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Abstract

The increasing penetration of renewable sources like solar en-
ergy add new dimensions in planning power grid operations.
We study the problem of curtailing a subset of prosumers gen-
erating solar power with the twin goals of being close to a
target collection and maintaining fairness across prosumers.
The problem is complicated by the uncertainty in the amount
of energy fed-in by each prosumer and the large problem size
in terms of number of prosumers. To meet these challenges,
we propose an algorithm based on the Combinatorial Multi-
Armed Bandit problem with an approximate Knapsack based
oracle. With real-data on solar panel output across multiple
prosumers, we are able to demonstrate the effectiveness of
the proposed algorithm.

Introduction

Operating large power grids involves crucial planning and
scheduling decisions. The classical example is the unit com-
mitment of generators, by which generating units (such as
thermal, hydro, nuclear, etc.) need to be turned on or off at
different times to match demand and supply (Campion et al.
2013). Given the size and importance of power grids, the
economic and social impact of such planning is significant.

Power grids are being upgraded into what are popularly
called smart grids. The first aspect of a smart grid is greater
instrumentation to (a) collect a larger volume of data, and (b)
actuate a richer set of planning actions. An example is the
installation of smart meters in residential and commercial
settings. Smart-meters introduce newer planning problems:
For instance, when and which consumers must be targeted
for incentive schemes to reduce demand based on historical
consumption patterns (Chandan et al. 2014).

The second aspect of a smart grid is the push towards
green and distributed generation. A popular example here is
the installation of roof-top solar panels in residential homes,
which can feed-in excess energy back to the grid. The char-
acteristic aspect of such distributed energy resources (DER),
as compared to the traditional sources, is its uncertainty
(Hirth 2013). In the presence of such uncertainty, it is hard
to plan unit commitment operations of traditional genera-
tors. Specifically, at times of renewable supply excess, the
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grid operator may enforce that consumers who produce so-
lar power - also called prosumers - to decrease their produc-
tion (Lew et al. 2013). This is referred to as the curtailment,
wherein at each time-step the grid operator selectively re-
fuses to buy power generated by a chosen set of prosumers.

Such curtailment must be planned and scheduled carefully
with two specific objectives. First, to ensure that demand and
supply match, the total collected energy must be close to
but not exceed a targeted collection. Second, the curtailment
across prosumers must be fair in that the fraction of energy
curtailed to the energy transacted must be similar across pro-
sumers. Note that the second objective is across time-steps
thereby coupling planning decisions in time.

Curtailment planning is complicated by the uncertainty
in the power generated by the prosumers. Based on solar
irradiance the amount of energy produced by each panel
can be estimated with a tool such as IBM Watt-Sun (Ut-
sler 2014). However, such estimation cannot model (a) lo-
calised sources of inefficiency of the panels such as par-
tial shading (Patel and Agarwal 2008) or dust accumulation
(Al-Hasan 1998), and (b) the fraction of energy used by the
prosumer and thus not fed-in to the grid. To meet this un-
certainty, curtailment planning needs to trade-off between
exploration and exploitation. Another challenge is the large
number of prosumers which have to be simultaneously con-
sidered. Planning curtailment for thousands of prosumers
can be computationally challenging, especially if the plan-
ning granularity in time is small, say 5 minutes.

In this paper, we propose a solution to curtailment plan-
ning to meet the twin challenges of uncertainty and problem
size. We formulate it as a combinatorial multi-armed ban-
dit (CMAB) problem (Chen, Wang, and Yuan 2013), where
arms correspond to each prosumer and playing an arm is
equivalent to not-curtailing that prosumer. Its combinatorial
because at each time-step multiple prosumers may be cur-
tailed, or equivalently a sub-set of the arms can be played.
The reward structure of playing a sub-set of arms models
both meeting the targeted collection and being fair. At each
time-step, an approximate oracle based on Knapsack algo-
rithm chooses the sub-set of arms that maximizes the reward
based on currently estimated parameters. We propose two
extensions to consider day-based contexts and daily adjust-
ments, both motivated by observations from real data. We
believe the proposed approach is novel, and combines latest
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results from machine learning to solve a planning problem
with application to a relevant problem in the emerging do-
main of smart grids.

We perform experiments with real-data collected from
a popular community website (Pvoutput.org 2015) of so-
lar panels around Melbourne.1 With various experiments we
demonstrate that the proposed algorithm is effective in learn-
ing the uncertainty, optimizing for both the objectives, and
scaling to large problem instances.

Mathematical Formulation

In this section, we formulate the curtailment problem math-
ematically and define the metrics of the optimization.

Basic Notation The set of prosumers is denoted as N =
{1, 2, · · · , n}. The time-steps for curtailment decisions is
T = {1, 2, · · · , T}. The time-series of estimated generation
for each prosumer i ∈ N is gi = (g1i , · · · , gTi ). The time-
series of targeted collection of energy is D = (d1, · · · , dT ).

Uncertainty Model As described, the amount of energy
that a prosumer wants to feed-in to the grid can differ from
the estimation in g. This uncertainty is modelled by the frac-
tion mt

i, such that the amount of energy fed-in by prosumer
i ∈ N at time-step t ∈ T if not-curtailed is mt

ig
t
i .

Decision Variables At each time-step, we need to decide
which prosumers to curtail. This is modelled by the boolean
variables xt

i which is 0 iff prosumer i is curtailed in time-
step t, for all i ∈ N and t ∈ T .

Constraints and Objectives The total energy collected
must be below a targeted collection given by:∑

i∈N

xt
im

t
ig

t
i ≤ dt, ∀ t ∈ T. (1)

We can define the total collection at time t as Ct =∑
i∈N xt

im
t
ig

t
i .

The following defines a fairness metric for prosumer i un-
til time s:

F s
i =

∑
i∈N

∑s
t=1 x

t
im

t
ig

t
i∑

i∈N

∑s
t=1 m

t
ig

t
i

−
∑s

t=1 x
t
im

t
ig

t
i∑s

t=1 m
t
ig

t
i

. (2)

In words, the fairness value represents the difference of the
ratio of energy collected by energy generated of all pro-
sumers from the same ratio of a specific prosumer. Lower
the value greater is the fairness for that prosumer.

Based on collection and fairness definitions, we can derive
the objective function for the set of decisions xt at time-step
t as

maxCt + γ
∑
i∈N

xt
iF

t
i , (3)

where γ is a factor that weights the two objectives.

Proposed Planning Algorithm

In this section, we map the curtailment problem to a Combi-
natorial Multi-Armed Bandit (CAMB). Then, we will adapt
an existing algorithm for the CAMB formulation. Finally,
we will present extensions of the algorithm to consider time-
of-day based context and daily updates.

1Data-sets have been included in supplementary material.

Background on CMAB

Multi-armed bandit (MAB) is extensively studied in ma-
chine learning. It is modelled as a set of arms, each hav-
ing an unknown distribution of reward with unknown mean.
The goal is to repeatedly play the arms such that the total
expected reward closely approximates to the reward when
playing the optimal set. In a combinatorial MAB (CMAB),
a sub-set of arms, called a super-arm, can be played together
(Chen, Wang, and Yuan 2013). Each super-arm has an un-
kown distribution of reward with unknown mean. Repeat-
edly a sub-set of arms are played and reward is maximized.

Let N be the number of arms, and let S be the set of all
super-arms, which are 2N in number, and let T denote the
time-steps for playing the arms. Each arm i is characterised
by a set of random variables Xt

i which is revealed if arm i
is chosen in round t. The set of random variables {Xt

i : t ∈
T } are independent identically distributed variables with un-
known expectation μi. Let μ = (μ1, μ2, . . . , μN ) denote the
vector of expectations of the arms. When a super-arm S ∈ S
is played in time-step t a reward Rt(S) is received, which
depends on the problem instance definition, the super arm
S, and the outcomes of the revealed arms namely Xt

i for
all i ∈ S. The expected reward of playing super-arm S is
denoted as rμ(S) = E(Rt(S)).

A CMAB mapped to an ordinary MAB can be computa-
tionally infeasbile. Furthermore, most combinatorial prob-
lems are comptuationally hard. For instance in the curtail-
ment problem, due to the constraint of Equation (1), the
reward of a super-arm depends on solution to a Knapsack
problem which is NP-Hard. To attend to these two issues,
an efficient algorithm is proposed as the Combinatorial Up-
per Confidence Bound (CUCB) algorithm (Chen, Wang, and
Yuan 2013). The CUCB algorithm requires an (α, β)-oracle
which given a current estimate of the expectation vector
μ identifies a super-arm S which is guaranteed to be an
α−approximate solution with a probability of failure β. For
the CUCB algorithm to be valid, we require that the function
rμ(S) have the following two properties.

1. Monotonicity: If μ ≤ μ′, then rμ(S) ≤ rμ′(S) for any
super-arm S ∈ S .

2. Bounded smoothness: There exists a continuous strictly
increasing function f with f(0) = 0, and for any two μ,
μ′, we have |rμ(S)− rμ′(S)| ≤ f(Λ) for any Λ such that
Λ ≥ maxi |μi − μ′

i|.

Mapping the curtailment problem on to CMAB

Each prosumer is mapped to one arm, playing which corre-
sponds to not-curtailing that prosumer in a particular time-
step. The random variables corresponding to the arms de-
noted Xt

i are mapped on to mt
i which is the ratio of fed-in

energy to the energy generated by prosumer i at time-step t.
The expectation μi thus models the expectation of the ratio
m∗

i for prosumer i. The reward is given by the relation:

Rt(S) = −M, if
∑
i∈S

gti > dt,

=
∑
i∈S

(mt
ig

t
i + γF t

i ), else, (4)
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Algorithm 1 CMAB for the Curtailment Problem
1: For each prosumer i, maintain the variables (1) Ti as the

total number of times the prosumer has been selected
for solar injection, (2) μ̂i as the estimated mean of mi

based on the outcomes for prosumer i, (3) Fi as in eq. 2
2: Initialize the μ̂i

′s as 1, and t ← 0
3: While(True)
4: t ← t+ 1

5: For each prosumer i, set μ̄i = μ̂i +
√

3lnt
2Ti

6: For each prosumer i, update weight[i] = gti , value[i] =
μ̄ig

t
i + γFi

7: Update capacity = dt, and run the Approximation
Knapsack to get the selected set of prosumers as: S =
ApproxKnapsack(weight, value, capacity)

8: Play S and update all T ′
is, and μ̂i

′s
9: End While

where M is a large positive number, γ is from Equation (3).
The oracle is designed as an approximate Knapsack solver

which solves the following problem: Given a set of items,
each with a weight and a value, determine the sub-set of
items to include in a collection so that the total weight is less
than or equal to a given limit and the total value is as large as
possible. In our case, each prosumer is an item with weight
equal to gti and value equal to mt

ig
t
i+CF t

i . The weight limit
is given by the bound dt of Equation (1). We use a poly-
nomial time approximation algorithm for Knapsack (Ibarra
and Kim 1975) which guarantees an approximation factor of
some set α (say 1.05) with probability 1, and thus is a (α, 1)
approximation oracle.

We now show that the monotonicity and bounded smooth-
ness properties. For a given S, independent of the expecta-
tion vector, it either satisfies eq. (1) or not. If it does not sat-
isfy then Rt(S) is the same for all expectation vectors. If it
does satisfy, then the reward is given by

∑
i∈S mt

ig
t
i +CF t

i ,
where the mt

i is a random variable with mean μ. This clearly
is monotonic in μ. Let us now prove bounded smoothness.
As, μi ≤ 1, ∀i ∈ N , we have maxi∈N |μi − μ′

i| ≤ 1. Let us
consider λS such that for some S ∈ S , maxi∈N |μi − μ′

i| =
λS . If

∑
i∈S gti > dt, then |rμ(S)−rμ′(S)| = 0. Otherwise,

|rμ(S)− rμ′(S)| =
∑
i∈S

|μi − μ′
i|gti ≤ λS

∑
i∈S gti ≤ GλS ,

where G = maxt∈T
∑

i∈N gti . Hence there exists a strictly
increasing function f(x) = Gx with satsifies the bounded
smoothness property.

In the rest of the section, we present two extensions of
the algorithm motivated by the specific patterns observed in
real-data, as will be discussed in the experimental section.

Extension 1: Time-of-Day Based Contexts So far, we
have considered that the ratios mt

i for some prosumer i
are realisations of the same random variable with unkonwn
mean μi. However, it is practical to consider that the ratio is
different for different times of the day. As an example, a pro-
sumer may consume greater energy in the morning or there
may be shadow on the panel in the afternoon. To model such
variability, we divide a day into multiple contexts each char-

acterised by an independent set of random numbers. Thus,
each prosumer i and context j, we estimate the mean μ(i,j)

which characterises the value of ratios mt
i for times t be-

longing to that context j.

Extension 2: Daily-Adjustment From real-data, we ob-
serve that there are days when collectively prosumers feed-
in much lesser energy into the grid. In other words, there is
a correlation between the random numbers mt

i characterist-
ing the feed-in across users. Unless modelled this can affect
meeting the targeted collection. To effectively model such
correlated reduction, we define a term ρt, between 0 and 1,
such that the effective mt

i for each prosumer i has a mean
of μiρt. At the start of the day, the value ρt is initialized to
the default value of 1, indicating no correlated reduction in
feed-in. Based on the observations through the day, the value
of ρt is adjusted. This effectively models day-specific pat-
terns: For example, this can model a national holiday when
the energy fed-in could be much smaller due to increased
consumption.

Experimental Evaluation

Data We source data from the publicly available source
(Pvoutput.org 2015). This is the leading repository of
recorded outputs from solar installations from around the
world. As there is no automated data download feature, we
manually collected data of 20 prosumers in and around Mel-
bourne for 15 days form 1st to 15th November 2015, at reso-
lutions of 5 minutes each from 7.30 am to 5.30 pm - a total of
36,000 data points. Note that November is a sunny month in
Melbourne with significant solar generation. At each time-
step we obtain both the power fed-in by the solar panels
of each prosumers (denoted by mt

i × gti ) and the estimated
power based on the solar irradiance of that day (denoted by
gti ). In addition, we source the demand of the state of Vic-
toria (of which Melbourne is the capital) for the same 15
days from (Australian-Market-Energy-Operator 2015). We
uniformly scale this demand profile and use this as the tar-
geted collection denoted dt. The curtailment planning is to
decide the sub-set of prosumers to curtail in intervals of 5
minutes.

Computation of error To evaluate the proposed algo-
rithms, we compare them against an optimal clairvoyant al-
gorithm that has full knowledge, i.e., it knows mt

ig
t
i for each

time-step and i. Then we compute the ratio of the objective
functions (Equation (3)) of proposed algorithm to the op-
timal one for each time-step. A time-series of the running
mean of this ratio is given as ηtA for algorithm A.

Motivation for time-of-day based contexts For a partic-
ular prosumer we plot the mean value of mt

i where the data
is divided into five contexts each of 2 hours from 7.30 am to
5.30 pm. As shown in Figure 1(a), the mean values signifi-
cantly vary across the contexts.

Motivation for daily-adjustment For each prosumer we
compute the mean of mt

i for each day. As seen from the
histogram of these mean values in Figure 1(b), there is a
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Figure 1: Motivation for (a) time-of-day contexts, and (b) daily adjustment. (c) Trade-off between fairness and collected energy
based on choice γ
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Figure 2: The collected energy with the 4 proposed algorithms, optimal algorithm, and the RandPerm algorithm.
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Figure 3: Accuracy of the other algorithms w.r.t. the optimal
algorithm.

significant correlation in the mean values of different pro-
sumers across time. This shows that external common fac-
tors strongly influence the behaviour of the prosumers.

Choice of γ In Equation (3) we defined γ to weight be-
tween the two components of the objective function. We now
experimentally evaluate the value of γ such that the choice
of prosumers is fair. To this end, we plot 1 − variance(FT

∗ )
and the total collected energy for the CUCB algorithm for
different values of γ in Figure 1(c). Based on this plot we
identify γ = 100, 000 as a good trade-off between fairness
among customers and total energy collected under the Knap-
sack constraint.

Performance of all algorithms We have 4 variants of the
algorithm by choosing to include or exclude the two exten-
sions for time-based contexts and daily adjustment. These
are referred to as CUCB, Con-CUCB, CUCB-Daily, and
Con-CUCB-Daily. In addition, we have the optimal clair-
voyant algorithm and a RandPerm naive algorithm which
randomly permutes the prosumers and sequentially selects
as many prosumers as possible satisfying Equation (1). For
each algorithm we plot the time-series of the total col-
lection

∑
i x

t
im

t
ig

t
i against the targeted collection in Fig-

ure 2(a), (b). Note that the Optimal algorithm almost al-
ways matches the targeted collection. RandPerm on the
other hand performs poorly due to no modelling of uncer-
tainty and a greedy approach to meeting the targeted collec-
tion. Amongst the 4 variants of our algorithm, expectedly
Con-CUCB-Daily most closely matches the targeted collec-
tion. W.r.t. the Con-CUCB, addition of the daily-adjustment
greatly improves results as is clear in Figure 2(a) for days
6 and 10. A similar difference is observed between CUCB-
Daily and CUCB. However, addition of the day-based con-
text does not seem to have a significant impact on the results.

For the 4 algorithm variants and RandPerm we plot in Fig-
ure 3 the ratio ηt capturing the time-varying performance
w.r.t. the optimal solution. An ideal value of ηt = 1 indi-
cates that the performance of an algorithm is identical to the
optimal algorithm. As noted, RandPerm performs the worst,
the variants with daily adjustment perform the best, while
the variants with day-based context have a marginal advan-
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Figure 4: Run-times as a function of problem size

tage. The Con-CUCB-Daily algorithm has ηt > 0.97 for all
t > 240, i.e., after 2 days of learning the algorithm is within
3% of the optimal algorithm. With this we conclude that the
algorithm effectively learns the uncertainty in modelling the
users and optimizes for the considered metrics.

Scaling of runtimes with problem size To evaluate the
runtime scaling of the algorithm, we generate artificial pro-
sumers by randomly choosing one of the prosumers and
adding random noise to both the estimation g and the actual
energy fed-in βg. We repeat this process to generate sets of
40, 60, 80, and 100 prosumers. For each set, we execute the
Context-CUCB-Daily and plot the run-times in Figure 4 on
MATLAB on a dual-core Intel Core i5 2.6 GHz processor
with 8GB RAM. Note that the report run-times are for the
36000 time-steps in the 15 days. Indeed, in practice only one
of these time-steps will be considered which can be a man-
ageable run-time for a large set of prosumers.

Conclusions

In this paper, we formulated the curtailment planning of re-
newable sources as a CMAB. This is effective in modelling
the unknown amount of energy fed-in by prosumers while
optimizing for meeting the targeted collection and fairness.
From real-data we recognized the need to add two exten-
sions, namely, multiple contexts within the day and a daily
adjustment. The experimental results demonstrate that the
approach is able to actively learn the unknown parameters.
We believe that the planning operations in today’s smart
grids will be dominated by the need to model uncertainty
and optimize for large problem sizes, and methods such as
the proposed one will be increasingly relevant.
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