(at t1 B).

Worse, if the truck in one plan moves from A to B to
C, and in another from A to D to C (see Figure 1, left)
these two plans would have different change values for
change(at t1 B) and change(at t1 D). This would break
the Pareto dominance, and both plans would be kept; even
though going via D is preferable. Again, in reality, changing
the value of these intermediate facts would require deleting
C, and hence coming after time change(at t1 C).

Generalizing this, we observe that the facts such as
(at t1 A) and (at t1 B) are mutually exclusive given the
actions in the domain, and the initial state: it is impossible
to reach a state in which both are true; and hence, if one is
true, it must be deleted before the other is made true. Using
mutex (p) to denote the set of facts mutually exclusive with
p, we can define use ′(S, p) and change ′(S, p) as follows:

use ′(S, p)=max{use(S, p), max
p′∈mutex(p)

change(S, p′)}

change ′(S, p)=max{change(S, p), max
p′∈mutex(p)

change(S, p′)}
That is, if p is true, then we can use it after the last point

it was added (use(S, p)); otherwise, we must first change
(delete) the other facts in the mutex group before an action
that added it could conceivably be applied. Similarly, if p is
true, then we can change (delete) it after change(S, p); but
if it is false, then the step that changes (adds) it must follow
the deletion of the other facts in the mutex group. Using
these modified versions of use(S, p) and change(S, p) in
dom gives us a stronger definition of Pareto dominance.

4.4 Applicability to Other Forwards Planners

Application of our remaining techniques to other forward
search planners that impose a total ordering can be achieved
by running the plan to each state through POPF state progres-
sion (as noted at the end of Section 2). When this is done
the techniques are directly applicable to all such planners,
and the benefits for STN-based planners (e.g. COLIN and
CRIKEY) are as described for POPF.

Decision-epoch planners already implicitly benefit from
using STRIPS memoization in states with no open actions.
For states S, S′ with timestamps t(S), t(S′), and where
STRIPS(S)=STRIPS(S′), S′ will be pruned if t(S′) ≥ t(S),
and the event queues are the same (in this case both empty).
But, suppose states have open actions. The plans [A�, B�]
and [B�, A�] lead to different states, even if the facts and
timestamps are the same, as the event queues differ: S has
A� queued at (t+durA) and B� at (t+ε+durB) while S′ has
A� at (t+ε+durA) and B� at (t+durB). Our techniques im-
prove the situation here in two regards. In domains where
all actions are compression safe, if two event queues contain
the same actions, these by definition do need not be ordered
with respect to each other, so the two event queues can be
considered equal. In other domains, isomorphism pruning
can detect cases where no ordering constraints need to exist
between A and B (i.e. they do not interact) allowing one
of these two states to be pruned. Finally, as decision epoch
planners also usually lift a partial order at the end of search,
Section 4.3 allows tie-breaking between states that have equal
timestamps during search; but where one will admit a better
partial-order plan than the other, when the goals are reached
and the partial-order plan is lifted.

5 Evaluation

In this section we compare the performance of our memo-
ization strategies within the POPF framework. To allow us
to focus on memoization all planner configurations use WA*
search with W=5. All tests are run on 3.5GHz machines, re-
stricted to 30 minutes of CPU time and 4GB of memory. We
used all temporal benchmark domains from the International
Planning Competition (IPC) series, and collated required
concurrency domains from the temporal planning literature
(since these are rare in IPCs). As memoization based on fact
availability times relies on mutex groups, for which we use
the Temporal Fast Downward SAS+ translator, we include
only those domains that it supports. Finally, we created one
new domain with required concurrency, ‘crewplanning enve-
lope’. The original IPC2008 temporal crewplanning domain
does not correctly enforce the temporal constraints of the
problem, where activities have deadlines on certain days. We
added envelope actions to enforce these constraints and cap-
ture the maximum duration of days, capturing the interesting
temporal features of the problem.

We present results for seven planner configurations in Ta-
ble 1, defining each by what happens in states with and with-
out open actions. We include two reference configurations:
Keep All states, which necessarily preserves completeness
and optimality; and STRIPS memoization applied to states
with and without open actions, to indicate the price we are
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Figure 3: Comparison of Approaches in terms of Time (left and centre) and Quality (right)

paying to maintain completeness and optimality. We split
our domains into three categories. First, Compression Safe
(CS), where all actions in the domain are compression safe,
so no states have open actions, and STRIPS memoization
is completeness (but not optimality) preserving. Second,
Non-Compression Safe: these contain some actions that the
planner is not able to identify as compression safe, though in
some cases this is due to limitations of the analysis (e.g. end
numeric effects are taken not to be compression safe), rather
than indicating required concurrency (Cushing et al. 2007).
Finally, domains with required concurrency, where actions
must be executed simultaneously in any solution plan.

Table 1 presents coverage figures, i.e. the number of prob-
lems solved. The practical limit on whether a problem was
solved was memory usage, rather than CPU time: across all
unsolved problems, there were only seven cases where the
planner timed out before it ran out of memory. Improved
coverage is indicative of effective memoization, as keeping
states in memory accommodates for the majority of the mem-
ory usage. In CS domains, where it is complete, STRIPS
memoization solves the most problems: this is to be expected
as it strictly dominates all other strategies in terms of nodes
pruned; albeit at the cost of optimality. Comparing STRIPS
to Keep All it is clear that effective memoization is crucial
to the performance of forward-chaining planning. Note that
in CS domains, there are no open actions, so the ‘Open Ac-
tions’ strategy (second row of the table) is never used: all
STRIPS-based configurations perform identically.

For non-CS domains, and those with required concurrency,
the table indicates in parentheses after the domain name the
percentage of states generated by all configurations during
search in which there were open actions; i.e. the fraction
of states that were handled by the second memoization ap-
proach. In these domains, the incompleteness of STRIPS
memoization becomes more apparent: in ST+ST, all prob-
lems in parcprinter and both variants of UMTS are reported
as unsolvable, when in fact many of these are solved by
other configurations. The 7 time outs were on these non-CS
domains: the pruning was sometimes so over-zealous, the
planner did not generate enough non-pruned states in 30 min-
utes, to use all the memory. However, in spite of this, it still
finds solutions to many problems in domains where it is in
theory incomplete, as the over-zealous pruning pays off in

terms of scalability, by keeping far fewer states in memory.
The configuration pruning using solely Isomorphic Plan

(IP) pruning solves a total of 25 more problems than keeping
all states. This is very promising as IP is both complete
and optimal in all settings, and in principle can be directly
applied to domains that are more expressive (e.g. those with
continuous numeric change and duration-dependent effects).
The best results here, however, arise when using STRIPS
pruning in states with no open-actions, and IP otherwise:
making use of the most powerful approach that is complete
for the class of states being respectively considered.

We would naturally expect the combinations using Fact
Availability Time (FT) pruning to have slightly lower cover-
age than their STRIPS analogues, as STRIPS memoization
prunes strictly more states. However, it is pleasing to note,
given FT+IP preserves completeness and optimality, that
it solves 100 more problems than Keep All; and is just 14
short of the best non-optimality preserving configuration,
ST+IP. The graphs in Figures 3a and 3b also demonstrate a
convincing decrease in time taken to solve mutually solved
problems for ST+IP and FT+IP compared to the only prior
completeness and optimality preserving approach, Keep All.

In order to see the benefits of FT pruning we must consider
solution quality. To optimise quality we allowed WA* search
to continue after a solution was found, pruning states where
the reachable metric value is no better than that of the incum-
bent best solution. We estimated the reachable metric using
the admissible makespan estimate derived from the Temporal
Relaxed Planning Graph. In all temporal benchmarks consid-
ered the metric specified is ‘minimize total-time’, with the
exception of ZenoTravel which requires minimisation of a
weighted sum of total-time and fuel used.

Figure 3c compares the quality of plans produced by using
ST+ST versus FT+IP, computing plan quality scores in the
range [0, 1] as follows: for each problem, find the best quality
solution (by any configuration); then divide this by the quality
of the plan found by a given configuration to obtain its score
(bigger is better). In almost all mutually solved problems the
best quality plan is found by one of these two configurations,
but there is a split as to which performs better: ST+ST is bet-
ter in 69 problems, FT+IP in 52. The two produce solutions
of the same quality in 136 problems.

This illustrates an trade off in optimisation for satisfycing
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States without Open Actions KA ST IP FT
States with Open Actions #P KA KA∗ IP∗ ST∗+ IP KA IP
02-rovers-simple† 20 17 18 18 18 18 18 18
02-zeno-simple† 20 13 15 15 15 13 14 14
02-depots-simple 22 3 11 11 11 4 8 8
02-depots† 22 3 11 11 11 4 10 10
02-driverlog-simple† 20 12 15 15 15 12 15 15
02-driverlog† 20 11 15 15 15 14 16 16
02-satellite-simple 20 9 9 9 9 9 9 9
02-satellite† 20 6 8 8 8 7 9 9
04-pipes-notankage† 50 18 32 32 32 22 29 29
06-trucks-strips† 30 20 22 22 22 21 22 22
08-crewplanning 30 18 18 18 18 18 18 18
08-modeltrain-num 30 0 2 2 2 0 2 2
08-pegsol† 30 26 30 30 30 28 29 29
11-floortile† 20 0 9 9 9 0 8 8
11-parking 20 19 20 20 20 19 20 20
11-sokoban-strips 30 3 17 17 17 3 15 15
11-storage 20 0 3 3 3 0 2 2
CS Total 424 178 255 255 255 192 244 244

02-rovers (5%) 20 8 9 9 8 8 8 8
04-pipes-tankage (10%)† 50 8 10 11 13 8 9 10
08-elevators-num (26%) 30 4 7 7 19 5 7 9
08-transport-num (34%) 30 1 5 7 9 1 5 5
11-parcprinter (70%) 20 0 3 4 0 1 3 4
08-opnstack-num (86%) 30 29 30 30 30 30 30 30
04-umts (97%) 50 39 48 48 0 43 48 48
Non-CS Total 280 108 131 136 105 117 130 135

11-turnandopen (1%) 20 1 8 8 8 1 6 6
Driverlog Shift (81%) 20 9 9 10 13 10 9 10
08-crewplan-env (94%) 30 5 5 5 5 5 5 5
11-matchcellar (98%) 20 20 20 20 20 20 20 20
04-umts-tw-comp (98%) 50 42 42 43 0 43 42 43
P2P (Huang et al.) (99%) 13 13 13 13 13 13 13 13
11-tms (99%) 20 2 2 2 0 2 2 2
RQ Total 173 92 99 101 59 94 97 99

Total 877 378 485 492 419 403 471 478

Table 1: Coverage of each strategy on benchmark domains:
Keep All (KA), Strips (ST), Isomorphism Pruning (IP), Fact
Availability Times (FT). * Indicates strategies that are not
optimality preserving, + those not completeness preserving.
Underlined results for FT+IP and ST+ST indicate which
of the two achieved the higher quality score (no underline
implies the two were equal).

planning: as noted earlier, the zealous pruning of STRIPS
memoization can allow it to solve more problems despite
being incomplete; when optimising this translates into con-
sidering more possible plans within the time and memory
limits imposed, and thus finding solutions other configu-
rations will not reach. Indeed, in domains where ST+ST
obtained a better total quality score (sum of quality scores
across mutually solved problems) than FT+IP, underlined
in Table 1, the coverage of ST+ST is higher too, indicating
that it can find solutions more easily. It is also notable that
the domains where ST+ST erroneously deemed at least one
sub-optimal solution optimal (marked † in Table 1) are most
of the domains in which FT+IP found better solutions. This
suggests ST+ST has pruned some states on the path to good
solutions.

In general we observe that in problems where it is difficult
to find solutions at all, ST+ST does better in terms of quality,
due to better scalability; whereas in those where the planner
can find multiple solutions with more conservative pruning,
FT+IP prevails. Of course, if guarantees of optimality are

required then the option of using STRIPS memoization is
removed entirely; FT+IP on the other hand could safely be
used for memoization inside an optimal temporal planner.

6 Conclusions

In this paper, we discussed the limitations of prior approaches
to state memoization when applied to temporal planning prob-
lems as expressed in PDDL2.1, in particular that STRIPS
memoization does not preserve completeness or optimality.
We presented alternative approaches that address these issues,
and evaluated their performance. The results indicate these
surpass the performance of STRIPS memoization in tempo-
rally expressive domains; whilst approaching its performance
in temporally simple domains, where its incompleteness is
not always a hindrance.
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