
Cell Design and Routing of Jobs in a
Multisite Make-to-Order Enterprise

Manoj Gupta, R. P. Jagadeesh Chandra Bose, and Partha Dutta
Xerox Research Center India

Bangalore 560 103

Abstract

Make-to-order is a production process where the businesses
build the product only after an order from the customer is
received. A large enterprise may have many such “make-to-
order" shops distributed geographically. The cost and time
for executing a job in each of these shops may vary. There-
fore, it is important for a multisite enterprise to judiciously
decide on where to process the jobs. Ideally, an enterprise
would like to minimize the cost (or maximize the profit) while
meeting the deadlines and at the same time maximize the uti-
lization of the shops. The time to execute jobs can vary based
on how the shops are laid out (the design of shops) and the de-
cision of how jobs are routed (among the various shops). Pre-
dicting (or estimating) the likely turnaround time (and cost)
for various jobs across the different shops enables the routing
decision process. In this paper, we address the two important
problems of (i) cell-design and (ii) turnaround time predic-
tion and routing of jobs across various shops. We propose (i)
a novel approach based on graph partitioning and set cover
heuristic to generate a set of cell designs for a shop, (ii) a
framework based on machine learning techniques to predict
the turnaround time of jobs across various shops, and (iii) a
routing algorithm based on dynamic programming and local
search heuristic to route jobs such that the overall profit is
maximized. We present results of applying the proposed ap-
proaches on real-life datasets from a multisite print shop en-
terprise.

Introduction

With the increase in the demand for customized products,
Make-to-Order (MTO) processes are becoming prevalent in
multiple industries. Make-to-order (sometimes, also called
build-to-order) is a production process where the businesses
build the product only after an order from the customer is
received (Hendry and Kingsman 1989). MTO allows order
specific customization of the product at the cost of higher
turn around time (TAT) to deliver the product, and it is preva-
lent in industries that require a high degree of customiza-
tion, such as apparels, automobile parts, and print shops. In
a MTO shop jobs arrive over time, and each job is primarily
defined by its arrival time, due time (deadline), the functions
that need to be performed, and the quantity of required re-
sources for each function. The shop has a set of machines

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and operators that cater to these jobs, where the characteris-
tics of each machine are mainly defined by the functions it
can perform, its processing speed and setup time. Given that
MTO processes typically have significant turnaround time,
one of the primary objectives of the shop is to minimize the
number of late jobs (jobs that are completed after their dead-
line) while minimizing the cost of executing the job. This
work address the problem of reducing late jobs when batches
of jobs arrive at an enterprise with multiple MTO shops to
serve the jobs, also called multi-site enterprise.

The problem of reducing late jobs in the above setting
can be addressed in three important ways. First, designing
the individual shops in a way such that the completion time
for common jobs are reduced; second, intelligently routing
a job to a shop that can complete the job within its deadline;
and finally, improving the internal operation of each shop.
The third approach has been extensively studied in earlier
scheduling literature (Rai et al. 2009; Ebadian et al. 2009).
Our work focuses on the first two approaches for improving
the performance of multi-site MTOs.

First, we investigate how can we better design a shop to
reduce the late jobs. The shop layout, i.e., how machines
are positioned in the shop, has a significant influence on the
processing time of jobs because delay is incurred to move
jobs from one machine to other. One of the important fac-
tors in processing time of jobs is inter-cellular movement,
the movement of jobs between machines that are placed in
different cells (rooms), as significant amount of time and ef-
fort has to be spent for moving the jobs between cells. Given
a typical set of jobs that are processed in a shop, the set
of machines available in the shop, and the number of cells
K, the cell design problem refers to the distribution of ma-
chines into K cells such that the number of late jobs and
inter-cellular movement are minimized.

Next, we consider the routing problem. A large enterprise
may have multiple MTO shops distributed geographically
(i.e., a multi-site enterprise). Such an enterprise typically has
a centralized mechanism to accepts jobs and jobs can be pro-
cessed across any of the sites. The cost and time for execut-
ing a job in each of these shops may vary. Therefore, it is
important for a multisite enterprise to judiciously decide on
where to process the jobs. Ideally, an enterprise would like to
minimize the cost (or maximize the profit) while meeting the
deadlines and at the same time maximize the utilization of

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

394

the shops. The decision of how jobs are to be routed (among
the various shops) has a significant influence on this objec-
tive. Predicting (or estimating) the likely turnaround time
(and cost) for various jobs across the different shops enables
the routing decision process.

In this paper, we address the two important problems
mentioned above, viz., (i) the cell-design problem, (ii)
turnaround time prediction and routing of jobs in a multi-site
enterprise. Specifically, we make the following three contri-
butions:

1. Introduce the cell design problem, and an algorithm for
it based on graph partitioning and set cover heuristics to
generate a set of cell designs for a shop,

2. a framework based on machine learning techniques to pre-
dict the turnaround time of jobs across various shops, and

3. a routing algorithm based on dynamic programming and
local search heuristic to route jobs such that the overall
cost is minimized (or overall profit is maximized).

Background

Although the aspects presented in this paper can be applied
in any make-to-order shop scenario, we use a ‘print shop’
as an example make-to-order shop. Let J be the set of jobs
to be processed in a shop. Each job, J ∈ J is defined by
certain characteristics such as: the arrival time of the job,
the expected due time (deadline) of the job, a list of functions
that needs to be performed/executed for its processing, and
the quantity/units required for each function.

Table 1 depicts a few example jobs and the func-
tions required for the jobs to be completed. For ex-
ample, job J1 arrived on Sep 26th, 2015 at 2:32 pm
and its deadline is Sep 29th, 2015, 11:00 am (i.e., the
job has to be completed before this time). This job re-
quires the execution of functions BWPrinting8x11,
CoverBind, Packaging, and UPSLabeling in that se-
quence with quantities 80,1,1, and 1 respectively, i.e., 80
sheets of BWPrinting8x11, 1 unit each of CoverBind,
Packaging, and UPSLabeling need to be performed.
The job is routed through machines that can serve these
functions. The turnaround time (TAT) of a job is defined to
be the time difference between the actual completion time
and the arrival job of the job.

Let FJ denote the sequence of functions that need to be
processed for the job J and let FJ denote the set of all func-
tions in J , i.e., FJ = ∪J∈JFJ

Each shop has a set of machines that can process func-
tions required for a job. Each machine serves a specific set
of functions and a job might have to be served by multiple
machines to cater to all of its required functions. Table 2 de-
picts an example of machines in a shop and the functions that
they support. A machine can serve more than one function
and there may be many machines that can serve a particu-
lar function. Let M be the set of machines in a shop. Each
machine M ∈ M serves a set of functions FM ⊆ FJ . Let
FM denote the set of collections of functions supported by
all machines in the shop, i.e., FM =

⋃
M∈M{FM}.

Related Work

Automated cell design has been an active area of re-
search (Rai et al. 2006; Rai 2011; Jacobs 2012). However,
those studies focussed only on partitioning of functions into
cells and not machines into cells. The proposed approach in
this paper partitions machines into cells and also generates a
family of cell designs with varying trade-off between num-
ber of late jobs and inter-cellular movement. Furthermore,
our approach uses simulation to validate generated cell de-
signs and to improvize them iteratively.

Scheduling jobs within a print shop has been studied
as one of the job shop scheduling problems. For instance,
in (Rai et al. 2009), the authors present scheduling algo-
rithms to reduce cost and turnaround time in a single print
shop as part of a larger print shop productivity improve-
ment solution. A key topic in our work is routing jobs to
multiple print shops, without altering the scheduling within
each print shop. Some recent work (Zhou, Rai, and Do
2011; Kulkarni and Manohar 2015; Paul, Muniyappa, and
Manohar 2014) have considered routing jobs to multiple
print shops, with the aim of reducing total completion time
(sum of turnaround time for a job within a shop, and the
transportation time) and cost. However, these previous pa-
pers rely on an elaborate simulation system for a print shop
for estimating the completion time of a job, whereas we
consider a machine learning based approach using historical
data to predict the turnaround time of jobs. A data-driven ap-
proach has the advantage of being more robust against dif-
ferent (and possibly, unknown) intra-print shop scheduling
algorithms, and unreliability of machines and human opera-
tors. Moreover, unlike previous work, our routing algorithm
is based on an optimal dynamic programming solution to an
idealized routing problem, which is subsequently modified
through local search to arrive at a good solution for the rout-
ing problem in a practical setting (where scheduler may be
unknown, and machines and operators may be unreliable).

Although prediction of waiting times in queueing theory
is well studied, there is hardly any literature on predicting
turnaround times, especially in the print shop domain. (Chen
2003) presents an approach using fuzzy backpropogation
to predict the output times in a wafer fabrication scenario.
However, the features that are relevant for a print shop are
different from that of the wafer fab. Given domain knowl-
edge about the processes, (Van der Aalst, Schonenberg, and
Song 2011) presents an approach to predict the turnaround
time/completion time of a process instance using process
mining. However, the approach presented in this work does
not require the knowledge of any process models and relies
as a black box approach.

Knapsack problems (KP) have been extensively used for
modeling job assignment or scheduling over multiple pro-
cessors. In particular, three variants of knapsack problem,
multiple, multi-dimensional, and multiple choice, have been
used to model multi-processor scheduling problems under
various constraints (Kellerer, Pferschy, and Pisinger 2004;
Martello and Toth 1990). We model the idealized multi-site
routing problem as a multiple dimensional multiple knap-
sack problem (MDMK). Here, each print shop corresponds
to a knapsack, and within each print shop there are capac-

395

Table 1: Example jobs with their characteristics
Jobs Arrival Time Due Time Function Sequence Quantity

J1 09-26-2015 02:32:00 PM 09-29-2015 11:00:00 AM <BWPrinting8x11, CoverBind, Packaging, UPSLabeling> <80, 1, 1, 1>
J2 09-29-2014 05:56:00 AM 09-30-2014 02:00:00 PM <BWPrinting8x11, ColorPrinting8x11, ThreeHoleDrilling, Packaging, UPSLabeling> < 45, 23, 1, 1, 1>
J3 09-29-2014 01:19:00 PM 10-01-2014 11:19:00 AM <BWPrinting8x11, Punch, CoilBind, Packaging, UPSLabeling> < 36, 1, 1, 1, 1>

Table 2: Example machines and the functions that they sup-
port.

Machine Functions

BWPrinter1 BWPrinting8x11, BWPrinting8x14, BWPrinting11x17
BWPrinter2 BWPrinting8x11, BWPrinting8x14
ColorPrinter1 ColorPrinting8x11, ColorPrinting8x14, ColorPrinting11x17
CoverBind1, CoverBind
CoilBind1 CoilBind
HoleDriller1 TwoHoleDrilling, ThreeHoleDrilling, FiveHoleDrilling
Punch1 Punch
Packaging1 Packaging

ity constraints for each function, where each function cor-
responds to a dimension of the knapsack. Although there
has been significant work on studying multiple KP, multi-
dimensional KP, and multiple choice KP, the more general
MDMK problems have been much less studied. In (Song,
Zhang, and Fang 2008), the authors use a MDMK problem
to model spectrum allocation in cognitive radio networks.
However, the problem presented in (Song, Zhang, and Fang
2008) neither considers different profits for different job and
shop pairs, nor different capacity values for different func-
tion and shop pairs.

Cell Design

As discussed in the introduction, the turnaround time of a
job is influenced by the processing capability of the ma-
chine (speed) to which the job has been routed to and the
time spent in moving the job from one machine to the other.
Typically in shops, there are many rooms (cells) in which
the machines are to be placed. Each cell has a limitation
on the number of machines, (D), it can accommodate, e.g.,
there can be at most D = 4 machines in a cell. An im-
proper assignment of machines to cells results in frequent
movement of jobs between cells impacting the turnaround
time and thereby lateness of jobs. This movement of jobs be-
tween cells is referred to as inter-cellular movement. In this
section, we address the cell design problem, i.e., the prob-
lem of assigning machines to various cells in a shop, such
that the number of late jobs and inter-cellular movement
are minimized. Given M machines in a shop and K cells,
the problem of cell design is to assign the machines M to K
cells such that no cell has more than D machines.

The cell design problem in general is NP-Hard. We
present a novel approach based on graph partitioning and set
cover heuristic to generate a set of cell designs with varying
number of late jobs and inter-cellular movement and evalu-
ate them using a widely used commercial printshop simula-
tor (Rai et al. 2009; Zhou, Rai, and Do 2011). Our method
can be broadly divided into two steps (i) generate an initial
cell design and (ii) improvize generated cell design, which

are explained in detail below.

Generate Initial Cell Design

Partitioning Functions to Cells To partition machines M
into K cells, we first partition functions FJ into K cells.
We build a weighted graph G = (FJ , E,W) where the
set of nodes correspond to the set of functions FJ and the
edges correspond to the sequences in which the functions
are to be processed in the job list J . There exists an edge
eij ∈ E between nodes fi, fj ∈ FJ if the functions fi
and fj are to be executed in sequence in any of the jobs
J ∈ J . In other words < fi, fj >∈ FJ , for some J ∈ J
(see Figure 1). The weight wij of the edge, eij = (fi, fj),
is set to the cumulative frequency of executing this function
sequence across all jobs in J .

f1

f2

f3

f4

J1

J2

J3

J3

Figure 1: A graph showing relations between jobs and func-
tions. To completed job J1, function f1 and f3 are required
(in the same order), so there is an edge between f1 to f3.

f1

f2

f3

f4

J1

J2

J3

J3

Cell 1

Cell 2

Figure 2: The output of graph partitioning. Here the number
of machines = |M| = 6 and D = 3. So the number of par-
titions required is two. There is only one edge moving from
Cell 1 to Cell 2 (edge corresponding to job J2)

We then partition this graph G into K cells such that the

396

weighted sum of edges crossing over cells is minimized1.
Intuitively, the crossing over of edges signify the move-
ment of jobs from one cell to the other. By modelling the
cell design problem as a graph partitioning problem, we ad-
dressed one of our objectives, that of minimizing the in-
ter cellular movement. The graph partitioning results in K
partitions where each partition correspond to a cell. Let
C = {C1, C2, . . . , CK} be the K cells. Each cell C ∈ C
contains a set of functions FC ⊆ FJ . For example, see Fig-
ure 2.

Mapping Machines to Partitioned Functions So far we
have partitioned the functions FJ required to be performed
for the jobs. However, our cell design problem should ad-
dress the partitioning of machines to cells. We model this
problem of assigning machines to cells as a variant of the
classical set cover problem.

Recall that each machine M ∈ M can perform a specific
set of functions, FM and FM denotes the set of collections
of functions supported by all machines in the shop. We need
to cover all the functions, FJ , in the job list. This is the
classical set cover problem where we have a universe of el-
ements (in this case, FJ). Also, there is a collection of sets
FM, such that each set FM ∈ FM represents a subset of
FJ . The aim of the set cover algorithm is to find a set of
machines for each cell that can cover all the functions in that
cell.

We propose an iterative greedy set cover algorithm that
can achieve the above objective (see Algorithm 1).

while there exists an uncovered function in some cell and
there exists some unassigned machine do

Let M be an unassigned machine that can perform
maximum number of uncovered functions in some cell,
say C
if number of machines assigned to C is less than D then

Assign M to cell C
end

end

Algorithm 1: A set cover algorithm for assigning machines
to cells

In each iteration we find a machine that can perform max-
imum number of functions in some cell subject to the condi-
tion that the number of machines already assigned to this cell
is less than D. This is an important condition because we do
not want the number of machines in any cell to be greater
than D. We assign this machine to the chosen cell. If we
exhaust all the functions or all the machines, then we stop.
There are nice theoretical guarantees on the performance of
the set cover algorithm though we do not delve upon it in
the current paper. Note that it may be the case that we may
not cover every function in a cell but the maximum num-
ber of machines that could be assigned to a cell is reached.
The uncovered functions will be taken care of by machines
assigned to some other cell.

1Graph partitioning tools such as (Karypis and Kumar 1995)
can be used for this purpose.

Dealing with Unassigned Machines There could be a
scenario where we have covered all the functions but have
not assigned all the machines. This means that some cells
have less than D machines. Even though these cells have
less than D machines, all their functions are covered. We
now assign these unassigned machines as described in Al-
gorithm 2.

foreach cell C ∈ C where the number of assigned machines is
less than D do

while there exists some unassigned machine do
Let M be an unassigned machine that can perform
maximum number of functions in C
Assign M to cell C and set M to have been assigned

end

end

Algorithm 2: Assigning unassigned machines

Note the critical difference between this algorithm and the
classical set cover algorithm. In this algorithm, we do not
want to cover all the functions as they are already covered
by the set cover algorithm. So, we do the next best thing, for
each machine M we choose a cell in which it can perform
maximum number of functions subject to the condition that
the number of machines in this cell is less than D. This cell
already has a machine M ′ that can perform the functions that
M can perform. But by assigning M to this cell, we increase
the number of machines that can perform those functions. At
the end of this, each cell C ∈ C contains a set of machines
MC ⊆ M.

Improving Cell Design using Shop Simulation

The cell design method described so far focusses only on
the inter-cellular movement and did not consider the other
crucial objective of the number of late jobs. In this section,
we address that objective through simulations of the shop
under consideration. For performing simulations, we use a
commercial printshop simulator (Rai et al. 2009; Zhou, Rai,
and Do 2011).

For a given cell design C and a job list J ,
let LATEJOBS(J , C) denote the number of late jobs
and INTER-CELLULARMOVEMENT(J , C) denote the total
inter-cellular movement of jobs. Let UTIL(M, C) denote the
utilization of machine M . These metrics can be obtained by
the simulator upon simulating a job list on a cell design.

Tradeoff between late jobs and inter-cellular move-
ment Achieving both the objectives of cell design (i.e.,
minimizing the number of late jobs and inter-cellular
movement of jobs) at the same time may be difficult.
For example, consider the following cell design (with at
most 2 machines per cell, i.e., D = 2), C = {C1, C2}
where C1={BWPrinter1, Binder1}, and C2 ={BWPrinter2,
Binder2}. Assume that the simulation outputs the follow-
ing metrics on a job list of 30 jobs: LATEJOBS(J , C) =
20, INTER-CELLULARMOVEMENT(J , C) = 0 and the
utilization of various machines to be UTIL(BWPrinter1,
C) = 70, UTIL(Binder1, C)=20, UTIL(BWPrinter2, C)=10,
UTIL(Binder2, C)=10.

397

The number of late jobs in this scenario is quite high
even though the inter cellular movement is 0. One justifi-
cation for this scenario could be that most of the jobs are
directed to cell C1 by the simulator, which is reflected in the
high utilization of machine BWPrinter1 (utilization= 70).
As a remedy, we can move a similar under-utilized ma-
chine, i.e., BWPrinter2 in cell C2 to C1. This transfer in-
creases the number of machines in C1 to 3. Since D = 2,
we cannot have more than 2 machines in any cell. So, we
find any under-utilized machine in cell C1, i.e., Binder1
in this case, and move it to C2. The new cell design Ĉ is
as follows: Ĉ1={BWPrinter1, BWPrinter2}, Ĉ2={Binder1,
Binder2}. Again, we run the simulation on the cell de-
sign Ĉ. In this cell design all the jobs requiring BWPrint-
ing has to go to Ĉ1 for BWPrinting. However, there are
two machines in Ĉ1 that can take much more load. So
the simulation results are as follows: LATEJOBS(J , Ĉ) =

6, INTER-CELLULARMOVEMENT(J , Ĉ) = 10 and the
utilization of various machines to be UTIL(BWPrinter1,
Ĉ) = 40, UTIL(Binder1, Ĉ)=20, UTIL(BWPrinter2, Ĉ)=30,
UTIL(Binder2, Ĉ)=10.

We can see that the number of late jobs decreases from 20
to 6. However, the inter-cellular movement of jobs increases
from 0 to 10, i.e., 10 jobs need to be moved from BWPrint-
ing to Binding (all the other jobs needed either printing or
binding). The above example presents a dilemma to the cell
design problem. Our objective is to minimize both the num-
ber of late jobs and the inter-cellular movement . However,
this objective may not be practical always and sometimes we
may have to sacrifice in one of the parameters (in our case
we are always willing to sacrifice the inter-cellular move-
ment).

Heuristic to balance late jobs Our initial cell design
used graph partitioning technique, that minimizes the inter-
cellular movement. But as the above example suggested, this
may not be the best policy always. Our initial cell design
may lead to higher number of late jobs(as reported by the
simulator). Next, we design a heuristic, broadly based on
the famous heuristic of Kerninghan and Lin (Kernighan and
Lin 1970), to improve it. Algorithm SWAPANDSIMULATE
takes a real parameter τ , whose value can be between 0 and
100 (typically 40 in our experiments). We want the utiliza-
tion value of each machine M to be less than τ for each
improved cell design created by SWAPANDSIMULATE.

We now describe this heuristic in detail. We introduce an-
other parameter α (initially set to a high utilization value
of 90). In the first iteration of our algorithm, we find a ma-
chine M (in cell Ci) such that the utilization of M is greater
than α. If such a machine is found, then we search if there
exists another machine M ′(equivalent to M in another cell,
Cj) with low utilization (UTIL(M ′, C) < τ). If we find such
a machine M ′, then we assert if the total number of ma-
chines in Ci is less than D. If yes, then we can conveniently
move machine M ′ from cell Cj to cell Ci. If not, then we
search for an under-utilized machine M ′′ in cell Ci (with
UTIL(M ′′, C) < τ). If yes, then we swap machines M ′ and
M ′′ from cells Ci and Cj . This ensures that the number of

C ← initial cell design.
α = 90
while α > τ do

Run the simulator on the current cell design C.
if there exists a machine M in cell Ci with
UTIL(M, C) > α then

if there exists a machine similar to M , say M ′ in
cell Cj , such that UTIL(M ′, C) < τ then

if the number of machines in Ci < D then

Move M ′ from Cj to Ci

end

else if there exists machine in Ci, say M ′′,
which is not similar to M and
UTIL(M ′′, C) < α then

Move M ′ from Cj to Ci

Move M ′′ from Ci to Cj

end

end

end
if the cell design C was changed then

Let Ĉ be the new cell design after the change
Run the simulator on the new cell design Ĉ
if LATEJOBS(J , Ĉ) < LATEJOBS(J , C) then

C ← Ĉ
end
else

α ← α− 5
end

end
else

α ← α− 5
end

end

Algorithm 3: SWAPANDSIMULATE(τ)

machines in Ci is exactly equal to D.
Let Ĉ be the new cell design after the change. The quality

of this new cell design is assessed using the simulator. If the
number of late jobs in Ĉ is less than C, then our new cell
design is better. In this case, we adopt Ĉ as the current best
cell design (by assigning C ← Ĉ). If not, then we either have
not been able to swap any machines or even after swapping
our new cell design is not able to better the current cell de-
sign. This may imply that the bottleneck is not the current
machine M but some other machine whose utilization value
is not greater than α but is greater than τ . So, we decrease
the value of α by a constant amount (say, 5) and iterate.

We present the evaluation of the proposed cell design in
the Experiments section. Next, we discuss another important
problem of routing jobs over multiple sites. We will see that
our local heuristic will be used for this problem as well.

Turnaround Time (TAT) Prediction

In this section, we describe a framework for turnaround
time (TAT) prediction for jobs. A TAT prediction model is
learned, one for each shop, based on historical data pertain-
ing to that shop. The learned model can then be used to pre-
dict the likely TAT for future jobs. The predicted TAT is used

398

in the routing decision process (described in the next sec-
tion).

Figure 3: Framework for TAT prediction

Figure 3 depicts the framework for TAT prediction using
machine learning. The basic building blocks are explained
below:

Preprocess: This corresponds to detection of any quality
issues w.r.t the data and identification of outliers, infrequent
jobs, etc. For machine learning models to perform well, a
statistically significant number of samples need to be present
in each of the classes. It could be the case that some job types
are very infrequent; such jobs can be ignored.

Feature Extraction: This corresponds to the definition
and extraction of features, which are the basis for prediction
models. The TAT of a job primarily depends on the:

1. characteristics of the job such as the functions required
and their quantities, the available time to print the job,
etc.

2. characteristics of the shop such as the stations available
for various functions, the processing speed, the operators
available for each of the functions, the duration for which
the stations/operators are available etc.

3. workload at the shop at the time of arrival of a job. The
scheduling of job depends on prior workload (jobs that
are still pending to be executed or under execution).

We define various features to enable the building of a TAT
prediction model.

Function Quantity: A vector of size equal to the number
of distinct functions in all jobs, i.e., l = |FJ |. For each
job, an element of the vector corresponds to the number of
units of the function corresponding to the element in the
job. The function quantity vector of a job J corresponds to
[q1, q2, . . . , ql] where qi denotes the quantity of function i
that needs to be processed.

Workload Vector: A vector of size equal to the number of
distinct functions in all jobs. For each job and for each func-
tion in the job, an element of the workload vector pertaining
to the function corresponds to the cumulative sum of units
of the function of all unfinished jobs that have arrived before
this job. Let UJ denote the set of all jobs that have arrived
before job J and those that are yet to be processed. Then the
workload vector for job J corresponds to [wli, wl2, . . . , wll]
where wli denotes the workload of function i and is equal to∑

O∈UJ
qOi where qOi denotes the quantity of function i in

job O.
Station Vector: A vector of size equal to the number of

distinct functions in all jobs. For each job and for each func-
tion in the job, the element of station vector pertaining to the
function corresponds to the cumulative number of stations
that support the function

Operator Vector: A vector of size equal to the number of
distinct functions in all jobs. For each job and for each func-
tion in the job, the element of operator vector pertaining to
the function corresponds to the cumulative number of oper-
ators that are skilled to process the function

Available time: It is basically the amount of time avail-
able to execute the job since its arrival. It is defined as the
time difference between the due date and arrival date, i.e.,
availabletime = duetime− arrivaltime.

Turnaround time: It is the amount of time taken to fin-
ish the job since its arrival and is defined as the time dif-
ference between the completion time and arrival time, i.e.,
Turnaroundtime = completiontime− arrivaltime

The turnaround time feature is the output variable of the
prediction model.

Variants of available time and turnaround time are also
defined considering the working hours (shifts) of the shop.
Shift adjusted available time is the amount of working
time available for the job to be processed. Shift adjusted
turnaround time is the amount of working time taken to
process the job considering only the working hours of the
shop. Furthermore, the times (both regular as well as shift
adjusted) can be divided into bins of certain size and con-
sidered for learning/prediction. For example, if the available
time is 20 hours and we consider bins of size 3 hours, then
the available time is �20/3� = 7 bins. By considering bins,
our objective of predicting turnaround time boils down to
identifying the “bin" in which the job is likely to get finished.
Since SLAs are mostly written at processing jobs within a
certain duration, a bin based feature is promising to be con-
sidered. For each job, the features defined above can be ex-
tracted and appended as a single “feature vector" with the
TAT based feature as the output feature and fed into a learn-
ing algorithm. The set of all such feature vectors for the data
set constitutes the data matrix.

Learn Model: The problem of predicting the TAT turns
out to be a regression problem. The data matrix defined
above can be subjected to various regression learning algo-
rithms and an appropriate learning algorithm can be cho-
sen based on their performance. We have chosen Artifi-
cial Neural Networks as the learning algorithm. During the
learning phase, the learning algorithm is trained using a k-
fold cross validation technique (where k typically is set to
10). In a k-fold cross validation, the model is trained with
(100 − 100/k)% of the training data and 100/k% of test
data and this is repeated “k" times with each time having a
different set for training and testing.

Validate: The performance of the learning algorithm is
evaluated on how well the learned model is able to predict
the TAT time. We define the accuracy considering up to m-
deviations from the actual TAT (where ‘m’ is typically set
to 2). A predicted output is considered to be correct if the
predicted value is within ‘m’ units from the actual output.
For example, if the actual output (TAT) of a job is 3 bins and
if the learned model predicted it to be 2, 3, or 4, we consider
it to be correct under 1−deviation.

Once a model is learned, any new job can be fed into the
model, which returns its expected TAT as output.

399

Multisite Routing

In this section, we present an approach for determining
how jobs are to be routed across the various shops using
the TAT prediction model described above. We assume that
jobs arrive in batches and all jobs in a batch have the same
deadline. Let l denote the distinct number of functions that
need to be processed, i.e., l = |FJ |. Let m be the num-
ber of shops in the enterprise and let n be the number of
jobs to be routed. Let Wi = [wi1, wi2, . . . , wik, . . . , wil]
denote the quantities of various functions for job i. Let
Zj = [zj1, zj2, . . . , zjk, . . . , zjl] denote the total processing
capacity of various functions in shop j for a certain time in-
terval, i.e., zjk denotes the total processing capacity of func-
tion k. Let pij denote the profit of processing job i at shop j.
Let xij be a variable that denotes whether job i is processed
at shop j; xij = 1 if job i is routed at shop j and 0 otherwise.
Then, the processing capacity of a shop j for a function k re-
sults in the following constraint:

∑
i

∑
k xijwik ≤ zjk. Our

aim is then to increase the total profit for routing the jobs.
Our problem can be formulated as a linear program.

max
∑

i

∑
j xijpij

s.t. ∑
i

∑
k xijwik ≤ zjk

xij = {0, 1}
Our problem is a variant of Multiple Dimension Multi-

ple Knapsack Problem (MDMK) (Kellerer, Pferschy, and
Pisinger 2004). We now present an algorithm for this prob-
lem using dynamic programming approach. We create a
multi-dimensional array B as follows: B[i, A1, . . . , , Am] is
the profit obtained by routing the first i jobs in shops such
that:

• Aj represent the vector [aj1, aj2, . . . , ajl], signifying the
current processing capability at shop j, initially set to Zj .

• for a shop j,
∑

i

∑
k xijwik ≤ ajk.

Note that not all of the first i jobs may routed; some jobs
(say having low profit) may be dropped. As a base case,
B[1, A1, . . . , Aj , . . . , Am] = p1j (job 1 is routed at shop j)
if w1k ≤ ajk (for all k). Assume that we have already calcu-
lated B[i− 1, ·, . . . , ·]. The matrix B can be filled using the
following recursion.

B[i, A1, . . . , Am] = max{
B[i− 1, A1, . . . , Am],

B[i− 1, A1 −Wi, . . . , Am] + pi1,

..,

B[i− 1, A1, . . . , Am −Wi] + pim}
The first element above indicates the scenario where the job
i cannot be routed to any of the shops (due to unavailable
processing capacity) and the later items refer to jobs be-
ing routed to one of the m shops. Note that a job is as-
signed to shop j only if Aj − W ≥ 0. At the end, the cell
B[n,Z1, Z2, . . . , Zm] denotes the optimal profit of routing
n jobs. The above algorithm can be augmented to find the
actual routing of jobs (through backtracking).

Lemma 1 B[i, A1, . . . , Am] is the optimal profit of routing
the first i jobs to m shops where shop j has total processing
capability Aj .

Local Improvement over the Initial solution

Our dynamic programming approach might yield subopti-
mal solutions since it does not take into account the current
load at each shop. For example, assume that a shop already
has many jobs in its queue, when the current batch arrives
for routing. Then, a reasonable approach would be to either
not route or route few jobs to this shop. However, the dy-
namic programming approach does not use this information
of current load while allocation of job. We now describe a
procedure that, starting from the solution given by dynamic
programming, will use our TAT Prediction module to arrive
at a local optimum for the routing algorithm.

Given a list of jobs Ĵ routed at shop j, we first find the
turnaround time for each job. To this end, we use the TAT
Prediction algorithm that has the full knowledge of workload
at each shop. We now do local improvement on the initial
assignment (given by dynamic programming) as follows:

Let Ĵ be the job list assigned to shop j.
Run the TATPrediction Algorithm at shop j and job list Ĵ .
Let LĴ be the set of late jobs at shop j.
while true do

Find a late job i at shop j.
if there exists a shop j′ such that zj′k − aj′k ≥ wik (for
all k), where aj′k is the current processing capacity of
function k at shop j′ before the current batch arrives then

Move the job i from j to j′

end

end

Algorithm 4: A local algorithm to improve routing deci-
sions

Algorithm 4 finds a late job i at shop j and tries to find an
alternate shop j′ such that all the functions required by job i
can be met at this shop.

Experiments and Discussion

In this section, we present and discuss some experimental
results.

Cell Design We performed extensive experiments on the
cell design method presented in the previous section. For
our experiments, we use real data from print shops of a large
document processing company with their known set of ma-
chines M, the job list J , and a parameter, D, signifying the
maximum number of machines in each cell. We present the
results of one such experiment where the shop has 223 jobs
and about 74 machines. We generated designs with varying
number of cells. Figure 4 depicts the influence of number
of cells on the late jobs and inter-cellular movement as ob-
tained from the simulator. We can see that the inter-cellular
movement increases as the number of cells increases. The
number of late jobs tend to decrease for a design with three
cells and increases later for four cells. This could be due to

400

the increased inter-cellular movement. Clearly, from the fig-
ure, we can assess the trade-off between number of late jobs
and inter-cellular movement and made a judicious choice on
cell design (e.g., a choice of 3 cells provides a reasonable
trade-off between between two objectives for this data).

 0

 2

 4

 6

 8

 10

 12

 2 2.5 3 3.5 4
 0

 20

 40

 60

 80

 100

 120

 140

La

te
 Jo

bs

In

te
r-C

ell
ula

r M
ov

em
en

t

Cells

Late Jobs
Inter-Cellular Movement

Figure 4: Influence of number of cells on late jobs and inter-
cellular movement.

TAT Prediction We have evaluated the TAT prediction ap-
proach on several real-data sets obtained from multiple print
shops. We present the results of one such data set from a
large university print shop, which consisted of 3313 jobs.
There were 25 distinct functions in the job list. The shop had
21 stations catering to the 25 functions required for process-
ing the jobs. We have considered shift-adjusted variants of
available and turnaround times and a bin-size of 3 hours. We
processed the raw data and generated features as discussed
earlier (ref. Section TAT Prediction) and learned a artificial
neural network based model. Table 3 depicts a summary of
accuracy results on this dataset using a 10-fold cross valida-
tion. We can see that we are able to achieve an accuracy as
high as 99.3% with a deviation of 2 bins.

Table 3: Accuracy results of TAT prediction approach
Deviation #Correctly Classified Accuracy (%)

0 2600 78.5
1 2953 89.1
2 3292 99.3

Routing Algorithm We evaluate our proposed Dynamic
Programming (DP) with local search routing algorithm and
compare it with the following variants: (1) Greedy Algo-
rithm: The greedy algorithm puts a job in a shop if the shop
can process the job given its current load. (2) Greedy Algo-
rithm + Local Search, which runs the local search algorithm
over an initial solution obtained by the Greedy Algorithm.

We considered 32 jobs in a batch requiring 12 functions
and three shops for this experiment. In order to study the
efficacy of the routing algorithm, we generated 5 additional
batches by modifying their deadlines. In each batch, we re-
duced the available time for each job by 3 hours from its
previous batch. So, the 6th batch has jobs whose available
time is 15 hours shorter than the first batch. Clearly as the

batch number increases, the available times are shorter and
we expect the number of late jobs to increase.

For each job, its processing cost is directly proportional
to the size of the job and the number of function required to
process it. The profit of a jobs is then defined to be a fixed
ratio (say, 0.5) of its processing cost.

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7

Pr
of

it

Batch Number

DP+Local
Greedy

Greedy+Local

(a)

-5

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7

La

te
 Jo

bs

Batch Number

DP+Local
Greedy

Greedy+Local

(b)

Figure 5: Comparison of routing algorithms.

Figure 5 depicts the results of the three routing strate-
gies. We can see that our proposed DP + Local search algo-
rithm maximizes the profit among the variants (Figure 5(a).
The profit of Greedy is constant (at 33) as jobs are same in
each batch (and Greedy assignment is same in each batch).
The local improvement over Greedy is better than Greedy
in terms of their profit. As far as the number of late jobs
is concerned (Figure 5(b)), we conclude that DP + Local
Search is either better or comparable to both Greedy and
Greedy+Local Search. As expected, the number of late jobs
increases as the batch number increases in all the three algo-
rithms with increasing batch size.

Conclusions and Future Work
In this paper we proposed techniques that enable multi-
site make-to-order enterprises process jobs minimizing the
number of late jobs and maximizing the profit. The pro-
posed techniques have been shown to be effective on real-
life datasets. As future work, we would like to explore other
regression techniques for turnaround time prediction. Fur-
thermore, in this work we considered the routing of jobs
in a batch assuming that all jobs within a batch have the
same deadline. However, in practice, in most applications
jobs within a batch can have varying deadlines. We would
like to extend the routing algorithm to consider cases where
each job can have its own deadline.

References
Chen, T. 2003. A fuzzy back propagation network for out-
put time prediction in a wafer fab. Applied Soft Computing
2(3):211–222.
Ebadian, M.; Rabbani, M.; Torabi, S.; and Jolai, F. 2009.
Hierarchical production planning and scheduling in make-
to-order environments: reaching short and reliable deliv-
ery dates. International Journal of Production Research
47(20):5761–5789.
Hendry, L. C., and Kingsman, B. 1989. Production planning
systems and their applicability to make-to-order companies.
European Journal of Operational Research 40(1):1–15.

401

Jacobs, T. 2012. Creating workflows for a job shop, as-
signing the workflows to cells of devices, and splitting the
workflows within complex cells. US Patent 8,259,331.
Karypis, G., and Kumar, V. 1995. Metis-unstructured graph
partitioning and sparse matrix ordering system, version 2.0.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Knapsack
problems. Springer.
Kernighan, B. W., and Lin, S. 1970. An efficient heuris-
tic procedure for partitioning graphs. Bell system technical
journal 49(2):291–307.
Kulkarni, K., and Manohar, P. 2015. Cost efficient short
term capacity planning for MTO enterprises. In Proceed-
ings of the 3rd ACM Conference on SIGSIM-Principles of
Advanced Discrete Simulation (PADS).
Martello, S., and Toth, P. 1990. Knapsack Problems: Al-
gorithms and Computer Implementations. New York, NY,
USA: John Wiley & Sons, Inc.
Paul, R.; Muniyappa, M.; and Manohar, P. 2014. Job routing
in multi-site print shop environment. In Big Data Analytics
- Third International Conference, BDA. Proceedings.
Rai, S.; Godambe, A.; Duke, C.; and Williams, G. 2006.
Printshop resource optimization via the use of autonomous
cells. US Patent 7,079,266.
Rai, S.; Duke, C. B.; Lowe, V.; Quan-Trotter, C.; and Scheer-
messer, T. 2009. LDP lean document production - o.r.-
enhanced productivity improvements for the printing indus-
try. Interfaces 39(1):69–90.
Rai, S. 2011. System and method for assigning print jobs to
autonomous cells in a transaction printing environment. US
Patent 8,059,292.
Song, Y.; Zhang, C.; and Fang, Y. 2008. Multiple multi-
dimensional knapsack problem and its applications in cog-
nitive radio networks. In IEEE Military Communications
Conference (Milcom).
Van der Aalst, W. M.; Schonenberg, M. H.; and Song, M.
2011. Time prediction based on process mining. Information
Systems 36(2):450–475.
Zhou, R.; Rai, S.; and Do, M. 2011. Scheduling print jobs in
lean document production (ldp) toolkit. In System Demon-
strations and Exhibits, Twenty-First International Confer-
ence on Automated Planning and Scheduling, ICAPS 2011.

402

