
More Shuttles, Less Cost: Energy Efficient Planning
for Scalable High-Density Warehouse Environments

Christian Hütter
Department of Simulation and Graphics

Faculty of Computer Science
Otto-von-Guericke University Magdeburg, Germany

Abstract

We propose planning strategies for a shuttle-based warehous-
ing system. Within this system, goods are not only trans-
ported by, but also stored on shuttles. This allows the simul-
taneous motion of all goods without preparation time. We
exploit these properties to improve both space- and energy
efficiency compared to conventional storage systems while
maintaining fast access to all goods.
We present a framework to manage the shuttles in a very high
density environment, allowing efficient in- and output, stor-
age, and sequencing. The proposed framework is conflict-
free, space- and energy efficient and its practical applicability
is demonstrated in a simulative analysis based on a real-world
problem. In our sample application holding 1950 shuttles we
achieve storage densities of approximately 88% while main-
taining efficient access to all goods.

Introduction & Overview

With the advent of shuttle-based systems like “Amazon
Robotics” (formerly Kiva Systems), “MultiShuttle Move”,
“Autostore” and others, a new generation of material han-
dling systems is emerging. However, the trend towards indi-
vidual goods handling has not yet reached its turning point:
we see the potential for these technologies to converge into
a system where each good is not only transported, but also
stored on an individual shuttle (patents for such systems
have been granted already1). This allows all objects to move
simultaneously and without preparation time.

To illustrate a possible deployment of such a system, let us
consider the following sample application. At an airport, the
baggage of passengers arriving early or changing aircrafts
needs to be stored temporarily. This is done in an “early bag-
gage store”. Single pieces of baggage, each placed on a bag-
gage tray, arrive at the store in random intervals. Upon their
arrival, the baggage is put in a buffer, called a delay line,
where it waits for a free spot on a connected conveyor belt.
This conveyor, shown in fig. 1, is the actual storage space;
it moves the baggage in circles. On it, the baggage passes
an output junction with every rotation of the conveyor. Once
requested, the junction is used to remove the baggage from
storage. While baggage input occurs in random intervals,

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.google.com/patents/EP2165406B1?cl=en

Figure 1: A conveyor is used to store baggage trays while
providing random access. This scenario can be vastly im-
proved with the system shown in fig. 2

the removal of baggage belonging to one flight is performed
in blocks of approximately 20 pieces at a time once the flight
is ready. Due to delayed flights, passengers changing flights
last-minute etc., we do not know the removal order in ad-
vance. Instead, we require access to any individual piece
of baggage within a limited amount of time. For this reason,
the baggage is moved all the time: not to store it, but to solve
the sequencing task, and separating both aspects is not eas-
ily achieved with conventional material handling systems.
The system must hence make a trade-off: decreasing the
baggage’s speed reduces energy consumption, but increases
access times. This also means that a larger store needs to
increase its speed to maintain access time, a limiting factor
for scalability. To combine storage (with no need for mo-
tion) and sequencing task (with need for little motion), we
have to create a system which performs a lot of motion when
utilizing this conventional system.

We employ a shuttle-based system to mitigate these ef-
fects, moving baggage only when needed, improving en-
ergy efficiency and scalability, while simultaneously reduc-
ing space requirement. The system we consider is shown in
fig. 2. Instead of using a linear conveyor, the shuttles are ca-
pable of moving in two dimensions, taking a single step in x
or y direction at a time. This allows each piece of baggage
to stop moving for the major part of its storage duration,
as other shuttles can move around it. We assume that each
piece of baggage is arriving on its own shuttle and removed
from the system together with it (emulating the behavior of

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

403

Figure 2: We propose a system where each baggage tray is
placed on a shuttle. Shuttles can movie between cells in the
plane, but remain stationary whenever possible.

the baggage trays in today’s system).
The properties of the system are as follows. We con-

sider rectangular shuttles of equal size placed in a grid. A
shuttle can move from its current grid location to one in its
4-neighborhood. Shuttles are allowed to move simultane-
ously, provided their respective destinations are free. Also,
several shuttles standing edge to edge in a row or column,
travelling in the same direction, may move at once, similar
to objects moving on a conveyor. That is, moving a row of
shuttles one cell to the right can be done in the same amount
of time that is required to move a single shuttle one cell
to the right. The restrictions of geometry and position are
imposed to avoid exponential running time: deciding if we
can arrange rectangular objects (of arbitrary size) inside a
rectangular workspace (without restricting them to grid lo-
cations) in a given configuration is PSPACE-hard (Hopcroft,
Schwartz, and Sharir 1984).

Under these assumptions we solve the task of putting a
shuttle from an input cell into storage, thus clearing the input
cell for a subsequent input operation. As with all operations
we consider, this is solved for high-density situations where
no free path exists between input- and storage cell. We then
prepare a set of shuttles for removal from storage, putting
one of the prepared shuttles on an output cell for immediate
removal and the remainder “close to it” for fast subsequent
output operations. An important operation we use to solve
both tasks is the computation of an energy optimal motion
sequence clearing a given set of cells w.r.t. a unit cost model.

The underlying conditions for a system acting as early
baggage store are sufficient storage capacity, in- and output
speed and reliability. The optimization criteria are the mini-
mization of required space and energy as well as the number
of interconnection (i.e., in- and output) cells.

To achieve these goals, a predictable and efficient planner
is required, capable of handling thousands of shuttles whose
motions are interdependent due to the high storage density.
By omitting some of the inputs commonly provided for mo-
tion planning tasks, foremost the destination of each indi-
vidual shuttle, the planning task comprises not only motion-,
but as an additional challenge also destination planning. Fi-
nally, to achieve good results it does not suffice to handle
each single task as an isolated planning problem. Instead,

we must also consider parallel task execution and ensuing
tasks, which might draw a benefit or suffer a penalty from
the choices made in the current planning step.

Using the techniques we discuss in this paper, the pro-
posed shuttle-based system fulfills the underlying condi-
tions and proves a high potential regarding the optimization
goals: instead of moving each piece of baggage 24 000m,
as is currently done in the conventional system, we move it–
on average–only approximately 20m, reducing both energy
consumption and maintenance costs. At the same time, the
space requirement for the system is reduced from approxi-
mately 5150m2 to 2250m2.

Related Work

To manage a warehouse operated by a fleet of shuttles with
only little maneuvering space, a cooperative planning ap-
proach is required: without it, a shuttle with no direct road-
map access is “stuck” at its position as it cannot reach loca-
tions outside its currently accessible configuration space on
its own. Such cooperation is achieved by coupled, central-
ized planners, which regard the fleet as a single, composite
robot with many degrees of freedom (Parsons and Canny
1990). The exponential running time of these coupled, cen-
tralized planners, however, makes them unsuitable for the
large fleets we consider.

By sacrificing the optimality offered by these planners,
complete, polynomial-time algorithms become available for
certain environments. To move a shuttle with no road-map
access to a specified (output-) position, an evasive motion of
the shuttles in its way suffices. Such motions have been stud-
ied e.g. by (de Wilde, ter Mors, and Witteveen 2013), who
improved an earlier approach by (Luna and Bekris 2011).
The idea is to “push” and “swap” or “rotate” shuttles from
their current location to their destination, requiring only two
free cells. Their focus is on the so-called pebble motion
problem: in a graph where each vertex may be occupied by
at most one labeled pebble, the task is to create a new peb-
ble configuration by consecutively moving pebbles to adja-
cent (unoccupied) vertices. They present an efficient and
complete algorithm solving the pebble motion problem for
instances with at least two empty vertices. The motions
described in their work involves the shuttle which is to be
moved and its neighbors; it is therefore not always possible
to use it to clear a road-map in advance This makes its exe-
cution relatively slow in our scenario, as the shuttle we want
to move needs to wait for the next vertex to become cleared
at each step.

Another approach to move any individual shuttle to a
given (exit-) grid location was proposed by (Gue and Kim
2007). The motion sequence executed to move a shuttle one
cell forward along a given, non-empty path, consists of 3 to
5 steps, called an “escort moves”, depicted in fig. 3. While
this straight-forward solution requires only one free cell, the
ramifications are similar: While the clearing motions are ex-
ecuted, the requested shuttle has to wait, which has a huge
impact on speed. In addition, 3 to 5 steps are performed to
move a single step forward, leading to a high energy con-

404

Free
Occupied
Shuttle to move

(a) An escort move for moving a shuttle around a corner.

(b) An escort move for moving a shuttle along a straight path.

Figure 3: Escort Move, as depicted in (Gue and Kim 2007)

sumption2.
A planner allowing the parallel execution of clearing mo-

tions was proposed by (Peasgood, Clark, and McPhee 2008).
However, it requires the computation of a spanning tree
and can handle at most as many shuttles as the spanning
tree has leaves. That leads to the new problem of find-
ing a maximum-leaf spanning tree, which in itself is NP-
complete (Garey and Johnson 1979). Also, the number of in-
ner nodes–being the minimal amount of free cells required–
is quite large and the energy consumption suboptimal.

When we consider the shuttles between current position
and destination as obstacles, our task becomes a “planning
in the presence of movable obstacles”-problem. While ex-
tensive research has been conducted in this area, a key char-
acteristic of the problem as stated in the literature is that
the obstacles themselves are passive. That is, it does not
suffice to compute their trajectory. Instead, the planning
robot must manipulate the environment itself (Ben-Shahar
and Rivlin 1998; Stilman et al. 2007; Lindzey et al. 2014).
Not all means of manipulating can be transferred to our
application–e.g., grasping, sweeping and toppling as pro-
posed by (Dogar and Srinivasa 2011)–or are unnecessarily
complex (e.g., pushing). In conclusion, these planners do
not adequately exploit the benefits that the self-movable ob-
stacles in our scenario provide.

Planning Framework

We start by defining the general framework and proceed by
listing the planning problems we solve. Let G = {(x, y) ⊂
N

2 : 0 < x ≤ W, 0 < y ≤ H} be a rectangular grid
with width W > 1 and height H > 1 of cells with integer
coordinates, S a finite set of shuttles and P : S → G an
injective position assignment of each shuttle to a cell. We
define our state space P as the set of all possible position
assignments. For a set T = {(−1, 0), (1, 0), (0,−1), (0, 1)}
of unit steps let U : P → 2S×T via U(P) = {(s, t) ∈
S × T : s can move to P (s) + t} be the set of available
transitions; we say s can move to P (s) + t iff P (s) + t ∈ G
and P−1(P (s) + t) = ∅.

We produce a state P ′ ∈ P from an adjacent state P ∈ P
by moving a single shuttle to a free adjacent cell using a state

2For the sake of simplicity we use a unit cost model for energy
consumption: travelling to an adjacent cell costs one energy unit,
disregarding acceleration etc.

transition function:

P ′(x) = p(P, (s, t))(x) =

{
P (x) x �= s

P (x) + t x = s

for a (shuttle,step)-pair (s, t) ∈ U(P). Under certain
conditions we perform multiple transitions simultaneously:
Let (s1, t1), . . . , (sk, tk) be a sequence of transitions and
P0, . . . , Pk a corresponding sequence of position assign-
ments. We execute all transitions (sj , tj) at the same time as
transition (si, ti)∀i and j > i if three conditions are met:
(a) no transition involving sj must exists between transi-
tions i and j, (b) the destination cell d := Pj(sj) is not
used between transitions i and j by another shuttle, i.e.
∀l : i ≤ l < j : P−1

l (d) = ∅, and (c) either d is already
free before step i, or d is the position of si before step i
and si and sj move in the same direction: P−1

i−1(d) = ∅ or
P−1
i−1(d) = si ∧ ti = tj . That is, we allow simultaneous mo-

tion of multiple edge-to-edge shuttles in the same direction.
Furthermore, let I ⊆ G be a set of input cells and O ⊆ G

a set of output cells; shuttles may be added or removed to
and from the system at these cells only, respectively. For a
configuration P ∈ P , let E(P) = {g ∈ G : P−1(g) = ∅}
be the set of unoccupied cells. Last but not least let P0 ∈ P
be the initial configuration and ((s1, t1), . . . , (sk, tk)) ∈
U(P0)× . . .×U(Pk−1) a transition sequence or plan. When
we say a plan produces some postcondition, e.g., clears lo-
cation (x, y), we imply that applying the transition function
to the plan’s transitions, starting from state P at the time of
planning, has the described effect. As cost function we use
the length of a plan in transitions, which corresponds to the
energy consumption when using a unit cost model.

We solve the following tasks:

Storage Task An empty input location is required to add
a new shuttle to the system. For an input location (x, y) ∈ I
which is nonempty, i.e. P−1

0 ((x, y)) �= ∅, we find a plan
that clears (x, y), such that P−1

k ((x, y)) = ∅. This operation
requires one free cell, which will be used as destination.

Clearing Task For a given set C ⊆ G of cells with |C| ≤
|G| − |S|, we find a plan that clears C: P−1

k (C) = ∅. Note:
Problem 1 is an instance of problem 2 with C = {(x, y)}
for an input location (x, y) ∈ I .

Output Preparation For a given subset of Shuttles D ∈ S
and output (x, y) ∈ O we find a plan that moves a non-
empty subset of D to a set of connected cells in G that in-
cludes o.

Input Operation

To observe the underlying condition of sufficient input
speed, we must clear the input cell quickly to allow sub-
sequent inputs. In addition, to minimize energy consump-
tion, we want to choose a storage cell with a minimal com-
bined in- and output cost. Unfortunately, no generic strat-
egy for choosing this location fits all applications as most
strategies change their behavior depending on the precise
input/output sequence. This is especially true for scenarios

405

without a road-map connecting all storage cells. In such sce-
narios, evasive motions change the locations of stored shut-
tles, making different cells available for subsequent inputs.
The in-/output sequence is unknown in our example, as it is
in most real-world applications.

We therefore propose a greedy approach working as
follows. For a storage task with given inbound loca-
tion (xi, yi) ∈ I , we find the closest outbound location
(xo, yo) ∈ O. Note that all distances are w.r.t. the grid
G; for a unit cost model, where a transition (s, t) has
cost 1, this is equal to the Manhattan distance of the re-
spective grid points. We then label each cell (x, y) ∈ G
with its combined distance from in- and outbound location
‖(x, y)−(xi, yi)‖1+‖(x, y)−(xo, yo)‖1 as shown in fig. 4a
and choose a free cell d among those with smallest label. We
find a shortest path from i to d, disregarding all movable ob-
stacles, i.e., stored shuttles. Along this path, we perform
what we call a “push move”: each shuttle on the path moves
towards d (as if “pushed” by the shuttle on i), thereby clear-
ing the inbound position and using d as a new storage cell.
The shuttle is now stored as shown in fig. 4b.

We define a push move plan R = ((s1, ti), . . . , (sk, tk))
for a path M = (g1, . . . , gn) with P−1

0 (g1) �= ∅ and
P−1
0 (gn) = ∅ as follows:
• R clears the source cell and occupies the destination cell:
P−1
k (g1) = ∅ ∧ P−1

k (gn) �= ∅
• No other cell changes its occupancy status: ∀g ∈ G \
{g1, gn} : P−1

0 (g) = ∅ ⇔ P−1
k (g) = ∅

• Shuttles not on the path do not change their positions:
∀g ∈ G \M : P−1

0 (g) = P−1
k (g)

Algorithm 1 constructs a push move. Going back from the
destination cell gn, we set the dst-pointer to the last free cell
(which is gn in the beginning) and the src-pointer to the last
non-free cell on path M (lines 4-6). We then add transitions
to move the shuttle found on src to dst (lines 7-11). We
repeat this procedure with dst set to the cell cleared by these
transitions, i.e., src (line 12), until g1 is cleared (line 3).

Input: Path M = (g1, . . . , gn) as a connected grid
position sequence with P (g1) �= ∅ and P (gn) = ∅

Output: Push move plan R
1: R← ()
2: dst← src← gn
3: while src �= g1 do
4: while P−1

0 (src) = ∅ do
5: src← predecessor of src on M
6: end while
7: t← src
8: while t �= dst do
9: R ← R ◦ (P−1

0 (src), successor of t on M − t)
10: t ← successor of t on M
11: end while
12: dst← src
13: end while

Algorithm 1: Push Move

The cost for the push move plan is equal to the path length

1 2 3 4 5 6 7
1
2
3
4

6 4 2 4 6
8 6 4 4 4 6 8

10 8 6 6 6 8 10
12 10 8 8 8 10 12

i o Free

Occupied

(a) Each cell is labelled with the combined distance from i and o.
The occupation after 14 in- and no output operations is shown.

1 2 3 4 5 6 7
1
2
3
4

6 4 2 4 6
8 6 4 4 4 6 8

10 8 6 6 6 10
12 10 8 8 8 10 12

d

i o Free→Occupied

Occupied→Free

(b) The next input operation moves all shuttles in row 3 to the right
(simultaneously), then the ones in column 3 up. This clears i and
occupies d.

Figure 4: To input a shuttle from input cell i using storage
cell d we “push” each shuttle on an i, d-path towards d, thus
clearing i.

in edges, as each edge on the path corresponds to one transi-
tion of the plan. That is, the cost of moving a single shuttle
from g1 to gn is equal to the cost of performing a push move
from g1 to gn. The latter alters the positions of all shuttles
on the path, not only of the one on g1, which may or may
not be a disadvantage depending on the scenario. However,
as a huge benefit, it does not require the path to be free, and
the effect regarding occupancy is the same: g1 becomes free,
gn becomes occupied, and occupancy of all cells in between
remains unchanged.

Finally, let us look at the time required to clear g1. In a
rectangular grid where we are allowed to move any shut-
tle, we can find a shortest path from any position g1 to
any other position gn consisting of one horizontal and one
vertical segment. All shuttles on either segment can move
simultaneously–in fig. 4b, we first move all shuttles in row
3 to the right simultaneously, and then all shuttles in column
3 up. Hence, the input cell is cleared after the time required
to perform only two transitions.

If shuttles are removed starting with the ones closest to the
output cell–thus avoiding the need for evasive motions–our
greedy strategy is optimal: the total combined input/output
cost is equal to the sum of all labels used for storage, which
is an obvious lower bound for the given storage task and
layout combination.

(Path-) Clearing Algorithm

The previously defined “push move” operation clears a sin-
gle cell. In this section, we use it to clear a set of cells
C ⊆ G. We define a C-clearing motion as a plan which
clears C, that is P−1

k (C) = ∅. This obviously requires
|C| ≤ |E(P)|. In case of |C| < |E(P)| the position of some
free cells remains unchanged. To specify exactly which free
cells shall remain unchanged, we may include a subset of
E(P) in C, making sure these included cells remain free

406

(a) To clear the cells is C, we per-
form a push move for a shortest
path between each pair in a C-
E(P0)-matching.

C

E(P0)
a b

c

d

St
ep

2

Step 1

(b) By moving the shuttle
from a to c, the push move
preserves free cell b.

Figure 5: We clear the hatched cells C with push moves
from each cell in C to one in E(P0).

after the operation.
The algorithm works as follows. We first compute the

cost minimal, inclusion maximal matching M between C
and E(P). As cost for matching c ∈ C to e ∈ E(P) we
choose the length of a shortest c, e-path (or 0 for c = e).
For each pair {cm, em} ∈ M of the matching we compute
a shortest cm, em-path. Along each such path we perform
a push move as described in the previous section. All cells
cm from the matching are thus cleared. All cells in C are
part of the inclusion maximal matching as G is connected
and |C| ≤ |E(P)|, hence C is cleared as claimed. The cost
of the resulting plan, comprising all push moves, is equal to
the cost of the matching as each cm, em-push move has cost
of its corresponding cm, em-path’s length (cf. Algorithm 1).
Figure 5 illustrates a clearing motion.

We claim that this strategy for clearing C is optimal w.r.t.
energy consumption when using a unit cost model. Let X =
(s1, t1), . . . , (sk, tk) be a shortest, i.e., energy optimal C-
clearing plan. Each transition (si, ti) from X moves si from
Pi−1(si) to Pi(si). It thereby changes the empty cell set
from E(Pi−1) to E(Pi) = (E(Pi−1) ∪ Pi−1(si)) \ Pi(si).
E(Pi−1) and E(Pi) only differ in this one element, hence a
perfect cost 1 matching exists between E(Pi−1) and E(Pi).
We construct this matching by assigning Pi−1(si) to Pi(si)
for cost 1 (as these cells are adjacent) and every other ele-
ment to “itself” for cost 0.

Using this technique, we get a series of k matchings–from
E(P0) to E(P1), from E(P1) to E(P2) and so on, one for
each transition in the optimal transition sequence X . In this
series of matchings the destination E(P1) of the first match-
ing is the same as the source of the second matching. There-
fore, they can be merged, as shown in fig. 6. By combining
all k matchings in the series we get a cost k = |X|matching
that matches E(P0) with E(Pk).

We chose X to be a C-clearing motion, hence C ⊆
E(Pk), and the k combined matchings match a superset of
C to the free cells for cost k. Therefore, a matching of cost
(at most) k between C and the free cells E(P0) exists. This
proves the claim that our approach is (at most) as expensive
as the optimal C-clearing plan X . We already argued that
our approach clears C for the cost of this matching, thus
completing our proof.

...

E(Pi−1)

...

E(Pi)

...

E(Pi+1)

(a) The matchings of two free cell
sets produced by two consecutive
transitions in a plan. . .

...
...

E(Pi−1) E(Pi+1)

(b) . . . are merged for cost
equal to the sum of the in-
dividual matchings.

Figure 6: Each transition of an optimal C-clearing plan in-
duces a matching between E(Pi) and E(Pi+1). All of these
matchings can be combined.

In some scenarios we want to “undo” the shuttle dis-
placement created by clearing C. For example, if we use
the algorithm to clear a path in a non-chaotic store, we
alter some shuttle locations. These locations must ulti-
mately be restored, as the store is non-chaotic. This is
achieved by reversing the direction of each transition of the
C-clearing plan and performing them in reverse order. For
the C-clearing plan A = {(s1, t1), . . . (sk, tk)}we construct
A−1 := {(sk,−1 · tk), . . . , (s1,−1 · t1)}. This method
only works if no cell which is part of the C-clearing motion
changes its assigned shuttle between executing A and A−1.
In many instances, however, we want to use a road created
by clearing C to move some shuttle s to a destination d, and
when reversing the operation, we want s to stay at d. In or-
der to do so, we must ensure that neither s nor d is part of
the C-clearing motion. This is achieved as follows. First, if
d isn’t free already, we clear d. Then, we remove P (s) and
d from the cell grid G, after which we compute the clear-
ing motion as described above. With P (s) and d removed,
no path used in a push move contains these cells, hence we
ensure that they do not take part in the clearing motion (or
its reverse) at all. Finally, the cells can be re-added and s
moved to d, after which A−1 is applied. As A−1 does not
contain P (s) or d, it is unimportant whether or not they are
removed while executing the plan. When removing several
cells D = {d0, . . . , dn} from G before computing a clearing
motion, we must take care that each connected component
of G \D has at least as many free cells as it has cells in C.

In the next section, we use the technique of removing cells
from the grid before computing clearing motions to “fix” the
position of some shuttles. In practice, the same can be done
to prevent interference with input or removal operations, en-
suring that shuttles being processed do not move uninten-
tionally.

Output Preparation

We now use the clearing algorithm to prepare the removal
of shuttles from storage. To this end, we create an output
buffer, which places one shuttle at output o ∈ O and (possi-
bly) additional shuttles we want to remove close to it. Then,
whenever the shuttle on o is removed from the system, we
place a new shuttles from the buffer on o.

An o,D output buffer for output cell o ∈ O and a set of

407

requested shuttles D ⊆ S is a connected set of cells Bo ⊆ G
with o ∈ Bo in which each cell contains a requested shuttle,
i.e. ∀(x, y) ∈ Bo : P−1((x, y)) ∈ D. Note that at least one,
but not necessarily all shuttles from D must be part of the
buffer. An o,D output preparation task is a plan that creates
such a buffer. When the shuttle on o is removed from the
system (i.e., it is removed from S, D, and physically), o
becomes free, shortly violating the output buffer condition
that all output buffer cells must contain a shuttle from D. To
restore the condition, we compute a Bo-spanning shortest
path tree rooted in o. We then choose an (arbitrary) leaf l
in this tree and perform a push move on the l, o-path in the
tree. The push move clears leaf l and we remove it from
the output buffer. At the same time a new shuttle from D is
placed on o. Once the last leaf is removed, either D is empty
and the output is complete, or a new output preparation task
for o and the remainder of D is performed, until all shuttles
in D are removed from storage.

We compute an o,D output preparation task as follows.
First, we find a shortest P (d), o-path for some shuttle d ∈ D.
Let M be the set of cells on that P (d), o-path. We partition
M = MD ∪MC into cells occupied by a shuttle in D, that
is MD = {g ∈ M : P−1(g) ∈ D} and all other cells, i.e.
MC = M \MD. We then compute a MC-clearing motion in
G\MD. Removing MD from G before computing the clear-
ing motion ensures that no shuttle from D which is located
on the path changes its position due to the clearing motion.
By executing the clearing motion, we clear the path of all
shuttles not belonging to D. Thus, the remaining shuttles
on the path all belong to D. We now move these remain-
ing shuttles towards o until they are placed on a connected
subset of M which includes o and contains no free cell, thus
forming an output buffer.

In the experimental section we use a layout where all out-
put cells are placed at the bottom row. This row is not used
for storage purposes. That is, when we perform an input task
or clearing operation, we do not consider the bottom row as
possible target locations. For an output location (xo, 1) ∈ O
we choose a column with x ≤ xo containing at least one
shuttle from D. We use this column as the vertical segment
together with the bottom row as the horizontal segment of
our P (d), o-path for the output buffer creation. We then do
the same for a column with x > xo, providing a second
branch in the shortest path tree of the output buffer. In this
manner we execute output preparation tasks for a column to
the left and right of the output in alternation before the re-
spective other branch is empty, allowing continuous output
at most times. We illustrate this column-based strategy to
create an output buffer in fig. 7.

We have now discussed methods for solving the storage-,
clearing-, and output preparation tasks stated as our problem
definitions. In the last part before the experimental section
we take a look at layout considerations, the placement of in-
and output cells and scalability.

In- and Outbound Locations

The placement of in- and output cells has a major influence
on all key aspects of our system. As this placement is largely
independent of the overall plant design, it stands to reason

d1

d2

d3

d4

d5

o

(a) Request multiple shuttles
di at once

d1

d2

d3

d4

d5

o

(b) Clear a column of non-
requested shuttles

d1

d2

d3

d4

d5

o

(c) Create buffer by moving
d1, d2 towards output

d1d2

d3

d4

d5

(d) d1, d2 buffered; ready to
proceed with next column

Figure 7: Column-based output buffer creation. We use the
bottom row exclusively as output buffer.

that we can influence it within certain bounds. Assuming
this flexibility, what are good positions for in- and output
cells? We first should consider some restrictions: the in-
and output cells must be placed at the border of the grid,
placing them in the middle is usually not an option. Also,
using the same cell for both in- and output is not possible
in many situations, as different subsequent systems are con-
nected. Other than that, we want to minimize energy con-
sumption and the number of required interconnection points
(i.e., minimize |I|+ |O|) while maintaining the required per-
formance.

The typical layout provides input at one side and output
at the other side of the storage facility. This layout is often
due to the benefit created by one-way roads in conventional
storage facilities. In our case, one-way roads create little to
no benefit, as we perform input operations via push moves,
not requiring roads at all.

If our storage is not fully utilized, we do not occupy all
storage positions, but rather choose those with small labels.
In a typical storage, the design capacity exceeds the aver-
age utilization by far. In our example, the design capacity
is 1950 pieces of baggage, but at most 595 pieces are stored
at once on the average day (with significantly lower num-
bers in the morning and evening). Hence, to minimize en-
ergy consumption, we want to choose I and O in a way that
creates many “cheap” locations, i.e., cells with low label.
This is achieved by placing in- and outbound locations at the
same side of the grid. In doing so, we reduce the distance of
in- and output locations, i.e. the minimal label value, when
compared to a layout with I and O placed at opposing sides
of the grid.

If the push-move paths of multiple input operations over-
lap, they become interdependent, and not all transitions of
the push moves can be executed simultaneously. This re-

408

...
...

...

. . . o . . . o . . . o . . .

. . . i . . . i . . . i . . .

W
2|I|

W
|I|

W
|I|

A1 A2 A3 A4

W
H

(a) In- and output cells placed at opposite sides, allowing one-way
roads optimizing speed.

...

. . . o . . . i . . . o . . .
W

2(|I|+|O|)
W

|I|+|O|
W

|I|+|O|

A1 A2

W
H

(b) In- and output cells placed at the same side, minimizing their
distance to optimize energy consumption in average load situa-
tions.

duces overall input speed and impairs scalability. The same
problem occurs in the output preparation task when the
push-move paths of the clearing-motions, used for output
buffer creation, overlap. To eliminate both in- and output
dependencies, we partition our grid into parts containing one
in- and one output each, basically dividing G into individual
stores, which we call areas. Each area provides enough free
cells to create its own output buffer, eliminating the need to
perform push moves between different areas. We still allow
input operations to use push move paths spanning multiple
areas if the area assigned to the input cell is already full.
However, for input operations distributed uniformly among
all input cells, this is an uncommon event.

In the remainder of the paper we demonstrate the practi-
cal applicability of our approach in a simulation using real-
world data.

Simulation Model

We use early baggage store data of a major European inter-
national airport to evaluate our system. In a nutshell, the
baggage store works as follows. Pieces of baggage arrive at
random intervals at given inbound locations. When a piece
of baggage assigned to input cell (x, y) ∈ I arrives, two
possibilities arise: either (x, y) is free, then we add a new
shuttle s to S with P (s) = (x, y), or (x, y) is occupied by
another shuttle, then we add s to an input queue associated
with (x, y). In the latter case, s will be added to S as soon
as (x, y) is free and no shuttles precede it in the given input
queue. Once the shuttle is added to S, we wait three seconds
to simulate a loading operation, after which we clear (x, y)
by executing a storage task.

Each piece of arriving baggage has a flight number. We
use the flight number to partition S into request sets: S =
{F1 ∪ . . .∪Fn}. At some point in time (the “begin baggage
transport”-time), a buffer outside the early baggage store is

...
...

...
...

...

o o o

i i i

W
2|I|

W
|I|

W
|I|

W
H

(c) Naı̈ve layout used as point of reference and comparison to con-
ventional shuttle-based systems.

Figure 8: The three layouts used in the simulation runs.

assigned to the flight. In this buffer, the baggage for the
flight is collected before being removed from the baggage
handling system. However, in the general case the capac-
ity of this buffer is less than the capacity of the airplane.
We therefore cannot remove all stored baggage associated
with the flight at once. Instead, the baggage for one flight
is requested in several blocks over 30 minutes to 3 hours,
mainly depending on the flight size and the portion of bag-
gage placed in the early baggage store. We should note
that all output cells are connected to the same conveyor; we
therefore can choose the output location freely. The layouts
we analyze are divided into storage areas allowing indepen-
dent in- and output, as described in the previous section, la-
belled Ai in figs. 8a and 8b. When k shuttles for flight Fi are
requested for output, we proceed as follows. For each output
o ∈ O we select a column Co := (xp, y) : 0 < y ≤ H be-
longing to the respective output’s storage area that contains
the most shuttles in Fi. We then perform for each output
o ∈ O an o, P−1(Co)∩Fi-output preparation task. If a stor-
age area for an output does not contain shuttles belonging to
Fi or if k is exceeded, we skip the output or end the proce-
dure, respectively, and only prepare a subset of shuttles from
the last column for output so as not to exceed k. The shuttles
placed on the output cells by the output preparation task are
removed three seconds after they finished their last transition
to simulate an unloading operation. After their removal, we
place the next shuttle from the buffer on the output cell as
described in the “Output Preparation” section. If less than k
shuttles were prepared, we execute the next output prepara-
tion task before the output buffer is empty, so as to minimize
the idle time of output cells.

Careful analysis of current real-world data shows that
the time between two flights (i.e., between two “begin bag-
gage transport”-signals) can be modelled as a non-stationary
Poisson process. Flight size follows a time-dependent beta-
binomial distribution. Baggage input times, too, follow a
non-stationary Poisson process.

To validate the layout w.r.t. storage capacity and perfor-
mance we use the data of maximum-load days (w.r.t. all
days of the year 2014) as simulation input. Once sufficient
performance is verified, data for average-load days is used to
determine expected energy consumption. This is important
as larger storage facilities usually imply higher energy rates
to operate, a property we tried to mitigate with the layout
shown in fig. 8b. The design capacity is 1950 shuttles/pieces

409

of baggage. On the average day, 4941 pieces of baggage
are removed from storage. The amount of added baggage
is almost equal, but due to overnight baggage not precisely
the same. Baggage that entered the store before 00:00 is
present in the simulation, but its motions before 00:00 are
not counted. Similarly, baggage that is left in the store af-
ter 24:00 occurs, but is not included when computing aver-
ages. The used capacity on the average load day peaks at
595. On the maximum load day, 10040 pieces of baggage
are removed from storage, and the used capacity is 1939.

Results

We performed simulation runs for three layouts, depicted
in fig. 8, containing a same-side and two opposite-side I/O
placement strategies. We implemented a naı̈ve storage strat-
egy depicted in fig. 8c as a point of reference. It stores the
shuttles in columns with a road-map connecting all storage
locations. Shuttles may not travel to the output cell as long
as it is occupied and we cannot keep shuttles waiting for
their removal on the road-map, as this would block access
to other shuttles and free storage locations. We therefore
add a buffer area near the output cells to achieve sufficient
output speed in this layout. We would use a similar sys-
tem for a “conventional” shuttle-, AGV or forklift-operated
warehouse, as clearing a path through goods without own
actuators would be too time- and energy consuming. Lay-
outs (a) reserves two, layout (b) only one row which are
not used for storage (except as output buffer). Similarly, all
columns containing an input cell are only used to move shut-
tles, not to store them. Each storage area Ai in fig. 8 is as-
sociated with one or two outputs in layout (b) or (a) respec-
tively and reserves, for a H cell heigh layout, H − 1 cells
to perform output preparation tasks. This way, all storage
areas can perform independent, i.e. parallel, output prepa-
rations. The empty row connecting output locations greatly
improves output speed, as we do not have to clear it in every
output preparation task. The free columns at the input cells
increase input speed by reducing the dependencies between
output buffer creation and storage tasks.

We provide a comparison to the naı̈ve approach (and, to
a certain extent, the existing, not shuttle based system) as
evaluating other, shuttle-based systems as reference proved
problematic. The STRIPS system, as an example for a logic
based, coupled & centralized planner, has exponential run-
ning time if used with our transition operator: to apply it,
two preconditions must be met, namely the source cell must
contain a shuttle while the destination cell must be free.
Similarly, two postconditions hold after the transition, stat-
ing the reverse. (Bylander 1991) showed that the STRIPS
problem with two pre- and two postconditions is NP-hard,
making it unsuitable for the number of shuttles we have to
handle. The polynomial-time planners discussed in the Re-
lated Work section, on the other hand, lack sufficient evi-
dence that they meet the performance requirements on the
logistics level. For example, the approach by (Gue and Kim
2007) requires 3 to 5 sequential transitions to move a shuttle
by a single cell towards its goal. If a shuttle has an aver-
age distance of 10 cells to o and we assume 4 consecutive
steps on average to move the shuttle one step forward, us-

Layout Load |I| |O| IQ Steps % used
1:10 (a) max 4 4 4 31.6 82.7%

avg 4 4 3 23.5 82.7%
(b) max 4 5 52 31.7 87.6%

avg 4 5 3 19.7 87.6%
(c) max 5 5 35 33.6 53.1%

avg 5 5 2 28.9 53.1%
1:6 (a) max 5 5 5 35.8 81.5%

avg 5 5 2 27.9 81.5%
(b) max 4 5 91 30.3 86.9%

avg 4 5 3 17.6 86.9%
(c) max 5 5 18 36.8 57.5%

avg 5 5 2 32.6 57.5%

Table 1: Simulation results.

ing this approach to move the shuttle to o takes the time of
40 transitions. Further assuming an average cell distance of
1m and acceleration of 1m/s2 we get a total transition time
of 80 s. For a 3 s shuttle removal time, we would need to
move 27 shuttles simultaneously towards o (per storage area)
to achieve near-optimal utilization of the outbound location.
Which leads to the new problem of coordinating these mo-
tions in a conflict-free way while avoiding further delays.

All layouts use the same cell dimensions of 0.8m by
1.2m, or approximately 1m2 per cell. We assume that shut-
tles have a maximum speed of 2m/s and a maximum accel-
eration of 1m/s2, and that rows or columns of shuttles may
move simultaneously when travelling in the same direction.
We also assume that each piece of baggage arrives on its
own shuttle and leaves the system with it by following the
same circular flow as todays baggage trays. Most motions
were made to an adjacent cell; for longer paths, multiple
transitions in the same direction are combined where pos-
sible to avoid multiple acceleration-deceleration cycles and
improve overall speed. Collision detection is used to en-
sure that no physically impossible motions are performed as
a consequence of implementation errors (and indeed, none
were detected). Table 1 shows the results for maximum-
(“max”) and average-load days (“avg”). If an input request
is made while no input cell is free, the baggage is added
to an input queue as stated above; the maximum combined
length of all input queues is given in column IQ. The av-
erage number of transitions (a good approximation for the
travelled distance in meters) for each piece of baggage is
contained in column “Steps”.

These scenarios contain the minimal number of I/O po-
sitions required to achieve the necessary speed. We should
note that 4 input and 4 output cells is the lower bound; with
only 3 in- or output cells, the speed would be insufficient
even if all in- and outputs were to operate at 100% (i.e., no
delays for serving new requests) at peak time intervals. This
is assuming an effective output time of 5 s per shuttle, con-
sisting of 2 s motion onto the output cells and 3 s removal
time.

The naı̈ve implementation already surpasses the current
system regarding the space requirement, with 3675 cells of

410

roughly 1m2 each versus 5150m2 of the conventional sys-
tem3. A thorough comparison of energy consumption would
require the analysis of a specific hardware platform. Nev-
ertheless we can perform a back-of-the-envelope calcula-
tion: the current system requires approximately 500 kWh or
1.8GJ per day, largely independent of the amount of stored
baggage. When performing 33.6 transitions on the maxi-
mum load day with 10040 pieces of baggage, each of the
337344 resulting steps may take 5.335 kJ to be on par with
the conventional system. Assuming a combined weight of
shuttle and baggage of 200kg, the required output energy of
the engine is approximately taccel ·200 kg ·1m/s2 ≈ 0.2 kJ,
neglecting friction, per step. Thus, as long as the shuttles
provide an engine with an overall efficiency factor of at least
3.7%, energy consumption is also improved.

The combined motion- and destination planning strategies
presented yield results far superior to the naı̈ve implementa-
tion with a complete road-map. The latter needs 65% more
space, 47% more energy (regarding the average load day)
and 1-2 additional interconnection points.

Furthermore, the ratio of consumed energy per stored
item on maximum load days (i.e., design capacity) and av-
erage load days is vastly improved: in the layout with as-
pect ratio 1:10, on an average day we require 86% of the en-
ergy consumed on a maximum load day using the naı̈ve im-
plementation for storing a single piece of baggage (i.e., the
combined input and output operation). Layout (b) improves
this ratio to 74%. Using layout (a), we can further improve it
to 62%, thus providing an efficient way to exploit lower-load
situations. When accounting for the lower number of I/O
operations, the average load day only requires 31% of the
energy consumed on the maximum load day, even though
we store almost 50% of the goods.

Conclusion

We presented a framework to manage a large fleet of shuttles
in a high-density storage environment. To our surprise, the
optimization of energy consumption and space requirement
are not competing, but go hand in hand: reserving a road-
map exclusively for motion purposes increases the distance
between input, output and storage locations. We have shown
in our simulation that this increase in travelled distance is
larger than the energy required to perform evasive motions
to retrieve goods without road-map access. The small dif-
ference in performance, space requirement and energy con-
sumption between the two aspect ratios demonstrates the ro-
bustness of our approach regarding changes in layout.

In comparing our approach with a road-map based imple-
mentation, we have shown an improvement not only regard-
ing the existing system, but also a benefit over conventional
shuttle-based systems. The benefit of reduced space require-
ment, which partly offsets higher investment costs for more
shuttles, combined with the improved energy requirement,
shows a clear advantage of storing each good on its own
shuttle.

3While additional (I/O-)equipment is not included in this figure,
the size of the conventional system, too, is given as a net value. The
gross size is approximately 9500m2.

References

Ben-Shahar, O., and Rivlin, E. 1998. Practical pushing
planning for rearrangement tasks. IEEE Transactions on
Robotics and Automation 14(4):549–565.
Bylander, T. 1991. Complexity results for planning. In
Proceedings of the 12th International Joint Conference on
Artificial Intelligence - Volume 1, IJCAI’91, 274–279. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
de Wilde, B.; ter Mors, A. W.; and Witteveen, C. 2013.
Push and rotate: Cooperative multi-agent path planning. In
Proceedings of the 2013 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS ’13,
87–94. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Dogar, M., and Srinivasa, S. 2011. A framework for push-
grasping in clutter. In Proceedings of Robotics: Science and
Systems.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Gue, K. R., and Kim, B. S. 2007. Puzzle-based storage
systems. Naval Research Logistics 54:556–567.
Hopcroft, J. E.; Schwartz, J. T.; and Sharir, M. 1984. On
the complexity of motion planning for multiple independent
objects; PSPACE hardness of the warehouseman’s problem.
The International Journal of Robotics Research 3(4):76–88.
Lindzey, L.; Knepper, R. A.; Choset, H.; and Srinivasa, S. S.
2014. The feasible transition graph: Encoding topology and
manipulation constraints for multirobot push-planning. In
Algorithmic Foundations of Robotics XI, 301–318.
Luna, R., and Bekris, K. E. 2011. Efficient and com-
plete centralized multi-robot path planning. In Borrajo, D.;
Likhachev, M.; and López, C. L., eds., SOCS. AAAI Press.
Parsons, D., and Canny, J. 1990. A motion planner for mul-
tiple mobile robots. In International Conference on Robotics
and Automation, 8–13. IEEE.
Peasgood, M.; Clark, C. M.; and McPhee, J. 2008. A com-
plete and scalable strategy for coordinating multiple robots
within roadmaps. IEEE Transactions on Robotics.
Stilman, M.; Nishiwaki, K.; Kagami, S.; and Kuffner, J.
2007. Planning and executing navigation among mov-
able obstacles. Springer Journal of Advanced Robotics
21(14):1617–1634.

411

