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Abstract

We address the control of a vertically profiling float us-
ing ocean-model-based predictions of future currents.
While these problems are in reality continuous control
problems, we solve them by searching a discrete space
of future actions. Additionally, while the environment is
a continuous space, the ocean model we use is a discrete
cell-based model. We show that even with an imperfect
model of ocean currents, planning in the ocean current
model can significantly improve results for a specific
problem of controlling a vertically profiling float when
a trade-off between remaining at the same location as a
virtual mooring and collecting more data with more pro-
files is available. We also present anecdotal data from an
April 2015 deployment of EM-APEX floats.

Introduction

The study of ocean dynamics is an important problem with
many ramifications including environment and climate, food
production, defense, and leisure. There are a variety of dif-
ferent techniques currently being used to monitor and mea-
sure ocean conditions such as currents, salinity, and temper-
ature. Recent advances in robotic marine vehicles such as
floats, gliders, and autonomous underwater vehicles (AUV)
provide a plethora of new tools and techniques for ocean
measurement. Another important way that scientists are able
to collect measurements is by using moored buoys. This al-
lows scientists to collect data at a fixed location over time.
However, physically mooring a buoy is a significant finan-
cial investment and the mooring is only able to collect data
at a fixed location.

As an alternative, a virtual mooring has been proposed in
which a dynamically controlled vehicle uses a control pol-
icy in order to maintain its position. Specifically, one pro-
posal is to deploy a vertical profiling float to the location
of desired data collection and using predictive ocean mod-
els to plan a control sequence for changing depths that best
keeps the float near the same location using the ocean cur-
rents. This method has multiple benefits over using a float at
a physical mooring. First, the float could be retrieved and re-
deployed when desired. Second, there is more flexibility in
that the float could be programmed to track a moving target
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Asset Control Speed Longevity Cost

Floater None None Weeks $100’s
Vertical
Profiling Vertical ∼0.1 m/s Years $10K’s
Float
Seaglider Horizontal ∼0.5 m/s Months $50’s -

$100’sK
AUV Horizontal ∼2.5 m/s 1 Day $100K

& Vertical - Weeks - $M

Table 1: Characteristics and costs for different families of
marine vehicles.

or to drift to facilitate deployment or retrieval. Third, the de-
ployment would be less expensive than building a physical
anchor location.

Although using an AUV would provide better control to
remain at a fixed location, more capable vehicles are more
expensive. Table 1 shows approximate costs for families of
marine vehicles (Woods Hole Oceanographic Institution ;
Sanford et al. 2005; Eriksen et al. 2001; YSI Systems ;
OceanServer Technology, Inc. ; Bluefin Robotics Corpora-
tion ; Kongsberg Mairtime AS ).

We believe that deploying a vertical profiling float is a cost
effective alternative to using physical moorings or AUVs
by using predictive ocean models to generate a control se-
quence that allows the float to act as close as possible to
a virtual mooring considering the ocean currents and that
when flexibility is available, a trade-off can be made to col-
lect more data profiles and float away from the mooring lo-
cation.

A prior version of this float planning scheme was de-
ployed in April 2015 to control two Electromagnetic Au-
tonomous Profiling Explorer (EM-APEX) (Sanford et al.
2005) floats. In this deployment, an incoming weather front
made the ocean model a poor predictor of ocean currents
and therefore could only validate the negative hypothesis -
that when the ocean model is not a good predictor that the
planning-based control will not yield good results.

Problem Definition

This experiment generates a control sequence for a verti-
cal profiling float to make it act as a virtual mooring. Given
a start location, a goal location, a mission duration, and a
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planning model of ocean currents, the goal is to produce an
optimal sequence for a float with a particular diving and sur-
facing speed in the planning model and to verify that it does
well in the nature model, based on a desired objective func-
tion.

The start location represents the drop-off location of the
float and the goal location represents the location of the vir-
tual mooring, which is equivalent to the desired data collec-
tion site. The mission duration is the length of time for which
a control sequence will be generated. In an ideal situation,
a data measurement would be collected at all times and at
all depths at the same latitudinal and longitudinal location.
However, given a single float, a trade-off has to be made be-
tween profiling across all depths and drifting away from the
mooring location. Therefore, the objective function should
take this into account and make a compromise between col-
lecting data at different depths or staying close to the de-
sired location. The ocean models contain current informa-
tion at varying depths, which is used to determine where the
float will move during the mission duration. Since predictive
ocean models cannot perfectly forecast the ocean currents,
the planning model represents this imperfect knowledge and
the nature model represents the actual ocean currents. In this
way, it is possible to approximate a scenario of generating a
control sequence in an ocean model and executing it in the
ocean.

Experimental Inputs

For this experiment, the vertical profiling float was given a
vertical speed of 0.12 m/s taken as the speed of the opera-
tional EM-APEX floats used in prior deployments. The max-
imum profiling depth was chosen to be 500 m. The mission
duration was set to be one day.

The start location and the goal location were (latitude,
longitude) locations at the surface of the ocean. They were
set to be the same location so that it represents a float that
is placed at the location of desired data collection. In partic-
ular, nine different start/goal locations in the Monterey Bay
Area were chosen for this experiment. These locations are
shown in Fig. 1 and table 2.

latitude: 36.872217 36.072217 35.272217
longitude: -123.734853 -123.134853 -122.534853

Table 2: The three latitudes and longitudes that make up the
nine starting/goal locations used as experimental inputs.

The ocean model used for this experiment was the Re-
gional Ocean Modeling System (ROMS) (Chao et al. 2009;
Li et al. 2006; Farrara et al. 2015), a discrete, cell-based
model. For our experiments we used a ROMS California
coast configuration with a grid size of approximately 3 km
in the latitudinal and longitudinal directions, 1 hour in the
time dimension over 72 hours, and fourteen depths ranging
from 0 to 1000 m in non-uniform intervals. The ocean cur-
rents vary with latitudinal and longitudinal direction as well
as depth. The deeper currents tend to be more consistent and
slower, whereas the surface currents are more variable and

Figure 1: The nine starting/goal locations used as experi-
mental inputs.

often have a higher velocity.
In order to approximate a scenario of planning with the

predicted ocean model and executing the control sequence
in the ocean, two different models were used. Both models
are ROMS models, thus both models are discrete and cell-
based, and computations are done in the some manner. Using
the standard practice in ocean modeling, the planning model
uses information from ten days before the desired day of ex-
ecution without HF radar assimilation. The nature model in-
corporates the HF radar assimilation and represents the con-
ditions of the ocean on the desired day of execution and is
the best model of the ocean on that day. Table 3 shows the
different inputs to ROMS for the planning and nature mod-
els. By using the two different models with different predic-
tive knowledge, it is possible to simulate using a predictive
model for planning and executing that plan in an actual de-
ployment. The planning model is used to plan exactly the
way it would be in a deployment and the nature model is
used when replicating the path as a simulation for an ocean
deployment. The models for this experiment were generated
for April 17, 2015.

Figure 2 demonstrates how the zonal and meridional cur-
rents vary between the two different models. The zonal cur-
rents are in the west-east direction and the meridional cur-
rents are in the north-south direction. The currents are shown
for location (34.66◦lat, 235.68◦lon) at the surface over 72
hours.

The objective function was designed to trade-off profiling
and remaining close to the mooring location and to favor
one or the other by changing the relative weights between
the terms. The equation for the objective function is

∑

n

∑

d

(wTTd + wDDd)

where n are the nodes in the path, d are the depth choices,
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Planning Nature
Models Model

Archiving, Validation and x x
Interpretation of Satellite
Oceanographic (AVISO)
sea surface height data
Advanced Very High Resolution x x
Radiometer (AVHRR) sea
surface temperatures
Moderate Resolution Infrared x x
Spectroradiometer (MODIS)
sea surface temperatures
GOES satellite sea surface x x
temperatures
High Frequency (HF) x
radar surface current data
Monterey Bay Aquarium x x
Research Institute (MBARI)
M1 mooring vertical profiles
of temperature and salinity
Ship sea surface temperatures x x
Number of days advanced 10 1
prediction

Table 3: ROMS inputs for the planning and nature models.

and wT and wD are weighting terms. Td is the number of
seconds since the last time the path was at depth d divided
by 1000. Dd is the distance in kilometers that the path was
from the goal location the last time the path was at depth d.

In other words, at each time step the most recent node
at the surface and at the profiling depth are found and
(wTTd+wDDd) is added to the objective function. Since Td

can be used as a proxy for determining the time since the last
profile, a smaller wT to wD ratio favors control sequences
that keep the float closer to the desired data collection site,
whereas a larger wT to wD ratio favors control sequences
that have more profiles.

Algorithm

Even though, in reality, the problem space is continuous, in
order to make the search tractable the future actions of the
float are determined in a discrete manner. At each time step,
the possible actions are to move to the surface or to move
to the selected maximum profiling depth. In other words, if
the float is at the surface it can either stay at the surface or
move to the profiling depth and if the float is at the profil-
ing depth it can remain there or return to the surface. If the
float stays at a depth, the duration is equivalent to the amount
of time required to move between the surface and the maxi-
mum profiling depth. This means that each time step is equal
in length. One profile is defined to be one trip down and up
again.

The current information that was used to calculate the mo-
tion of the float was determined based on the float’s latitu-
dinal and longitudinal location, its depth, and the time. If
remaining at the same depth, the data from the model cell
at the closest latitude, longitude location and previous hour
index of the beginning of the time step was used. If moving
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Figure 2: Velocities at the surface of location (34.66◦lat,
235.68◦lon) over 72 hours for the planning and natures mod-
els.

through depths, the time to move through the discrete depths
that are available in the ROMS model is calculated such that
a new latitude, longitude location and time is calculated for
the arrival at each depth. It is that data that is used to choose
the cell from which to extract the current information in the
same manner as when staying at the same depth: the closest
latitude, longitude cell is chosen and the time index is for the
previous hour. Currently, no interpolation is being applied
between the grid points, neither in location nor in time.

The algorithm used to search for the control sequence
is an A* algorithm with a zero heuristic estimator. A path
is considered finished once the mission duration has been
reached. Once a path has reached the length of the mission
duration, the score is saved as the best path score and the
queue is flushed to finish all remaining paths while they have
a score that is less than the best finished path so far. If a fin-
ished path has a score that is better than the best path, that
score becomes the best path score. Since the queue is com-
pleted to expand all paths with a lower score after finding
the first complete path, this algorithm is optimal.

The following pseudocode in Algorithm 1 summarizes the
execution of the algorithm.

Experimental Procedure

At each location, the algorithm described above was run us-
ing the planning model with a ratio of wT to wD ranging
from 0.4 to 20.0 in steps of 0.4. The maximum number of
profiles that can be achieved in the chosen mission length
is 10 so there are 20 points at which a decision must be
made and since there are two possible choices to make at
each point, this results in 220 possible control sequences.
Two specific control sequences were also run on the plan-
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Algorithm 1 Batch Planning A* Algorithm
Q ← start location
while Q not empty do

curPath ← lowest objective score path in Q
newPath1 ← curPath + node at surface
newPath2 ← curPath + node at profiling depth
if either newPath duration > mission duration then

bestPath ← curPath
bestScore ← curPath score
break

end if
Q.push(newPath1)
Q.push(newPath2)

end while
while Q not empty do � Flush the rest of Q

curPath ← lowest objective score path in Q
if curPath score > bestScore then

break
end if
newPath1 ← curPath + node at surface
newPath2 ← curPath + node at profiling depth
if either newPath duration > mission duration then

bestPath ← curPath
bestScore ← curPath score

else
Q.push(newPath1)
Q.push(newPath2)

end if
end while

ning model. The first required the float to remain at the sur-
face and the second required the float to continuously pro-
file. Once the optimal control sequences were determined
in the planning model, these sequences are then executed
in the nature model. The surface and continuous profiling
sequences were also run in the nature model. In order to an-
alyze whether planning for the control sequence in the plan-
ning model improves the goal of remaining close to the vir-
tual mooring location, a baseline control sequence needed to
be chosen as a comparison. As our baseline we chose evenly
spaced profiles at each available number of profile choice.
Specifically, since 10 full profiles can fit within the mission
length, therefore the baseline sequences were 1 through 9
evenly spaced profiles. Remaining and the surface (0 pro-
files) and full profiling (10 profiles) were calculated sepa-
rately, as described previously.

Empirical Evaluation in Simulation

Each location and weight combination results in a control
sequence for the float. This means that for each location,
fifty runs with different trade-offs between profiling and re-
maining near the goal location were executed. However, due
to the nature of the values of the ratio of the weights that are
applied to the objective function, many control sequences
are identical among similar weights. Furthermore, due to
the discrete selection of weights, not all numbers of possible
profiles are generated at each location.

As an example, Fig. 3 shows the path that was gener-
ated using the optimal path at location (35.272217◦lat, -
123.734853◦lon) and weight ratio 2.4 in the planning model
and the nature model. The blue path is the path in the plan-
ning model and the red path is in the nature model.

Figure 3: Optimal path at location (35.272217◦lat, -
123.734853◦lon) and weight ratio 2.4 in the planning model
(blue) and the nature model (red).

Figure 4 shows the control sequence for that path (top) as
well as the distance (middle) and sum of distances (bottom)
at each time step. In other words, the middle graph shows the
instantaneous distance from the goal and the bottom graph
shows the instantaneous sum of the distances so far from
the goal. This particular example shows that in the planning
model, the path results in 5 full profiles, ends at a distance of
approximately 15 km from the goal location, and the sum of
the distances from the goal location at each step in the path
ends at almost 160 km. In the nature model, on the other
hand, the distance from the goal at the end of the path is
now approximately 2 km and the sum of the distances is
approximately 17 km.

In this particular example, the execution in the nature
model resulted in an end distance and sum of distances
smaller than those in the planning model. However, this may
not always be the case. It is expected that sometimes the cur-
rents in the nature run will be more favorable and sometimes
they will be less favorable to keeping the vertical profiling
float near its goal location, but that on average the difference
will be close to zero. What this would indicate is that the
planning model is a good predictor for the nature model and
thus provides effective planning information.

Let DEnd be the difference between the distance from the
goal at the end of the mission in the planning run and the na-
ture run in kilometers. A positive difference means that the
distance in the nature run was larger than that of the planning
run.

Let DSum be the difference between the sum of the dis-
tance from the goal at each node in the path in the planning
run and the nature run in kilometers. A positive difference
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Figure 4: The control sequence (top), end distance from the
goal (middle), and sum of distances from the goal (bot-
tom) for the example path at location (35.272217◦lat, -
123.734853◦lon) and weight ratio 2.4 in the planning model
and the nature model.

means that the sum of the distances in the nature run was
larger than that of the planning run.

Avg DEnd Stdev DEnd Avg DSum Stdev DSum

5.63 6.63 54.60 64.47

These results show that the previously held expectation
does not hold for our sample size. This indicates that the
planning model lacks information and is not a perfect pre-
dictor, even on average. This is further confirmed by observ-
ing the correlation coefficient between the zonal currents
in the planning and nature models as well as the merid-
ional currents in the two models. The correlation coeffi-
cient for the two currents in the planning and nature mod-
els at the surface depth and first time index was calcu-
lated using the cells in the search region around the exam-
ple starting location. Specifically, the velocities for all the
surface cells in the search region were placed in the fol-
lowing vectors, Zonalplan, Meridionalplan, Zonalnature,
Meridionalnature according to the velocity direction and
model. Using these vectors, the meridional correlation co-
efficient, ρMeridional and the zonal correlation coefficient,
ρZonal were calculated using the equations

ρMeridional =
Cov(Meridionalplan,Meridionalnature)

σMeridionalplan
σMeridionalnature

ρZonal =
Cov(Zonalplan, Zonalnature)

σZonalplan
σZonalnature

where Cov is the covariance function and σMeridionalplan
,

σMeridionalnature
, σZonalplan

, and σZonalnature
are the stan-

dard deviations of the referenced vector. These coefficients
are shown in the table below.

Zonal Correlation Coeff Meridonal Correlation Coeff
0.1881 .4390

Those small, positive correlation coefficients substantiate
the claim that the planning model provides some predictive
knowledge, but it far from a perfect predictor for the nature
model.

The following graph, Fig. 5, shows the results for all of the
weights at the same location used in the previous example:
(35.272217◦lat, -123.734853◦lon). To properly convey the
results in terms of the objective function, it would be best to
show the distance from the goal and use the time since the
float was at a particular depth. However, this time value is
difficult to conceptualize in a concrete manner, and since it
is a proxy for the number of profiles that are achieved, it was
decided to display the results in terms of the number of pro-
files instead of the time term in the the objective function.
The open circles are the results in the planning model and
are labeled by the weighting ratio wT /wD that resulted in
that result. The open squares show the results of remaining
at the surface or purely profiling in the planning model. The
closed circles are the results of using the control sequences
generated in the planning model in the nature model and are
also labeled with the weighting ratio that was used in plan-
ning the sequence. The closed squares show the results of
the reference control sequence of evenly spaced profiles in
the nature model.

This particular example demonstrates how the span and
discrete selection of the weighting ratio does not result in
all possible number of profiles and that multiple weighting
ratios result in the same control sequence. This graph also
shows that for this location, for all weights the distance in
the nature model was greater than that in the planning model
and that the baseline control sequence always did worse than
the planned sequence in the nature model.

Let DRefEnd be the difference between the distance from
the goal at the end of the mission in the nature model with
the reference control sequence and the planned control se-
quence. A positive difference means that the distance using
the reference control sequence was larger than that of the
planned sequence.

Let DRefSum be the difference between the sum of the
distance from the goal at each node in the path in the nature
model with the reference control sequence and the planned
control sequence. A positive difference means that the dis-
tance using the reference control sequence was larger than
that of the planned sequence.

The following tables, Table 4 and Table 5, summarize the
results in terms of DRefEnd and DRefSum over all loca-
tions and weighting ratios. Paths from control sequences that
resulted in the same number of profiles were compared to
each other. Since not all weighting ratios achieve all possi-
ble number of profiles, there are a different number of paths
that are compared for the different profile numbers. The col-
umn headed “Num” shows this number. What these metrics
demonstrate are whether, when there is flexibility as to when
the float will profile, planning for the timing of the profiles
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Figure 5: Distance from the goal location, sum of dis-
tance from the goal location, and number of profiles
for each weighting ratio at location (35.272217◦lat, -
123.734853◦lon) in the planning and the nature models. The
open circles represent the results in the planning model, the
closed circles represent the results in the nature model, and
the squares represent the results of the baseline sequences.

in an ocean model provides for better virtual mooring than
evenly spacing out the profiles, which is like doing a random
plan.

Profiles Num Avg DRefEnd Stdev DRefEnd

1 7 0.62 8.70
2 4 2.70 3.62
3 7 -5.87 8.62
4 7 2.72 4.63
5 12 3.35 2.44
6 14 3.14 2.51
7 16 1.21 2.13
8 19 0.56 1.60
9 14 -0.41 1.51

Table 4: Results with respect to the baselines over all 9 lo-
cations and 50 weighting ratios comparing paths with the
same number of profiles with respect to the end distance of
the path from the goal location. A positive difference indi-
cates that planning does better than the baseline. Duplicate
paths from different weighting ratios are excluded resulting
in less than 9 x 50 = 450 paths compared.

Profiles Num Avg DRefSum Stdev DRefSum

1 7 13.38 87.88
2 4 31.57 53.71
3 7 -47.83 81.84
4 7 23.50 40.12
5 12 24.27 20.11
6 14 20.12 23.28
7 16 1.67 21.19
8 19 1.57 14.12
9 14 -0.60 8.96

Table 5: Results with respect to the baselines over all 9 loca-
tions and 50 weighting ratios comparing paths with the same
number of profiles with respect to the sum of the distance of
the path from the goal location. A positive difference indi-
cates that planning does better than the baseline. Duplicate
paths from different weighting ratios are excluded resulting
in less than 9 x 50 = 450 paths compared.

The values in these tables indicate that, in general, plan-
ning is beneficial for remaining near the goal location in-
stead of using evenly spaced profiles, as was expected from
the previous analysis of the correlation coefficients. Looking
at the results for 3 and 9 profiles, the distances are negative,
meaning that planning did worse than the baseline for these
two cases. One possibility is that more data needs to be col-
lected, possibly over different locations and different days,
in order to smooth out the noise and get a better representa-
tion of the problem, and that on this particular day, the nature
model had particular characteristics that were not captured
in the planning model for those paths. More data collection
would need to be done to analyze this anomaly further.

Empirical Results in Deployment

A prior version of this software was deployed to con-
trol EM-APEX floats during an April 2015 deployment
in support of an AirSWOT (Jet Propulsion Laboratory a;
b) field experiment in the coast off of Monterey Bay, Califor-
nia. In this field experiment, the goal was to keep EM-APEX
floats near features of interest identified manually by scien-
tists. The overall AirSWOT deployment goals are represen-
tative of the intended scientific use case for these planning
tools.

The overall AirSWOT deployment was to test out an Air-
borne science instrument by providing corroborative data
over interesting science features using in-situ instrumenta-
tion (floats, ships) and remote sensing data (from overflying
spacecraft). The AirSWOT instruments were scheduled to
fly in a coverage pattern over specific areas chosen to over-
lap satellite overflights.

Three EM-APEX floats were to be deployed to be near
satellite overflights and airborne overflights. The float plan-
ning tool was used to evaluate potential deployment loca-
tions by predicting the projected drift path of the floats.

Figure 6 shows the variability of the expected float drift
based on the deployment location. The blue paddle indicates
the start location and the green path shows where the float
was projected to drift over time.
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Figure 6: Expected float drift based on starting location.
The blue paddle indicates the starting location and the green
paths shows the drift.

Sites for each of the three float deployments were
screened for projected stability and hand selected by the ex-
periment team.

Additionally, two of the three EM-APEX floats were al-
lowed to be controlled dynamically from shore by an earlier
version of the float planning software. This prior float plan-
ning software received the satellite phone updated location
each time the target float surfaced. Because of connectiv-
ity issues, the float planning software could not receive this
data rapidly enough to generate a new plan for transmission
to the float during this surface cycle as the float was only on
the surface approximately 30 minutes each cycle. Instead the
planner could only assert a plan with a 1 surface cycle lag.
Therefore the plan communicated to the float to be executed
after surface cycle n was only based on the actual position
from cycle n− 1 plus the projected drift from cycle n− 1 to
cycle n.

The EM-APEX float tracks planned and executed are
shown for floats 6665 and 6667 in Fig. 7. The yellow point
indicates the start location of the float. The actual location of
the float at each surfacing is shown in blue with the arrows
indicating the direction. The red points show where, at each
step of re-planning, the float was predicted to travel. Since
the re-planning was performed two cycles ahead, two surfac-
ing locations are displayed. As shown, the expected control
for neither of the floats performed very well.

This poor performance is not surprising as the current ve-
locities in the ROMS model in the area near both floats was
not very accurate, as can be seen in Fig. 8 and Fig. 9. Be-
cause EM-APEX is designed to get velocity data, it provides
a good opportunity to compare collected data to the ROMS
model. The plots show the zonal and meridional currents that
were used in the ROMS model at each depth traversed in the
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Figure 7: The deployed path and predicted path at each re-
planned step in the deployed path for floats 6665 and 6667.

path as well as the currents that were collected by the float
at those same depths, when that data was available. The ver-
tical lines indicate the boundary between profiles so that the
line indicates when the path is at the surface of the ocean.

The poor correlation between the ROMS and the float col-
lected velocities is most likely due to the front that was com-
ing in during the deployment that even caused the deploy-
ment to be cut short.
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Figure 8: Zonal and Meridional currents found along the
path for float 6665 in the ROMS model and actually experi-
enced in the deployment.
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Figure 9: Zonal and Meridional currents found along the
path for float 6667 in the ROMS model and actually experi-
enced in the deployment.

The results from the April 2015 deployment reinforce the
thesis of this paper. In cases where the current model pro-
vides significant information, the model information can be
used improve to float control. In cases where the model pro-
vides no or bad information performance will be poor and
even in some cases worse than open loop algorithms such as
constant profiling.

Related Work

Path planning for underwater vehicles has been widely stud-
ied; however, there has been relatively little work in float
planning. A notable exception is (Dahl et al. 2011) which
examined the problem of optimizing coverage across the
oceans for a large number of floats, but only considered a
constant depth and a greedy algorithm. Much more research
has been done on glider planning, where there is some con-
trol for choosing a direction of motion, but it is less than the
current velocity. (Thompson et al. 2010) also uses the ROMS
model, but calculates reachability envelopes using wavefront
propagation for glider path planning. The work in (Eriksen
et al. 2001) describes Seaglider, a glider that is manually
controlled from the shore, and is sometimes controlled to
maintain position. No ocean model similar to ROMS was
used. (Alvarez, Garau, and Caiti 2007) also does not use an
ocean model, but instead uses synthetic data with general al-
gorithms to control a set of floats and gliders. Like the work
in this paper, (Rao and Williams 2009) uses an A* graph
search algorithm; however, that work assumes that currents
change slowly with time and compute the path across many
nodes in a single time step, whereas we have many time
steps within a single cell. Instead of trying to remain near
a specific location, (Pereira et al. 2013) focuses on glid-
ers that are attempting to avoid surfacing in dangerous ar-
eas, such as shipping lanes. (Grasso et al. 2010) focuses on

the prediction of the glider location, analyzes the accuracy
of the predictive model, and uses a physics based control
model. Using an asset with more control, (Cashmore et al.
2014) explores the problem of autonomously maneuvering
near a site for inspection using an AUV with probabilis-
tic modeling for uncertainty. Autonomous marine vehicles
have even been proposed to explore Titan, a moon in the
Saturnian system (Pedersen et al. 2015; ESA/NASA 2009;
Stofan et al. 2009).

Future Work

There are future extensions to further validate the model-
based planning approach to sea asset control. Smoothing, or
interpolation, of the grid points in the model could be per-
formed when determining the current velocity at a location
and time. Different types of goal locations could be used,
such as a line, a grid, or even a moving point. Similarly,
the start location could be different from the goal location.
The deployment cost and retrieval cost could be incorpo-
rated into the overall objective function. The search could in-
clude asset selection with an asset cost metric, e.g. the asset
could be changed from a float to a glider or an autonomous
underwater vehicle to add more flexibility to the control se-
quence when such an asset is available. Multiple assets of
different types could be planned for at once with different
goal locations. The algorithm could be changed to be an in-
complete or suboptimal algorithm in order to decrease the
run time. Another scenario could be to re-plan the control
sequence with every surfacing of the asset. This would sim-
ulate a scenario in which the most recent, real information
about the location of the asset could be used to create a bet-
ter control sequence during the execution. Finally, we are
exploring use of these algorithms in experiment design - in
which a range of locations within a specific region of inter-
est are considered and a virtual mooring location is chosen
that is expected to be location maintainable.

Conclusions

Based on these results, it is clear that modeling the ocean
for the purpose of planning trajectories is a very difficult
problem. We saw that the currents in the planning model
and the nature model are weakly, positively correlated, so
although the planning model does not perfectly capture the
ocean movement in the nature model, it is a useful tool that
leads to improved control sequences, as was demonstrated
by the results of the planned control sequences compared
to the baseline sequences as well as the actual deployment
data. This method could also be used to help in the selection
of a virtual mooring site in order to find the location where
it is least likely that the float will be carried away from the
goal location.

Acknowledgments

Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Administra-
tion.

438



References

Alvarez, A.; Garau, B.; and Caiti, A. 2007. Combining
networks of drifting profiling floats and gliders for adaptive
sampling of the ocean. In Robotics and Automation, 2007
IEEE International Conference on, 157–162. IEEE.
Bluefin Robotics Corporation. “Vehicles, Batteries & Ser-
vices”. http://www.bluefinrobotics.com/vehicles-batteries-
and-services/. Accessed February, 2016.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Mag-
azzeni, D. 2014. Auv mission control via temporal plan-
ning. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, 6535–6541. IEEE.
Chao, Y.; Li, Z.; Farrara, J.; McWilliams, J. C.; Bellingham,
J.; Capet, X.; Chavez, F.; Choi, J.-K.; Davis, R.; Doyle, J.;
et al. 2009. Development, implementation and evaluation of
a data-assimilative ocean forecasting system off the central
california coast. Deep Sea Research Part II: Topical Studies
in Oceanography 56(3):100–126.
Dahl, K. P.; Thompson, D. R.; McLaren, D.; Chao, Y.; and
Chien, S. 2011. Current-sensitive path planning for an un-
deractuated free-floating ocean sensorweb. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, 3140–3146. IEEE.
Eriksen, C. C.; Osse, T. J.; Light, R. D.; Wen, T.; Lehman,
T. W.; Sabin, P. L.; Ballard, J. W.; and Chiodi, A. M. 2001.
Seaglider: A long-range autonomous underwater vehicle for
oceanographic research. Oceanic Engineering, IEEE Jour-
nal of 26(4):424–436.
ESA/NASA. 2009.
Farrara, J. D.; Chao, Y.; Zhang, H.; Seegers, B. N.; Teel,
E. N.; Caron, D. A.; Howard, M.; Jones, B. H.; Robertson,
G.; Rogowski, P.; and Terrill, E. 2015. Oceanographic con-
ditions during the orange county sanitation district diversion
experiment as revealed by observations and model simula-
tions. Submitted to Estuarine, Coastal and Shelf Science.
Grasso, R.; Cecchi, D.; Cococcioni, M.; Trees, C.; Rixen,
M.; Alvarez, A.; and Strode, C. 2010. Model based deci-
sion support for underwater glider operation monitoring. In
OCEANS 2010, 1–8. IEEE.
Jet Propulsion Laboratory. “AirSWOT”. https://swot.jpl.
nasa.gov/airswot/. Accessed February, 2016.
Jet Propulsion Laboratory. “Earth Science Airborne
Program”. http://airbornescience.jpl.nasa.gov/instruments/
airswot. Accessed February, 2016.
Kongsberg Mairtime AS. “Autonomous Un-
derwater Vehicles - AUV”. http://www.km.
kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/
D5682F98CBFBC05AC1257497002976E4?
OpenDocument. Accessed February, 2016.
Li, P.; Chao, Y.; Vu, Q.; Li, Z.; Farrara, J.; Zhang, H.; and
Wang, X. 2006. Ourocean-an integrated solution to ocean
monitoring and forecasting. In OCEANS 2006, 1–6. IEEE.
OceanServer Technology, Inc. “Ecomapper AUV”. http:
//www.ysisystems.com/productsdetail.php?EcoMapper-
Autonomous-Underwater-Vehicle-9. Accessed February,
2016.

Pedersen, L.; Smith, T.; Lee, S. Y.; and Cabrol, N. 2015.
Planetary lakelander - a robotic sentinel to monitor remote
lakes. Journal of Field Robotics 32(6):860–879.
Pereira, A. A.; Binney, J.; Hollinger, G. A.; and Sukhatme,
G. S. 2013. Risk-aware path planning for autonomous un-
derwater vehicles using predictive ocean models. Journal of
Field Robotics 30(5):741–762.
Rao, D., and Williams, S. B. 2009. Large-scale path
planning for underwater gliders in ocean currents. In Aus-
tralasian Conference on Robotics and Automation (ACRA),
Sydney. Citeseer.
Sanford, T. B.; Dunlap, J. H.; Carlson, J.; Webb, D. C.; Gir-
ton, J. B.; et al. 2005. Autonomous velocity and density pro-
filer: Em-apex. In Current Measurement Technology, 2005.
Proceedings of the IEEE/OES Eighth Working Conference
on, 152–156. IEEE.
Stofan, E.; Lorenz, R.; Lunine, J.; Aharonson, O.; Bierhaus,
E.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.;
Kirk, R.; Kantsiper, B.; Mahaffy, P.; Newman, C.; Ravine,
M.; Trainer, M.; Waite, H.; and Zarnecki, J. 2009. Titan
mare explorer (TiME): first in situ exploration of an extrater-
restrial sea.
Thompson, D. R.; Chien, S.; Chao, Y.; Li, P.; Cahill, B.;
Levin, J.; Schofield, O.; Balasuriya, A.; Petillo, S.; Arrott,
M.; et al. 2010. Spatiotemporal path planning in strong,
dynamic, uncertain currents. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, 4778–
4783. IEEE.
Woods Hole Oceanographic Institution. “Floats & Drifters”.
https://www.whoi.edu/main/instruments/floats-drifters. Ac-
cessed February, 2016.
YSI Systems. “IVER Autonomous Underwater Vehicle”.
http://www.iver-auv.com. Accessed February, 2016.

439


