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Abstract

When facing real world planning problems, standard planners
are often inadequate and enhancement of the current tech-
niques are required. In this paper we present the challenges
that we have faced in solving the Unit Commitment (UC) prob-
lem, a well-known problem in the electrical power industry for
which current best methods are based on Mixed Integer Pro-
gramming (MIP). Typical UC instances involve hundreds or
even thousands of generating units, pushing the scalability of
state of the art planners beyond their limits. Furthermore, UC
is characterised by state-dependent action costs, a feature that
not many domain independent planners can efficiently handle.
In this paper we focus on the challenge of making domain-
independent planning competitive with the MIP method on
realistic-sized UC instances. We present the results of our
investigation into modelling the UC problem as a temporal
planning problem, and show how we scaled up from handling
fewer than 10 generating units to more than 400, obtaining
solutions almost as high quality as those generated by MIP.
We conclude by discussing future directions for temporal plan-
ning in this domain, that lie beyond what can be modelled and
solved using MIP methods.

1 Introduction

In power systems engineering, the Unit Commitment (UC)
is the problem of finding which generating units to switch
on or off and when, so that a forecasted demand is satisfied.
Once a set of committed units is given, the sub-problem
of determining the output of each unit is called Economic
Dispatch (ED) and it is solved alongside the UC problem in
order to minimise the total cost of production of the electricity
(Wood, Wollenberg, and Sheblé 2013).

The UC problem has attracted the interest of both academia
and industry over many decades, since it has a significant
economic impact when managing a power system. The cur-
rent state-of-the-art techniques for solving Unit Commitment
are based on Mixed Integer Programming methods (MIP),
for which efficient commercial solvers are available. MIP is
restricted to linear constraint modelling (although a quadratic
objective function can be used), which limits the scope for
extending MIP methods to consider richer models of power
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system problems. The interest in studying the UC problem
has recently been growing because of a global focus on car-
bon emissions and the potential for increasing the role of
renewable resources in the production of electricity. The effi-
cient use of wind farms and PV installations, and the role of
storage which introduces non-linear constraints, poses many
new challenges for modelling and solving problems like Unit
Commitment. This motivates an interest in finding alterna-
tive techniques that can model more complex constraints and
scale up to consider more complex scenarios.

As argued by Campion et al. (2013), AI Planning presents
some potential benefits over the MIP formulation. A first
advantage of AI Planning over MIP is in the modelling
of the problem. A MIP formulation relies on a fixed dis-
cretisation of the timeline and the duplication of all the
variables for each time-point considered. AI Planning of-
fers a more compact model, expressed in terms of ap-
plicable actions using one of the available planning lan-
guages. In particular we consider the numeric and tempo-
ral extensions of PDDL, such as PDDL2.1 (Fox and Long
2003) or PDDL+ (Fox and Long 2006), for which a num-
ber of domain-independent planners are available. More-
over, because of the inherent expressive power of these
languages, non-linear constraints can be captured, and re-
cent planning methods have proven capable of solving prob-
lems with such constraints (Bajada, Fox, and Long 2015;
Cashmore et al. 2016). Furthermore, temporal planners such
as POPF (Coles et al. 2010) and UPMurphi (Della Penna et al.
2009) treat time as continuous, and handle time-dependent
changes. The treatment of time as a continuous variable
avoids the need for a fixed discretisation, which can lead
to a more accurate calculation and optimisation of the ob-
jective function. There is therefore reason to believe that
temporal planning might offer a method that can surpass MIP
when it comes to extending beyond the current linear models
of problems like UC.

An advantage that MIP has over any kind of planning
approach is scalability. While planning uses weak heuristic
methods (distance to goal) based on the delete relaxation
(Hoffmann and Nebel 2001), the MIP solution approach is
branch and bound, using a linear relaxation to guide the
search. While a uniform discretisation of time is used, which
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blows up the number of variables required when planning the
day ahead, current MIP solvers can handle thousands of vari-
ables so it scales well. By contrast, all performant planning
methods use grounding, leading to scaling problems when-
ever there are more than a handful of objects of any given
type, or more than a very small number of parameters in any
action schema. The delete relaxation is very general, and its
effectiveness depends on the structure of the domain (Hoff-
mann 2005). If we apply IPC versions of temporal planners to
UC instances that MIP finds trivial, we cannot scale beyond
managing two or three generators (which is useless consid-
ering that there are hundreds of generators in any realistic
instance).

However, if we want to consider planning as a practical
method to solve problems that extend beyond MIP modelling
capabilities, we must first achieve competitiveness on the
linear problems. In this paper we address the challenge of
making temporal planning competitive with MIP in mod-
elling and solving the traditional day-ahead UC problem. We
underline the challenges that standard versions of planners
(current IPC versions) face, and explain our approaches to
overcoming these challenges.

In the first part of the paper we provide the reader with
the formulation of the UC problem and the relevant literature.
Then we explain the challenges of this problem from the
perspective of AI Planning. The remainder of the paper is
dedicated to describing the approaches we have taken to solv-
ing the UC as a planning problem, and an evaluation of each
approach considered. We present experimental results that
show that we have indeed achieved competitive performance
on realistic UC instances with linear constraints. The paper
concludes with a discussion of the future directions for this
work, which concern extending the planning models beyond
what can be captured by MIP methods.

2 Formulation of the Problem

We provide here the formalisation of the UC problem.
We consider a set of n units U = {u1, ..., un}. Each unit

is characterised by the following set of constant parameters:

• Gmax ∈ (0,+∞): maximum stable generation level that
the unit cannot exceed (MW);

• Gmin ∈ [0, Gmax): minimum stable generation level, as
well as power level at the startup and shutdown of the unit
(MW);

• T on ∈ (0,+∞): minimum uptime of the unit (h);

• T off ∈ (0,+∞): minimum downtime of the unit (h);

• R−/+ ∈ (0,+∞): maximum ramp down/up rate (MW/h);

In addition, each unit is characterised by a set of variables
that change over time:

• σ ∈ {on, off}: binary variable that indicates if a unit is
on or off;

• τ ∈ (0,+∞): time from which the unit has changed status
(h);

• p ∈ [Gmin, Gmax]: amount of power that a unit is gener-
ating (MW);

We consider an interval of time T = [tmin, tmax) and a
demand profile D(t) : T → [0,+∞) (in MW). The UC is the
problem of finding the output of each unit such that the total
output is always greater than the demand, while minimising
the total cost. Therefore, using the above formulation, the
decision variables of the problem are σi and pi.

The cost of a unit is defined as the sum of a startup cost
and a production cost. The startup cost Cstartup depends
in general on the time at which the unit is off, however in
the remaining of the paper we assume it to be constant. The
production cost Cprod at time t depends on the power that the
unit is generating, and it is often approximated as a quadratic
function:

Cprod(p) = Cnoload + Crate · p+ Cquad · p2, (1)

where Cnoload, Crate and Cquad are constant coefficients.
The total cost of production of a unit for the period of time T
is therefore:

Cprod =

∫ tmax

tmin

(
Cnoload + Crate · p+ Cquad · p2

)
dt (2)

The total cost is the sum of the cost of each unit.
The combinatorial nature of the problem and the lack of

availability of a precise forecast of the demand justify the
discretisation of the time.

2.1 Related Work

The UC problem in its simplified version with discretised
time has been studied since 1960 (Baldwin, Dale, and Dit-
trich 1959). First popular techniques are based on dynamic
programming (Lowery 1966; Le et al. 1983), which can-
not scale-up due to memory issues, and Lagrangian relax-
ation (Muckstadt and Koenig 1977; Merlin and Sandrin 1983;
Bertsekas et al. 1983).

Alternative approaches taken from artificial intelligence
have recently been developed. Tabu search with embedded
priority lists is presented by Mori and Matsuzaki (2001),
although the ramp constraint cannot be represented. A cou-
pling between simulated annealing and dynamic economic
dispatch is presented by Simopoulos, Kavatza, and Vournas
(2006), solving problem instances up to 100 units. Simu-
lated annealing algorithms, however, require fine parameter-
tuning to achieve competitive performance. Genetic Algo-
rithms (Kazarlis, Bakirtzis, and Petridis 1996; Damousis,
Bakirtzis, and Dokopoulos 2004) and Particle Swarm Opti-
misation (Gaing 2003; Pappala, Erlich, and Member 2010)
have also been developed to solve the UC.

In recent years the power engineering community has been
shifting towards the use of Mixed Integer Programming (MIP)
solvers, relying on Branch and Bounds methods. In industry,
the MIP formulation has been recently applied by a number of
System Operators (SOs) (O’Neill 2011; Hui, Yu, and Moorty
2009). In academic research, tighter or more compact models
are studied (Rajan and Takriti 2005; Carrión and Arroyo
2006; Ostrowski, Anjos, and Vannelli 2012; Morales-España,
Latorre, and Ramos 2013).
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3 Challenges for Planning

The UC problem, as formulated in the previous section, can
be seen as a numeric-temporal planning problem, where tem-
poral constraints are given by the minimum uptime and down-
time periods of each unit. The problem is characterised by a
fixed time horizon. In this, the UC problem is similar to the
AC voltage control problem (Piacentini et al. 2015), where
AI planning was adopted in distribution networks to maintain
the voltage within given boundaries. In both problems there
are numeric exogenous events that determine the values of
some numeric fluents (uncontrollable numeric fluents), and
there is a mixed metric constraint. According to the definition
presented by Piacentini et al. (2015), this is a comparison
of numeric values in which both controllable and uncontrol-
lable numeric fluents appear. Controllable numeric fluents
are fluents modified only by the effects of actions. In the
UC problem the uncontrollable numeric fluents represented
the way that consumer demand changes over time, while
the requirement that total supply is always greater than the
demand, is a mixed metric constraint. Since this constraint
need to be satisfied for the entire duration of the plan, the UC
problem can be classified as a bounded trajectory manage-
ment problem. However, the UC differs from the AC voltage
control problem because we are not only interested in the
feasibility of the solution, which can be trivially achieved by
switching on all the units, but in getting as close as possible
to the quality of MIP solutions.

In contrast to the standard IPC domains, which have uni-
form action costs, the UC problem is characterised by state-
dependent action costs. Although it is straightforward to
model them in PDDL2.1, since the metric is an expression
of numeric fluents, and numeric effects can be defined in
terms of complex relations, these kinds of problems have
received little attention in the planning community. A recent
work by Ivankovic et al. (2014), considering global numerical
state constraints, started to deal with state-dependent action
costs. The UC problem can be expressed according to the
formalism presented in that paper: the status of each unit σi is
represented by the state variables, or primary variables, while
the power pi can be seen as a secondary variable, which
do not have to have finite domains. The satisfaction of the
demand is an invariant constraint Cinv. However, their ap-
proach for state-dependent action costs showed that in the
cases examined, blind search was more effective than their
heuristic search, concluding that more work needs to be done
to tackle these problems in a domain-independent way.

The use of planning for the generation of electrical power,
or to supply a deterministic demand, has already been studied.
In the work by Fox, Long, and Magazzeni (2012), a forward
search planner is used to determine which battery should be
used to satisfy a given load profile, while maximising the
expected life-time of the batteries. This problem, however,
produces a sequential plan where batteries are connected and
disconnected, while the UC problem requires concurrent ac-
tions and co-ordination between different generating units. A
case where concurrent actions are required is the solar array
planning problem (Reddy et al. 2011), where the model-based
planning system EUROPA2 is used to determine the orienta-
tion of the eight solar arrays on board the International Space

(:durative-action serveDemand

:parameters ()

:duration (>= ?duration 0)

:condition (and

(at start (startPrecondition))

(at end (endPrecondition))

(over all (>= (supply) (demand))))

:effect (and

(at end (served))))

Figure 1: serveDemand action in PDDL.

(:durative-action switchOn

:parameters (?u - unit)

:duration (>= ?duration (timeSwitchOn ?u))

:condition (and (at start (off ?u))

(at start (can-on ?u)))

:effect (and (at start (not (off ?u)))

(at end (can-off ?u)) (at start (can-ramp ?u))

(at start (on ?u)) (at start (not (can-on ?u)))

(at start (increase (output ?u) (generationMin ?u)))

(at start (increase (supply) (generationMin ?u)))

(at start (increase (totalCost) (costStartup ?u)))))

Figure 2: Switch-on action in PDDL.

Station. Our problem is more complicated in terms of the
number of objects present in the model, typically hundreds of
units, making the scalability an important issue to overcome.

4 Initial PDDL+ Model

In this section we present a PDDL+ model for the UC problem.
This is an adaptation of the PDDL2.1 model presented in
(Campion et al. 2013), which we summarise here, together
with the modification that we have made.

4.1 Model

To enforce the constraint of the satisfaction of the demand
throughout the entire period up to the horizon of the prob-
lem, an envelope action serveDemand is modelled. This
action has a non-zero duration, which can be determined by
the planner. Its application can start as soon as the dummy
proposition startPrecondition becomes true, and end
after the point at which endPrecondition becomes true.
The management of these propositions is done using timed
initial literals to ensure that a serveDemand envelope covers
the whole period of activity of the plan. The action has an
over all condition requiring that supply is always greater
than demand, and an effect that is specified as a dummy goal
condition of the problem, as shown in Figure 1. The actions
SwitchOn and SwitchOff can be modelled capturing the
minimum on/off time of the unit being switched, and the
starting and ending level constraints (Figure 2). The change
in the power produced by a unit can be modelled as a durative
action with a continuous linear effect on the output of the
unit. In this way the ramp-constraint is implicitly maintained,
imposing an adequate change rate.

By contrast with the PDDL2.1 model in (Campion et al.
2013), the generating cost of the power is calculated through
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(:process calculatingRateCost

:parameters (?u - unit)

:precondition (on ?u)

:effect (increase (totalCost)

(* #t (+ (costNoLoad ?u)

(* (output ?u) (rateCost ?u))))))

Figure 3: calculateCost process in PDDL.

a process. In PDDL+, processes are a way to express continu-
ous numeric changes that are not triggered by actions, but by
conditions that holds a state. Figure 3 shows the process that
calculates the generating cost, which is activated when a unit
is switched on. In this model we consider a linear cost of pro-
duction, with respect to the power generated, and a quadratic
function with respect to time. The function (costNoLoad
?u) is the PDDL rendering of the constant coefficient Cnoload

in Equation 1.

4.2 Initial Results

We first try to solve the continuous problem modelled with
the PDDL+ formulation with off-the-shelf planners. Few plan-
ners can support the features of this domain (presence of
exogenous numeric events, and continuous non-linear ef-
fects). Only UPMurphi (Della Penna et al. 2009) can handle
all of the required features, so we adopted it to test the model.
UPMurphi is a forward search temporal planner, which ex-
ploits model checking algorithms to deal with huge state
spaces. It handles continuous processes using the discretise
and validate approach: given an initial discretisation, the plan-
ner searches for a plan, which is then validated against the
original continuous model, using VAL (Howey, Long, and
Fox 2004). If the plan is not valid, the process iterates with a
finer discretisation. Since UPMurphi cannot support metric
minimisation, we adopt, in addition, an iterative approach
to lower the total cost. This is added to the domain file, by
adding a further over all condition to the serveDemand
action on the total cost. This is not shown in the serveLoad
action because, if we have a planner that takes into account
the metric, we do not need that condition. However, it can be
modelled as the invariant (over all (<= (totalCost)
(totalCostLimit)) for some limit that we define. In the
following we present the plan produced on a test instance of
this problem and some experiments on the scalability of our
approach.

Test Case. As a test case we use a problem with 2 units
and a demand profile with a fixed time discretisation of 1
hour. In this test case, the demand profile contains 6 time
points. We run UPMurphi imposing a memory limit of 1 GB,
a minimum time-step of half an hour and we impose that
the make-span of the plan cannot exceed 6. We validate the
plans generated by UPMurphi with VAL2.8, the automatic
validation tool for PDDL (Howey, Long, and Fox 2004). We
ran all experiments on 2.8Ghz Intel x86-64 processors, with
total RAM of 32GB.

In this test case, only 4 valid plans are generated by UP-
Murphi, and optimality is not reached. The first 3 plans are
generated in about 110 seconds, evaluating 4 million states,

u Gmin

(MW)
Gmax

(MW)
T off/on

(h)
R

(MW/h)
Cstartup

($)
Cnoload

($/h)
Crate

($/MWh)
Cquad

($/MW2h)
1 150 455 8 255 4500 1000 16.19 0.00048
2 150 455 8 255 5000 970 17.26 0.00031
3 20 130 5 50 550 700 16.60 0.00200
4 20 130 5 50 560 680 16.50 0.00211
5 25 162 6 60 900 450 19.70 0.00398
6 20 80 3 60 170 370 22.26 0.00712
7 25 85 3 60 260 480 27.74 0.00079
8 10 55 1 135 30 660 25.92 0.00413

Table 1: Units input data.
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Figure 4: Typical demand profile.

while the last plan is generated in 260 seconds evaluating
9 million states. A fifth plan is generated but the result was
invalid, due to the coarse minimum discretisation that we set.
Using a finer discretisation UPMurphi runs out of memory
and does not produce any plan.

Scalability. Starting from the test case problem, we pro-
duce a set problem instances with increasing numbers of
units and numbers of time-points. The specification of the
generators are taken from the paper (Morales-España, La-
torre, and Ramos 2013) and are summarised in Table 1. For
these experiments we consider only a linear cost, therefore
the quadratic cost Cquad is neglected. The demand profile
follows a typical distribution, shown in Figure 4.

We generated 49 problems with from 2 to 8 generators and
a demand profile composed by 6, 9, 12, 18, 21, and 24 time-
points. We solve these problems with UPMurphi, imposing a
memory limit of 1 GB. Among all the 49 problems only the
two smallest ones are solved: the ones with 2 generators and
6 and 9 time-points. For all the other problems UPMurphi
runs out of memory.

The main limitation of this approach is that the standard
version of UPMurphi performs an uninformed search algo-
rithm (breadth first search). Moreover, the search spends a
lot of time trying to find the exact output of each unit, rather
than focusing on the configuration (on/off) of the units.

5 Model with the Decomposition

In order to provide the search with a heuristic guidance and
to alleviate the search problem, we recognise that we can
decompose the problem into two interleaving sub-problems:
a combinatorial search problem, given by the possible config-
urations of on/off units, and a numeric optimisation problem,
the Economic Dispatch (ED) problem, which determines
the output of each generator such that the demand is satis-
fied at the minimum cost. It should be noted that once the
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status = on
time <
minOn

status = on
time ≥
minOn

status =
off

time <
minOff

status =
off

time ≥
minOff

advance time
advance time advance time

switch off

advance time
advance timeadvance time

switch on

Figure 5: FSM for the status of a unit.

status of each unit is determined, the optimal total cost is
unequivocally determined because of the monotonicity of the
cost function. With this approach we abandon the continuous
model of time, and instead adopt a discretisation of time,
similar to a more traditional MIP approach.

5.1 Search Problem

The variables of the search problem represent only the
(on/off) status of each generator and the time. Because the nu-
merical optimisation problem refers to an extended period of
time, in order to unequivocally determine the numeric optimi-
sation problem, we need to keep track of any changes in the
status of the units that happened in the previous time-points.
A state in the search space consists of the current time-point,
t∗, an array Σ containing the status σ of each unit in each
time point preceding t∗ and an array T of the status τ of each
unit at the current time:

s =< t∗,Σ,T > . (3)

Following the discretised approach of UPMurphi we need an
action that represents the passage of time. This action can be
applied only if the numerical optimisation problem associated
with the state has a feasible solution, meaning that the demand
can be satisfied until the current time-point. The effect of
this action is to update the time to a successive time point,
consequently changing the demand and the τi,t∗ of each
unit. We use a variable discretisation approach, where the
passage of time action is parametrised and allows the passage
of several time-steps at once. This creates more applicable
actions, but it adds the interesting possibility of reaching the
end of the time horizon with fewer actions.

An action is needed to switch on a unit at time t∗. This
action can be performed on a unit ui if the unit has been off
for a period of time longer that the minimum time period
T off,i. The effect of such an action is to change the status of
the unit from off to on and reset the variable τi. Analogously
the action for switching off a unit can be defined.

The finite state machine representing the change of the
status of a unit is represented in Figure 5.

The initial state of a UC problem is determined by the
initial σi,t0 and τi,t0 of each unit at the first time-point con-
sidered, while the goal state is the state where the current
time is the last time-point and the configuration of the units
is such that the numeric optimisation problem has a feasible
solution.

Model 1 Economic Dispatch QP Model.
Inputs:

U : units; T : time-points; D(T ): demand profile; t∗: current time.
Variables:

pi,t power generated by unit i at time t

Minimise: ∑
t<t∗

∑n
i=1

(
Crate,ipi,t + Cquad,ip

2
i,t

)
(M1.1)

Subject to:∑n
i=1 pi,t ≥ Dt ∀t < t∗ (M1.2)

Gmin,iσi,t ≤ pi,t ≤ Gmax,iσi,t ∀i = 1, ..., n; ∀t < t∗ (M1.3)
pi,t − pi,t−1 ≤ −Riσi,tσi,t−1 + Pmin,i(σi,t − σi,t−1)

∀i = 1, ..., n; ∀t < t∗ (M1.4)
pi,t − pi,t−1 ≥ Riσi,tσi,t−1 + Pmin,i(σi,t − σi,t−1)

∀i = 1, ..., n; ∀t < t∗ (M1.5)

5.2 Numeric Problem

Each state of the search problem is associated with a numeri-
cal optimisation problem, the ED problem, that determines
the output of each generator at the minimum cost. Assuming
that the cost of production is quadratic, the problem can be
formulated as quadratic programming (QP) model (Model
1). It should be noted that in this model the quantities σi,t

are not variables, but are input parameters. The objective
function (M1.1) accounts only for the rate and the quadratic
costs (Crate,i and Cquad,i respectively). Constraint (M1.2))
is the demand constraint, which states that the total output
of the units must satisfy the total demand. Constraint (M1.3)
models the generation limits of units, imposing 0 output for
the offline units and an output between Gmin and Gmax for
the online units. Constraints (M1.4) and (M1.5) capture the
ramping limitation and the startup and shutdown capabilities.

5.3 Heuristic and Cost

Each state s that admits a solution of the ED problem is
associated with a total cost:

c (s) =
n∑

i=1

t∗∑
t=t0

(Cnoload,i + Crate,i · pi,t) ·Δt+

n∑
i=1

t∗∑
t=t0+Δt

Cstartup,iσi,t(1− σi,t−1),

(4)

where Δt is the discretisation step.
It should be noted that using our formulation of the prob-

lem, the cost does not depend on the path to reach the state,
but it is completely determined by the state. The problem
also requires a minimum cost goal state to be found.

In order to estimate the value of a state we solve a re-
laxed version of the ED model for the time-points t > t∗ by
replacing the constraints (M1.3-5) with:

0 ≤ pi,t ≤ Gmax,i ∀t ≥ t∗ (5)

and using a linear cost, neglecting the Cquad coefficient.
The relaxed problem is solved and the values of pi,t are

used to calculate the estimated cost.

c (s) =
∑
t>t∗

(Cnoload,i + Crate,i · pi,t) ·Δt (6)
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A second case arises when the configuration of the units
does not provide a feasible solution. In this case we can
still associate a cost and a heuristic value to those states,
solving the ED problem assuming that also the units that are
switched off before time t∗ can produce power. For these
units we apply the relaxed constraints, while the units that are
on in the state that we are evaluating are subjects to the full
set of constraints (M1.2-5). If the maximum demand does
not exceed the maximum capacity of the system, this relaxed
version of the problem has a feasible solution, since the total
power generated is subject to a lower bound only. The power
of the committed units contributes to the cost of the state,
as indicated in Eq. (4), while the power of the uncommitted
units contributes to the heuristic value as stated in Eq. (6).

5.4 Implementation Details

For the model presented in this section we use UPMurphi,
due to the easiness of implementing a customised heuristic
function.

An external procedure is necessary to solve the ED prob-
lem associated to each state that gives the cost of a state and
the heuristic evaluation of the distance from the state to the
goal. This external procedure is implemented as an external
function that is called after the application of every action.

The external procedure takes as input the values of t∗ and
σi,t and τi,t∗ and it builds a QP model to solve the ED. In
order to avoid multiple calls to the external procedure we
build a unique model for both the ED problem until time
t∗ and the calculation of the heuristic (Model 2). For this
we define a set X of pairs of indexes (i, t), for which we
calculate the ED in a relaxed way (we call them relaxed
units). At the beginning the X is initialised with (i, t) such
that i = 1, ...n and t > t∗.

The model is then solved with the CPLEX software and
the information on the cost and the heuristic are passed back
to the planner. If the solver does not find a solution to the
problem, a new model is created updating the set X . The
new set is obtained by adding the indices (i, t∗) such that
σi,t∗ = 0. If the solver does not produce a solution, than the
heuristic value of the state is assigned to ∞.

The cost of a state and the heuristic are combined in a
weighted evaluation function used in the weighted A* algo-
rithm:

f(s) = w · c(s) + h(s) (7)
The weight w can be specified as input of the planner and
it represents a trade off between speed of the planner and
quality of the solution.

5.5 Results using the Decomposition Model

In this section we show the results obtained with this ap-
proach. We conduct two sets of experiments. The first one
is composed by the same problems described in Section 4.2,
while in the second set we consider larger problem instances.

Smaller Set. In this set of experiments we take the input
data from the previous section, hence we consider a linear
cost of production. However, the objective functions in the
two approaches are not directly comparable, due to the dis-
cretisation adopted with the second approach. We configure

Model 2 Cost and heuristic calculation.
Inputs:

U : units; T : time-points; D(T ): demand profile; X : relaxed units
Variables:

pi,t power generated by unit i at time t

Minimise:∑
t∈T

∑n
i=1 Crate,ipi,t +

∑
(i,t)/∈X Cquad,ip

2
i,t (M2.1)

Subject to:∑n
i=1 pi,t ≥ Dt ∀t ∈ T (M2.2)

Gmin,iσi,t ≤ pi,t ≤ Gmax,iσi,t ∀(i, t) /∈ X (M2.3)
0 ≤ pi,t ≤ Gmax,i ∀(i, t) ∈ X (M2.4)
pi,t−1 − pi,t ≤ −Riσi,tσi,t−1 + Pmin,i(σi,t − σi,t−1)

∀(i, t) /∈ X (M2.5)
pi,t−1 − pi,t ≥ Riσi,tσi,t−1 + Pmin,i(σi,t − σi,t−1)

∀(i, t) /∈ X (M2.6)

������unit
time

6 9 12 15 18 21 24

2 0.43 0.44 0.47 0.49 0.53 0.55 0.58
3 0.42 0.46 0.50 0.52 0.57 0.61 0.67
4 0.42 0.48 0.53 0.59 0.67 0.49 0.84
5 0.44 0.52 0.60 0.64 0.79 0.89 1.00
6 0.44 0.54 0.63 0.73 0.89 1.00 1.20
7 0.45 0.75 1.00 1.10 1.40 1.60 1.90
8 0.42 0.54 1.10 1.30 - - -

Table 2: Time (sec.) spent to solve each instance of the smaller
set using the model with decomposition.

UPMurphi to use a weight w = 1 and we impose a memory
limit of 1 GB and a time limit of 30 minutes. Among the 49
problems, 46 problems are solved, as shown in Table 2.

Larger Set. For this set of experiments we generate prob-
lems duplicating all the units in Table 1 and we consider 8,
16, 24, 32, 40, 48, 96, 192, and 400 units. The load profile of
24 hours is discretised with a step of half an hour. The cost is
assumed to be quadratic.

In order to make the search problem more manageable, we
prune the search space in a domain specific way. Since the
biggest units (units 1 and 2) are running in the background
and are never switched off, we can prune any states in which
they are not both running. Furthermore, in real world situ-
ations, generating units are infrequently switched on or off.
Therefore we impose a constraint that each unit cannot be
switched on or off more than 4 times in a day.

We run UPMurphi with a memory limit of 1 GB and a
time limit of 2 hours. This reflects the available time to solve
the day-ahead unit commitment problem in industry.

For each problem we run UPMurphi with a different
weight in the evaluation function. We run the experiments
using a fixed and a variable discretisation. In the first case
we use a discretisation of 0.5 hour, while in the second case
we use time-steps of 0.5, 1, 2 and 4 hours. In Table 3 we
report for each problem the total cost and the number of
states evaluated varying the weight of the evaluation function.
As expected, for each problem, as we increase the weight
in the evaluation function, the cost function of the solution
decreases, while the number of states evaluated increases.
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From this table we can see the impact of variable discreti-
sation. In general, a fixed discretisation produces a higher
quality solution, but at the price of a larger number of states
evaluated. In some cases the variable discretisation can find
solutions for higher weights, finding better quality solutions.
In the 192 units problem, the fixed discretisation cannot find
any solution. The problem with 400 units is not solved with
any weight, with neither variable nor fixed discretisation.

6 Exploiting the Symmetry

In realistic problems, it can be the case that different units
have similar characteristics and can be treated as equivalent
to one another. We can exploit the symmetry between the
units to reduce the number of reachable states. Given two
units, ui and uj , we define ui ≡ uj (ui is equivalent or
symmetric to uj) iff Cstartup,i = Cstartup,j ∧ Cnoload,i =
Cnoload,j ∧ Crate,i = Crate,j ∧ Cquad,i = Cquad,j ∧
Gmax,i = Gmax,j ∧Gmin,i = Gmin,j ∧R−/+,i = R−/+,j .

We can partition the set U in m subsets Gi = {ui1 , ..., uio}
such that ∀j, k uj ≡ uk. In other words, the subset Gi

(ith symmetry group) is composed by all equivalent units.
This partition is static. At a given time-point, we can par-
tition Gi into two subsets: Gon,i = {u|u ∈ Gi ∧ σ = on}
and Goff,i = {u|u ∈ Gi ∧ σ = off}, containing respec-
tively the units that are on and off. Furthermore, we define
the sets Gunlock−on,i = {u|u ∈ Gi ∧ σ = on ∧ τ ≥ T on}
and Gunlock−off,i =

{
u|u ∈ Gi ∧ σ = off ∧ τ ≥ T off

}
,

which are subsets of Gon,i and Goff,i respectively. Using
this representation, we express the actions in terms of these
symmetry groups rather than in terms of units: instead of
switching on (or off) a unit, we decrease the cardinality of a
Gunlock−on (or Gunlock−off ) group and increase the cardinal-
ity of the respective Goff (or Gon). This action automatically
selects a unit from these groups to be switched on (or off).
In this way the information of every unit is still known and
the same ED model can be applied to the state. When the
time is passing the τi of each unit is updated and if a unit
has τi > T on (or τi > T off ), than the unit be inserted in the
respective Gunlock−on (Gunlock−off ) group.

Using this representation, the applicable actions from a
state are reduced. If we assume that we have m symmetry
groups with each group containing l units (n = m · l), at
a fixed time point, the number of distinct states (without
considering any further constraint) is (l+1)m (= (l+1)

n
l ≤

2n for n > 1 and l ≥ 1).

Gmin

Gmax

t0 t1 t2

R+/-

d
e
m

a
n
d

time
demand u1 u2

Figure 6: Example of a state not considered in the group
representation due to the ramp constraint.

An issue arising with this formulation is that the presence
of the ramp constraints (M1.4-5) might introduce a break in
the symmetry that we are not considering and could lead to
the exclusion of states that should be taken into account. An
example of symmetry breaking is shown in Figure 6. In this
example the units u1 and u2 belong to the same symmetry
group. If there is a sharp decrease of the demand (in the figure
at time t2), we cannot indifferently switch off u1 or u2, since
u1 must reach the minimum stable generation level Gmin

before it can be switched off, but it is not possible because
of the maximum ramp down rate R+/−. This case however,
should only manifest when there are sharp changes in con-
sumer demand, which does not happen in reality because the
demand curve is an average over the entire power system and
tends to be smooth.

6.1 Results

To test the model with symmetry we take the larger set of
problems described in the previous section and we run UP-
Murphi with the same memory and time limits, varying the
weight of the evaluation function and using the variable dis-
cretisation. Each problem contains 8 symmetry groups. The
result from this set of experiments is that, in every problem
considered, the symmetry model finds exactly the same solu-
tions as found using the model without symmetry, but more
efficiently and by exploring fewer states (or the same number
of states, such as in case of the 8 units problem, where each
group is composed of only one unit). Moreover, with the
symmetry model, some problems (16, 24, 32, 40, 48, and
192 units problems) are solved with an higher value of the
weight, finding solution with better qualities, and the previ-
ously unsolved 400 units problem is solved when symmetry
is exploited.

Comparison with MIP. We now compare the results ob-
tained with planning using the decomposed model with sym-
metry, with the solution obtained with a MIP approach. The
MIP model is taken from the paper (Morales-España, Latorre,
and Ramos 2013) and adapted to consider the same quadratic
objective function and the same constraints. The MIP model
is solved using the CPLEX solver, using a memory limit of
4GB and a time limit of 2 hours.

For the planning approach we want also to generate the
best solution that can be found before the time limit. Since
UPMurphi is not equipped with an anytime search, we em-
ulate the behaviour of the anytime search using an iterative
approach in which we impose a total limit on the cost given
by the previous solution.

In Table 4 we report the best quality solution for the MIP,
and the planning approach using the fixed weight of (0.92)
and the best weight for each problem, where the best is se-
lected after trying all the values in our range. We do not
report in the table the execution time because in almost all
the cases the MIP and the planning approaches consumed all
the 2 hours time available. Only the case of 8 and 16 units are
solved by MIP optimally in respectively 4 and 840 seconds.
Instead, in Table 5 we report for each problem the quality
of the first solution obtained with planning (with the fixed
weight of 0.92) and the quality obtained by the MIP approach
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Results
weight 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

# u discretisation Cost #states Cost #states Cost #states Cost #states Cost #states Cost #states Cost #states Cost #states Cost #states Cost #states

8

variable 616532 55 616532 55 616532 55 616532 55 616532 55 616532 55 616532 73 601976 64 600083 72 600083 71
fixed 604597 324 597354 329 597354 329 597354 329 605321 350 598873 317 602407 358 600140 373 594681 444 592313 468

1.00 1.01 1.02 1.03 1.04
variable 592511 104 591015 112 584121 188 580459 1260 580459 2444

fixed 589258 707 584971 1151 584654 1614 575646 2958 575412 6894
weight 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

16 variable 1233065 85 1233065 85 1216989 115 1201337 143 1185321 136 1184616 125 1174071 156 1173326 154 1171811 2280 1171314 5061
fixed 1217362 601 1201710 611 1189058 608 1179263 615 1173713 616 1176049 1460 1183873 7348 1173411 14532 1168580 22681 - -

24 variable 1835005 136 1817374 167 1816601 132 1800249 136 1783569 172 1766927 193 1755272 227 1758530 17045 - - - -
fixed 1818122 876 1801718 873 1785434 869 1771781 883 1759021 917 1754167 913 - - - - - - - -

32 variable 2433978 252 2401821 239 2385458 241 2369232 242 2351850 288 2339457 361 - - - - - - - -
fixed 2402615 1198 2385476 1191 2369232 1159 2352595 1178 2340203 1201 - - - - - - - - - -

40 variable 3032957 336 3016749 263 2984038 295 2951543 322 2934163 376 2922525 489 - - - - - - - -
fixed 3017592 1486 2985540 1480 2967812 1440 2936400 1491 2922897 1512 2932467 3396 - - - - - - - -

48 variable 3618338 345 3585604 350 3553103 417 3535346 452 3507084 567 - - - - - - - - - -
fixed 3601986 1769 3569322 1758 3537210 1786 3509693 1852 - - - - - - - - - - - -

96 variable 7202439 955 7137206 953 7071811 1207 7020811 1621 - - - - - - - - - - - -
fixed 7157126 3780 7092176 3750 7041530 3920 - - - - - - - - - - - - - -

192 variable - - 14242719 2599 - - - - - - - - - - - - - - - -
fixed - - - - - - - - - - - - - - - - - - - -

Table 3: UPMurphi solution quality (Cost) and number of states (#states) evaluated, for problems with different numbers of units,
using different weights in the evaluation function.

u MIP Pfixed Pbest Δ% Δ%

8 571274 609226 579027 -6.64 -1.36
16 1140257 1211736 1159662 -6.27 -1.70
24 1709003 1809162 1751141 -5.86 -2.47
32 2277223 2379332 2335327 -4.48 -2.55
40 2846550 2976661 2917435 -4.57 -2.49
48 3415785 3545537 3501035 -3.80 -2.50
96 6828945 7057785 7009130 -3.35 -2.64

192 13658463 14111294 14006150 -3.36 -2.55
400 28503184 29368707 29368707 -3.04 -3.04

Table 4: Quality obtained with the MIP approach and the
planning approach with a fixed and the best weight in the
evaluation function. In bold the solution guaranteed to be
optimal.

within the time in which planning found the first solution.
The last column of the table reports the time in which the
MIP approach finds the first better solution with respect to
planning. This data is of interest in the context of the future
energy scenario, where the power system is expected to be
more dynamic than is the case currently, and we expect to
have to re-solve the UC problem much more frequently so
that speed of solution becomes more important. From the
table we can see that in two cases (96 and 400 units) the
planning approach finds a first better solution than MIP. This
is not a conclusive evidence for favouring planning over MIP,
but it points out the potential benefit of planning.

7 Conclusion

In this paper we have presented the work we have done
towards demonstrating that, although domain-independent
planners have limitations, with careful domain modelling
and some domain specific guidance in the search temporal
planning can solve realistic Unit Commitment problems. We
started from a full PDDL+ model, for which only one domain-
independent planner, UPMurphi, was cable of handling all the
characteristic of the domain. We have shown that the planner
does not scale when dealing with numerical optimisation
problems and without proper heuristic guidance. We then
moved to a model where the problem is decomposed into two
sub-problems, the pure search problem and the Economic

u MIP P Δ(%) tP tMIP

8 571274 616532 -7.9 1.4 0.33
16 1156742 1216989 -5.2 4.5 0.86
24 1713937 1816601 -6.0 7.8 5.8
32 2279588 2385458 -4.6 17 12
40 2870661 2984038 -3.9 24 23
48 3427797 3553103 -3.7 36 32
96 7398394 7071811 +4.4 170 197
192 13666761 14125123 -3.4 960 828
400 30822345 29368707 +4.7 7100 7200

Table 5: Quality of the MIP obtained within the time of
first planning solution, quality of the first planning solution,
marginal difference between qualities, time for the planning
to find the first solution, and time for MIP to finds a better
quality solution than planning.

Dispatch which is exploited by the search to determine the
cost and heuristic value of a state. We moved from being
able to solve only very small instances of the problem (fewer
than 10 units) to being able to scale up to 192 units, with
solutions of quality similar to those produced by MIP. To
further alleviate the search burden, we applied a symmetry
model, where units with the same characteristics are grouped
together, and the actions are applied to the groups, rather
than to single units. With this method we were able to scale
up to problems with 400 units. In terms of the quality of
the planned solutions, a direct comparison with a traditional
MIP approach is made. This comparison shows that although
planning is still not competitive with MIP, it can produce
solution within ∼3% of the ones obtained with MIP. Scrutiny
of the solutions shows that the units chosen by the planner and
by the MIP solver are almost always the same, and almost
always over the same time periods. The variations might
give some interesting insights into where the planner makes
poor decisions from which it cannot recover, leading to the
observed gap in quality. This investigation is a topic for future
work.

7.1 Future Work

In this work, we have compared UPMurphi against the
MIP approach, using exactly the same linear constraints and
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quadratic objective function. Our goal in this work has been
to establish a competitive baseline from which to further
develop the planning approach. We now want to direct our
planning efforts to solving more complex problems in gener-
ating the future electrical power supply. For example, storage
will significantly affect the Unit Commitment problem, but
the problem of energy storage is one that cannot be tackled
using MIP, because the non-linear constraints that arise can-
not even be modelled. Another problem of great economic
importance concerns reducing the spinning reserve while re-
taining robust solutions. The current approach, which can be
modelled in MIP, is to simply over-supply by a fixed (conser-
vative) amount. This is expensive and unnecessary. It would
be more interesting to define a buffer of varying width, but
this leads to a non-linear constraint. In our future work we
will work with our collaborators in the power engineering
community to address these considerations.
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