
Evaluation of Auction-Based
Multi-Robot Routing by Parallel Simulation

Akihiro Kishimoto
IBM Research, Ireland
akihirok@ie.ibm.com

Kiyohito Nagano
Department of Complex and Intelligent Systems

Future University Hakodate, Japan
k nagano@fun.ac.jp

Abstract

Auction methods are a promising approximation approach for
distributed routing including multi-robot routing, where tar-
gets on a map need to be allocated to agents while a team
objective is satisfied. While many algorithms based on se-
quential single-item (SSI) auctions have been presented, they
are currently evaluated by serial simulation where agents se-
rially calculate their bids on a single machine.
We consider a scenario where a bidding algorithm incurs sig-
nificant computational overhead due to on-demand calcula-
tions of the shortest distances on a road map. We evalu-
ate the bidding algorithm under parallel simulations where
agents perform bid calculations simultaneously on a parallel
machine, and reveal that the algorithm suffers from severe
synchronization overhead ignored by serial simulation. We
also present the broadcasting and speculation techniques to
alleviate such synchronization overhead.
Our empirical results on multi-robot routing variants show
that both techniques improve the efficiency of parallelization,
and speculation achieves more significant improvement.

Introduction
Multi-agent coordination has been a challenging planning
problem which has many applications. Examples of appli-
cations include multi-agent routing on a map, such as search
and rescue operations and robot routing.

The multi-robot routing (MRR) problem (Lagoudakis et
al. 2005) has been a typical testbed for multi-agent coordi-
nation. In MRR, agents and targets are allocated initially on
a map. Then, the targets need to be assigned to the agents
while an objective as a team of agents is satisfied, such as
minimizing the response time of the slowest agent and min-
imizing the total resource usage among the agents.

MRR is a difficult combinatorial optimization problem
when the agent and target sizes are large. It is therefore often
infeasible to optimally solve MRR.

Approximation algorithms are used to heuristically return
non-optimal but valid solutions in feasible time. Auction
algorithms especially based on sequential single-item (SSI)
auctions have been extensively studied as a promising ap-
proximation approach to solve MRR, by regarding agents
and targets as bidders and auction items, respectively.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

When agents compute bids, they typically use the short-
est distances among the locations of the agents and targets.
When the map size is small, the shortest distance values of
all location pairs on the map are easily precomputed and
stored in memory. The existing work aiming to improve the
solution quality assumes the availability of precomputed ta-
bles, e.g., (Koenig et al. 2007; Zheng, Koenig, and Tovey
2006). The shortest distance of a location pair is retrieved
by a table lookup that only needs the O(1) time complexity.

When the map size is large, the shortest distances need
to be calculated on demand, since the precomputed table
does not fit into memory of each agent. Other examples of
the necessity of the on-demand distance calculation include
the scenario where the map changes, e.g., many roads are
blocked off due to unexpected disasters such as floods and
earthquakes. Replacing the shortest distances with heuristic
ones computed by the Manhattan-distance-based heuristic
reduces the memory requirement, but returns solutions with
poor qualities (Kishimoto and Sturtevant 2008).

The shortest distances are computed by running pathfind-
ing search on the map typically represented as a graph. A
node and an edge in the graph respectively correspond to a
location and a small segment of a road in the map. Pathfind-
ing employs a search-based approach such as A* (Hart, Nils-
son, and Raphael 1968) and Dijkstra’s algorithm (Dijkstra
1959), and examines the graph with the non-trivial size.
Pathfinding search is invoked many times when agents cal-
culate bids. Kishimoto and Sturtevant (2008) show that the
shortest-distance calculation is computationally intensive on
a large map, even with the basic SSI auction algorithm that
considers only a small number of locations pairs.

SSI auctions have been considered to allow for both effi-
cient communication and parallelism, as agents can compute
their bids in parallel (Koenig, Keskinocak, and Tovey 2010).
However, the existing work evaluates the algorithms only
under serial simulations where only one agent runs serially
at a time on a single machine. The actual parallel efficiency
of the auction methods has not been well studied yet.

We elucidate the scaling behavior of a bidding algorithm
based on SSI auctions with pathfinding search under parallel
simulations, where agents calculate bids simultaneously on
a parallel machine. In our MRR using a road map, agents
suffer from severe computational overhead caused by on-
demand pathfinding search. We reveal that the bidding algo-

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

495

rithm scales very poorly under parallel simulations, because
of the idle times of the agents at the synchronization point
in each round. This overhead has been hidden under serial
simulations performed in the previous work.

We additionally present two methods to reduce synchro-
nization overhead: One is to broadcast the current best bid
cost when it is updated. The other is to perform specula-
tion after agents finish their bidding. Our empirical results
on MRR demonstrate that both broadcasting and speculation
successfully scale up the parallel performance, and specula-
tion is more crucial to improve the efficiency.

Multi-Robot Routing Problem
We define a multi-robot routing problem (MRR) that slightly
extends that of Lagoudakis et al. (2005).

MRR consists of M homogeneous agents and N targets
placed on a road map. Each target has a source location and
a destination, and needs to be collected at its source first and
then delivered to its destination by one agent.

Notations A and T denote the sets of agents and targets,
respectively. Let AS, TS and TD be the sets of start lo-
cations of the agents, sources and destinations of the tar-
gets, respectively. The cost of moving from location l to
location m, called the edge cost or the cost of the edge, is
denoted by c(l,m) (l,m ∈ AS ∪ TS ∪ TD). However,
like (Kishimoto and Sturtevant 2008), c(l,m) is not precom-
puted: c(l,m) must be computed by performing pathfinding
search in the road map represented as a road map graph.1
The latitude and longitude based locations in the road map
are transformed into the nodes of the road map graph. In ad-
dition, roads are divided into many segments annotated with
their transition costs. When there is a segment of a road be-
tween two locations in the road map, the road map graph
contains an edge which connects the two nodes correspond-
ing to these locations of the road map.

Pathfinding needs to run state-space search in the road
map graph such A* (Hart, Nilsson, and Raphael 1968)
and Dijkstra’s algorithm (Dijkstra 1959), and incurs non-
negligible computational overhead. In the worst case, in
order to calculate c(l,m) of one location pair, pathfinding
may need to examine |RN | nodes and |RE| edges, where
RN and RE are the sets of nodes and edges in the road
map graph, respectively. For example, the Open Street Map2

of Dublin in Ireland contains roughly 300,000 nodes and
320,000 edges.

Each agent ai ∈ A collects and delivers all targets allo-
cated to ai by constructing a path from ai’s start location to
the destination of the final target to deliver. The path cost of
ai is defined as the total edge cost on that path.

We deal with the following typical team objectives:

• MINIMAX: Minimize the maximum path cost of any sin-
gle agent.

• MINISUM: Minimize the path cost sum over all agents.

1Note that the node set RN of the road map graph is different
from S := AS ∪ TS ∪ TD. S is a very small subset of RN .

2https://www.openstreetmap.org/

Algorithm 1 The SSI auction algorithm
Require: Agent size M and a set of targets T
1: N = |T |
2: for (i = 1; i ≤ N ; i = i+ 1) do
3: bbc = ∞;
4: for (j = 1; j ≤ M ; j = j + 1) do
5: // Calculate a bid cost bc and target t for agent aj

6: (bc,t) = CalcBidandTarget(j, T)
7: if (bc < bbc) then
8: bbc = bc; bt = t; w = j
9: T = T\{bt}

We consider two scenarios about the capacity of the agent.
Without capacity constraints, each agent accepts an unlim-
ited number of targets. On the other hand, with capacity
constraints, each agent can carry at most k targets at a time
where k is a constant. If ai uses up its capacity k, ai needs to
drop off one of the targets at its destination before accepting
a new target. We empirically evaluate the performance in
both scenarios. However, when describing algorithms, we
assume no capacity constraints, since these algorithms are
easily adapted to the scenario with capacity constraints.

Related Work
We review the literature on SSI auctions applied to MRR.

See (Koenig et al. 2006; Koenig, Keskinocak, and Tovey
2010) for a more comprehensive survey.

Lagoudakis et al. (2005) prove that MINISUM and MIN-
IMAX are NP-hard. To find good solutions that are close
to optimal ones in a short time, auction methods have been
studied especially in the form of SSI auctions, e.g., (Tovey
et al. 2005; Lagoudakis et al. 2004).

There are approaches to improve the solution quality
of SSI auctions, e.g., (Zheng, Koenig, and Tovey 2006;
Koenig et al. 2007; 2008). However, we review only the
basic bidding algorithm, because these improved versions
use precomputed tables for c(l,m) and have not been com-
bined with on-demand pathfinding yet. In addition, even
with the basic bidding algorithm, our implementation as
well as (Kishimoto and Sturtevant 2008) already incur se-
vere overhead caused by pathfinding. The improved bidding
algorithms usually need an extra set of location pairs the ba-
sic bidding algorithm does not consider (e.g., changing the
order of several locations in the current path). They would
suffer from more excessive overhead, thus opening up a new
research opportunity that is beyond the scope of the paper.

Let M and N be the number of agents and targets, re-
spectively. SSI auctions consist of N rounds of auctions
where agents are the bidders and targets are the items to bid
on. In each round, SSI auctions auction off only one tar-
get currently unallocated to any agent: the agent bidding the
lowest value on a target wins that target with an arbitrary
tie-breaking rule. Due to this winner determination rule, in
each round, each agent bids the lowest bid on a single target,
and sends the bid to the server. After the server receives the
bids from all agents, it broadcasts the winner in that round.

Algorithm 1 shows the pseudo-code of the SSI auction al-
gorithm performed by serial simulation. T preserves a set

496

of unallocated targets in the current round. In CalBidand-
Target, agent aj calculates a bid cost bc on one unallocated
target in T .3 The winner in each round is stored in w. In par-
allel simulations, the code to exchange messages between
the agents and the server is needed, such as notifying the
winner w and the target bt to the agents from the server.

Lagoudakis et al. (2005) present bidding rules with the-
oretical analysis for a few objectives including MINISUM
and MINIMAX. The PATH rule is a common baseline when
new algorithms are developed, e.g., (Koenig et al. 2008;
Zheng, Koenig, and Tovey 2006). Let Ti be the set of tar-
gets agent ai has already obtained, and U be the set of unal-
located targets. Under the PATH rule, ai directly constructs
the shortest path cost SPC(ai, Ti) for agent ai to visit all
sources and destinations of targets in Ti, starting from ai’s
start location. Because computing SPC(ai, Ti) itself is NP-
hard, a heuristic method, typically the insertion heuristic for
TSP (Lawler et al. 1985), is used to approximate SPC. The
insertion heuristic greedily inserts only one location in the
best place of the the path currently constructed. Notation
SPC is still used to denote such heuristic SPC in the pa-
per. Agent ai’s bid cost is defined as:

min
t∈U

SPC(ai, Ti ∪ {t}) (MINIMAX)

min
t∈U

SPC(ai, Ti ∪ {t})− SPC(ai, Ti) (MINISUM)

Note that each agent bids only for the target t that mini-
mizes MINIMAX/MINISUM.

The main focus in the above is to improve the solution
quality with precomputed c(l,m). FASTBID (Kishimoto
and Sturtevant 2008) is the only attempt to combine the bid-
ding algorithm with pathfinding. FASTBID reveals that the
computational overhead of on-demand shortest-distance cal-
culation can be large, as the map size as well as the agent
and target size grow. In order to alleviate the overhead for
pathfinding, they also present an approach which hierarchi-
cally abstracts the grid map graph (game map with many
pixels) based on (Sturtevant and Buro 2005), and performs
pathfinding on such an abstract graph. On the other hand, we
test the implementation on the road map which has different
characteristics than the grid map. It is still unknown whether
Sturtevant and Buro’s (2005) approach is effective on road
maps or not. Additionally, the bidding algorithms com-
bined with on-demand pathfinding in the road map would
have real-world applications such as search and rescue op-
erations, and taxi sharing (Ma, Zheng, and Wolfson 2013;
Nakashima et al. 2014) in the long run.

All the work surveyed in this section evaluates the run-
times of the bidding algorithms under serial simulations
without considering the synchronization overhead caused by
the agents. This is the overhead we attempt to alleviate.

Implementation Design for SSI Auctions
under Serial Simulations

We discuss our serial implementation of an SSI auction al-
gorithm combined with on-demand pathfinding. Our imple-

3If an agent loses an auction in the current round, and the best
strategy for that agent in the next round is to bid the same bid cost
on the same target, that agent does not perform any bid calculation.

mentation is based on FASTBID (Kishimoto and Sturtevant
2008), which is currently the only available algorithm in our
MRR setting where c(l,m) is not precomputed.

We incorporate FASTBID’s techniques that bound edge
cost computations based on lowerbounds of the edge costs
as well as the second-best bid information sent by the server.
Therefore, our implementation design is not particularly
new. However, while FASTBID uses the TREE rule which
builds a minimum spanning tree to calculate the bids, our
implementation is based on the PATH rule which directly
generates a path. In practice, there is a consensus that PATH
tends to return better solutions than TREE (Lagoudakis et
al. 2005), and most followup research about improving the
solution quality (with the precomputed tables of c(l,m)) is
based on PATH (Koenig, Keskinocak, and Tovey 2010). In
addition, we employ a different pathfinding algorithm than
FASTBID, because we use the road map which has differ-
ent characteristics from the grid map for which FASTBID is
designed.

Bounding Edge Cost Computations
Let path(ai) be agent ai’s current path generated by the
sources and destinations of the targets obtained by ai, and
p = (j, k, t) be a tuple called the insertion index tuple (IIT)
which indicates that the source and destination of an unal-
located target t are inserted to the j-th and k-th indexes of
path(ai) by the TSP insertion heuristic. In the beginning
of the round, for each unallocated target, ai enumerates all
possible IITs in path(ai). The insertion heuristic considers
the capacity constraints and the fact that a target must be col-
lected before ai drops it off. Let P be the set of all IITs. We
consider only the paths generated by P to calculate SPC.

Let pc(p) be the path cost generated by path(ai) and IIT
p, and lb(p) be a lowerbound of pc(p). We run pathfind-
ing search to compute the edge costs that are necessary to
calculate pc(p).

Assume that pathfinding search attempts to calculate an
edge cost from location l to m. Pathfinding search examines
the road map graph, and gradually improves the lowerbound
and upperbound of the edge cost as the search progresses.
When the lowerbound of the edge cost equals the upper-
bound, pathfinding search returns the exact value of the edge
cost (see the next subsection).

Because pathfinding search improves a lowerbound of
the edge cost, we do not always need compute the exact
value of pc(p): We use threshold θ to stop pathfinding if
lb(p) > θ holds. With θ, we aim to compute the ex-
act value of pc(pbest) where pbest = argminp∈P pc(p), and
prove pc(pbest) ≤ lb(q) for any q ∈ P\{pbest}. We reduce
the search effort of pathfinding by increasing the number of
cases where it has only to compute lb(q).

Specifically, as in FASTBID, a priority queue Q sorts all
p ∈ P in increasing order of lb(p). Let p1 and p2 be the best
and second best IITs in Q. Then, p1 is dequeued from Q at
each step, and lb(p1) is improved by performing pathfinding
with θ = lb(p2). If the exact value of pc(p1) is calculated, p1
is proven to be the best, and calculating pc(pbest) terminates.
Otherwise, p1 is enqueued back in Q and the above step is
repeated.

497

Pathfinding based on Contraction Hierarchy
We incorporate Contraction Hierarchy (CH) of Geisberger et
al. (2008). CH has been an essential building block for opti-
mal pathfinding on a road map in practice. Unlike FASTBID,
CH’s pathfinding performs bidirectional Dijkstra search in
the road map graph to compute c(l,m) from location l to lo-
cation m. Forward and backward searches alternately exam-
ine the state spaces defined by different sets of states based
on CH.

Let l and m be the source and destination in the road map
graph, respectively. Forward search preserves the g-value
of node n defined as the sum of the transition costs from l
to reach n in the road map graph. If more than one path
leads to n, the smallest g-value is preserved. Forward search
uses an open list which orders nodes in increasing order of
the g-value, and a closed list which preserves the nodes that
have been already examined. Forward search first places l
in the open list. Then, it repeats the procedure of removing
one node n that has the smallest g-value in the open list,
storing n in the closed list, generating n’s successor nodes,
and inserting these successor nodes to the open list.

Backward search preserves the g-value of node n defined
as the sum of the transition costs from n to m, and performs
the procedure that is similar to forward search except that
backward search starts with m in a direction toward l.

When pathfinding has not established the exact value of
c(l,m) yet, a lowerbound of c(l,m) is calculated by taking
the minimum g-value in the open lists of forward and back-
ward searches. When forward and backward searches meet
at node s, the path from l to m via s establishes an upper-
bound of c(l,m). When the lowerbound of c(l,m) equals
the upperbound of c(l,m), the exact value of c(l,m) is suc-
cessfully computed.

At agent’s start location, we run only forward search. For
the source and destination of each target, we run both for-
ward and backward searches. Both searches are performed
incrementally and limited with the threshold. They preserve
their closed and open lists when they stop searching. When
additional pathfinding is necessary, search is resumed with
the closed and open lists preserved before.

Bounding Edge Cost Computation Further with
the Second Best Bid
Let t be a target auctioned off in the round, and sbb be the
best bid of all except ones on t. As Kishimoto and Sturtevant
(2008) describe, our server implementation broadcasts sbb
as well as the winner and the obtained target. Such a “second
best” bid further bounds edge cost computations in the next
round: Agents must send the bid costs smaller than sbb to
win. By performing the bid cost computation bounded with
sbb, each agent either bids the exact bid cost or gives up
obtaining a target in each round. Assume that agents have
exact bid costs without performing any pathfinding. Even if
they have no chance to win with these bid costs, they still
send such exact bid costs to the server. This is because these
bid costs may contribute to bounding sbb more tightly in
subsequent rounds.

The above approach is more clearly explained with an

example which consists of four agents (a1, a2, a3, a4) and
three targets (t1, t2, t3). In the first round, if a1, a2, a3, and
a4 bid 3, 4, 5, and 7 on t1, t1, t2 and t3, respectively, a1 wins
t1. Then, in the second round, a3 bids 5 on t2 again, since
aiming to obtain t2 still remains best for a3 according to the
PATH rule. Therefore, in the second round, the bid costs of
a1 and a2 need to be smaller than 5 to win. If a1’s pathfind-
ing search proves that its bid cost is at least 5, a1 gives up
obtaining any target. Agent a2 performs an analogous pro-
cedure. Although a4 has no chance of winning the target, it
still bids 7 on target t3. This is important because a4’s bid
cost of 7 contributes to bounding the bid cost computations
of the other agents to 7 in the third round, for example, if a1
bids 4 on t2 and a2 gives up in the second round.

Improving SSI Auctions under Parallel
Simulations

Under parallel simulations, the server waits until receiving
the bid costs from all agents. That is, there is a synchro-
nization point where the agents need to synchronize in each
round. This can be a cause of increasing idle times of the
agents, especially when the runtimes to calculate bids are
unbalanced among the agents. For example, the bid cost of
an agent may remain unchanged between the previous and
next rounds (i.e. that agent needs no calculation), while the
agent that has won the target needs to compute a new bid.
We introduce two techniques, broadcasting and speculation,
to alleviate this issue.

Broadcasting
The server preserves the current best bid cost bbc during each
round. An agent that is still calculating its bid cost bc has no
chance of obtaining a target if bbc ≤ bc holds. Broadcast-
ing broadcasts bbc to all agents when the server improves
bbc.4 The agent that is currently computing its bc periodi-
cally checks if bbc arrives by using a non-blocking message-
receiving procedure. If the agent receives bbc, it updates its
bounding condition for edge cost computations to be able to
give up bidding in case that bbc ≤ bc is proven. This way,
broadcasting achieves more effective pruning for the agents
that are still working on bid cost calculation, which results
in reducing the idle times of the agents that have already
submitted their bids.

Broadcasting incurs additional communication overhead.
As a trade-off, we limit the maximum number of broad-
casts to a constant B in each round. In this way, the total
number of messages the server and agents send is at most
BMN + MN + MN = (B + 2)MN , where M is the
number of agents and N is the number of targets. In con-
trast, this number is 2MN for the original SSI auctions.

Algorithm 2 shows the pseudo-code of the server. Lines
7–9 are added to support broadcasting. RecvBidCostFro-
mAgent receives a bid cost bc and a target t from agent a.
BcastToAllAgents sends out the current best bid cost bbc for
round i to all agents. CalcSecondBestBid returns the second

4This could be implemented in such a way that agents directly
communicate with one another about the updated bbc. However, for
the sake of simplicity, we introduce communication via the server.

498

Algorithm 2 Server algorithm with broadcasting
Require: Broadcasting size B and target size N
1: for (i = 1; i ≤ N ; i = i+ 1) do
2: bbc = ∞; count = 0;
3: repeat
4: (bc, t, a) = RecvBidCostFromAgent()
5: if (bc �= “give up” ∧ bc < bbc) then
6: bbc = bc; bt = t; w = a
7: count = count+ 1
8: if count ≤ B then
9: BcastToAllAgents(bbc,i)

10: until (all agents finish bidding for round i)
11: sbb = CalcSecondBestBid()
12: BcastBidResult(w, bt, sbb)

best bid cost sbb as explained in the previous section. Bcast-
BidResult broadcasts the winner w, the target bt obtained by
w, and the second best bid sbb.

Speculation
Assume that agent ak waits for the winner information for
round i. In speculation, rather than sitting idle, ak specu-
lates to calculate the bid cost for round i+ 1 as if the server
had already determined the winner for round i. The server
algorithm remains the same, therefore, the amount of com-
munication is unchanged.

We present two speculation strategies. Optimistic specu-
lation assumes that ak successfully obtains target t to bid on
in round i. Agent ak updates its path by including t’s source
and destination, then speculation is performed. In contrast,
pessimistic speculation assumes that t is allocated to another
agent. Therefore, ak speculates to find another unallocated
target except t by using the current path.

Assume that ak finishes speculatively calculating the bid
cost and target (bc, t) for round i + 1. In case that ak’s as-
sumption to the winner in round i is correct, ak has only to
submit (bc, t) immediately when round i + 1 starts. Other-
wise, it recalculates the bid in round i + 1 with the correct
winner and target information sent by the server. Even in
this case, ak successfully reduces the runtime of the overall
bid calculation in the remaining rounds by using the exact
edge costs and improved lowerbounds of the edge costs cal-
culated by speculation.

Speculation increases the frequency of completing the
SPC calculation immediately after all IITs are inserted in
the priority queue. In case that ak knows the exact bid cost,
it sends not the give-up message but the exact bid cost, even
if ak has no chance to win. As we describe in the previ-
ous section, this is because ak’s bid cost may bound the bid
cost computations of the other agents. Hence, speculation
contributes to obtaining better SPC calculation bounds than
straightforward parallelization, which is an additional factor
of achieving speedups.

If ak completes its speculation for round i+1 but has not
received the winner yet, it speculates the bid for round i+2.
Thus, ak continues speculation for the future rounds until
the winner for round i becomes available.

Algorithms 3 shows the pseudo-code of the agent algo-

Algorithm 3 Agent algorithm with speculation but without
broadcasting
Require: Target set T and agent ak

1: θ = ∞; N = |T |
2: for (i = 1; i ≤ N ; i = i+ 1) do
3: if (IsSpeculatedBidAvailable(ak,i)) then
4: (bc,t) = GetBidandTarget(ak, i)
5: else
6: (bc,t) = CalcBidandTarget(ak, T ,θ)
7: SendBidandTarget(ak,i,bc,t)
8: U = T
9: for (j = i+ 1; j ≤ N ; j = j + 1) do

10: if (IsSpeculationOptimistic()) then
11: UpdateAgentPath(ak,t)
12: U = U\{t}
13: (bc,t) = CalcBidandTarget(ak,U ,∞)
14: if (IsBidResultAvailable(i)) then
15: RevertAgentPath(ak,i)
16: exit loop
17: (w,bt,sbb) = RecvBidResult(i)
18: if (ak = w) then
19: UpdateAgentPath(w,bt)
20: T = T\{bt}
21: θ = sbb

rithm that incorporates speculation. For the sake of simplic-
ity, the code of broadcasting is omitted here.

If the bid cost bc and the target to bid on t is already avail-
able in round i, which is checked by IsSpeculatedBidAvail-
able, ak just retrieves such bc and t with GetBidandTarget
and sends them to the server with SendBidandTarget. Oth-
erwise, ak calculates SPC and selects a target to bid on from
the set of unallocated targets T . CalcBidandTarget does this
task. Note that θ is the bounding condition based on the
second best bid.

Optimistic/pessimistic speculation is performed in lines
9–16. Let U be the set of unallocated targets used for spec-
ulation. In case of optimistic speculation, ak updates its
path with t’s source and destination. UpdateAgentPath per-
forms this step. When speculation is performed, the algo-
rithm does not bound the bid calculation with the second
best bid (see the value of ∞ passed to CalcBidandTarget in
line 13). Speculation is repeated until the winner informa-
tion is arrived at ak from the server. IsBidResultAvailable
checks such a message and RecvBidResult receives the win-
ner w, the target bt obtained by w, and the second best bid
sbb. RevertAgentPath reverts ak’s path back to the path for
round i.

Note that CalcBidandTarget needs to periodically check
if the server determines the winner for round i, indicating
that IsBidResultAvailable is called in inside this function.

Experimental Results
The bidding algorithms we have discussed and applied to
MRR were implemented in C++ with the MPI library (Snir
and Gropp 1998) on top of Open Source Routing Machine5,
which includes a freely available, efficient CH implementa-
tion. All the experiments were performed on a PC cluster

5http://project-osrm.org/

499

Table 1: Speedups of each method for MINIMAX (150 targets)
(a) Capacity = ∞ (b) Capacity=4

Number of agents and speedups
Method 10 20 30 40

BASELINE 3.32 3.94 5.83 6.34
PESSI 7.87 9.10 13.66 17.58

BCAST(1) 4.20 5.35 8.39 11.07
BCAST(5) 4.16 5.78 9.50 12.20

BCAST(1)+ PESSI 7.83 9.22 13.97 18.81
BCAST(5)+ PESSI 7.83 9.27 14.05 18.39
BCAST(5)+ OPTI 7.87 9.22 14.01 17.20

Number of agents and speedups
Method 10 20 30 40

BASELINE 3.26 4.03 5.88 7.60
PESSI 8.20 9.50 13.53 17.89

BCAST(1) 4.10 5.31 8.34 11.37
BCAST(5) 4.02 5.79 9.30 12.69

BCAST(1)+ PESSI 8.22 9.59 14.12 18.72
BCAST(5)+ PESSI 8.24 9.61 14.22 19.06
BCAST(5)+ OPTI 8.25 9.63 14.20 18.04

Table 2: Speedups of each method for MINISUM (150 targets)
(a) Capacity = ∞ (b) Capacity=4

Number of agents and speedups
Method 10 20 30 40

BASELINE 1.99 2.33 3.17 3.84
PESSI 2.74 3.70 5.40 7.02

BCAST(1) 2.39 2.79 3.82 4.69
BCAST(5) 2.41 2.93 4.06 4.88

BCAST(1)+ PESSI 2.73 3.73 5.70 7.41
BCAST(5)+ PESSI 2.73 3.74 5.70 7.62
BCAST(5)+ OPTI 2.74 3.88 5.63 7.27

Number of agents and speedups
Method 10 20 30 40

BASELINE 2.47 2.48 3.17 3.89
PESSI 7.08 7.66 10.12 14.17

BCAST(1) 3.27 3.07 3.84 4.75
BCAST(5) 3.32 3.21 4.03 4.91

BCAST(1)+ PESSI 7.22 8.03 10.64 14.29
BCAST(5)+ PESSI 7.12 7.96 11.20 14.58
BCAST(5)+ OPTI 7.20 8.00 10.87 15.06

whose compute node consists of 12 CPU cores (Intel Xeon
X5690 at 3.47GHz) and 80GB of RAM. We used up to four
compute nodes to perform serial and parallel simulations. In
performing serial simulations, we followed the same eval-
uation methodology as (Kishimoto and Sturtevant 2008):
The simulations were performed serially on a single CPU
core without sharing any edge cost computation among the
agents. In contrast, when performing parallel simulations,
we allocated one CPU core to the server and one core to each
agent. Except the fact that these agents run in parallel in a
completely decentralized way, we used the same evaluation
methodology as serial simulations.

While the number of targets was always set to 150, the
number of agents was varied from 10 to 40. These numbers
were chosen to generate non-trivial problems. In addition,
we also prepared the problems without and with capacity
constraints. With capacity constraints, each agent was al-
lowed to carry at most 4 targets at a time. In each category,
we prepared 20 problems by randomly allocating agents and
targets on the map of Dublin in Ireland.

We evaluate the efficiency of parallel algorithms by mea-
suring their speedups defined as:

speedup =
runtime by a serial algorithm

runtime by a parallel algorithm
.

We report an average speedup for each parallel implemen-
tation. We prepared the following versions:

• BASELINE: No enhancement is added.

• BCAST(1): Broadcasting is added. The number of broad-
casting messages B is set to one per round.

• BCAST(5): Broadcasting is added. B is set to five.

• PESSI: Pessimistic speculation is added.

• OPTI: Optimistic speculation is added.

A combination of the above methods is denoted by “+”.
Tables 1 and 2 show speedup values of parallel algo-

rithms. Our results about BASELINE clearly demonstrate
that the advantage of distributed computation among agents
does not allow for efficient parallelism in our MRR setting.
For example, in solving MINIMAX without capacity con-
straints, BASELINE obtains the speedup values of 3.32, 3.94,
5.83, and 6.34 for 10, 20, 30, and 40 agents, respectively.
For MINISUM without capacity constraints, BASELINE has
very limited scalability: its speedup values are 1.99, 2.33,
3.17, and 3.84 for 10, 20, 30, and 40 agents, respectively.
For MINISUM, a few agents tend to obtain most of the tar-
gets. These agents need to perform more intensive edge cost
computations, due to many places to insert the sources and
destinations of the unallocated targets in the current path
(i.e., pathfinding needs to be performed more frequency).
Let bt be the target agent ak bids on. The phenomenon that
a few agents take most of the targets is caused by the fact that
the bid cost is based on the proximity of bt to ak’s current
path for MINISUM. Obtaining additional targets increases
a chance of having unallocated targets located nearby ak’s
path. Once ak generates a long path, ak keeps winning the
targets, thus becoming overworked. Although introducing
capacity constraints alleviates the issue, BASELINE still suf-
fers from performance degradation caused by such unbal-
anced work.

Both broadcasting and pessimistic speculation outper-
form BASELINE. With 40 agents, PESSI yields 1.83–3.64
times larger speedups than BASELINE, while this number
is 1.22–1.92 for broadcasting. Combining speculation with

500

Table 3: Average runtimes of serial simulations (150 targets, seconds)
(a) Capacity = ∞ (b) Capacity=4
Number of agents and runtimes

10 20 30 40
MINIMAX 153.43 285.50 424.81 558.63
MINISUM 157.11 250.52 344.63 437.17

Number of agents and runtimes
10 20 30 40

MINIMAX 163.85 304.00 432.87 565.58
MINISUM 154.99 278.57 399.91 513.93

broadcasting yields the largest speedups with 40 agents but
only performs slightly better than speculation itself (1-9%
reduction in runtimes). Speculation increases the chance of
agents submitting their bids immediately after the rounds
start, and tends to reduce room for the agents to perform
pruning with broadcasting.

BCAST(5) performs slightly better than BCAST(1). A
larger performance difference is observed with a larger num-
ber of agents for MINIMAX. This indicates that the bid costs
the server receives second or later are often smaller than the
earliest one if many agents participate in bidding. The per-
formance difference is smaller for MINISUM, since the over-
worked agents tend to become winners and since they send
their bids later than the others.

When agents keep speculating for many future rounds,
PESSI and OPTI may have a very different set of edges to
consider. However, we observe that their speedups are sim-
ilar. We hypothesize that this is partly because the perfor-
mance is currently limited by the amount of work performed
by the overworked agents, especially for MINISUM.

Table 3 shows average runtimes of serial simulations,
measured in seconds. Our implementation needs 150–560
seconds to solve one problem consisting of 10–40 agents
and 150 targets. The insertion heuristic needs almost 0 sec-
ond if c(l,m) is precomputed. These runtimes, therefore, in-
dicate high computational overhead of on-demand pathfind-
ing search even with the computationally inexpensive bid-
ding algorithm based on the insertion heuristic. Combining
on-demand pathfinding with other bidding algorithms would
be challenging future work, since these algorithms would
require additional edge cost computations that are not per-
formed by the insertion-heuristic-based bidding algorithm.
For example, the 2-opt and 3-opt improvements (Lawler et
al. 1985; Tovey et al. 2005) modify the order of locations
in the current path and introduce new edges of which costs
need to be computed by pathfinding.

Figures 1 and 2 show graphs of work and idle times for
each agent in solving a typical problem. The vertical axis
is the agent ID (1–40) and the horizontal axis is the time.
The horizontal red line indicates that an agent is calculating
a bid. Otherwise, the agent sits idle at the synchronization
points. Table 4 shows the ratio of the maximum and aver-
age idle times to the runtime. These results clearly indicate
that BASELINE suffers from large synchronization overhead
caused by the idle times until the server determines the win-
ner in each round. For example, on average, agents sit idle
for 70% and 83% of their runtimes for MINIMAX and MIN-
ISUM, respectively. The synchronization overhead is more
clearly observed for MINISUM. Additionally, agents tend to
become more idle in later rounds of the bidding procedure.

Table 4: Ratio of maximum and average idle times of agents
to the runtime (40 agents, 150 targets, capacity = ∞)

MINIMAX MINISUM
Method Max Ave Max Ave

BASELINE 0.80 0.70 0.89 0.83
BCAST(5) 0.66 0.51 0.86 0.79

BCAST(5)+ PESSI 0.25 0.03 0.55 0.31

BCAST(5) reduces the synchronization overhead by mak-
ing agents give up bidding earlier when their attempts be-
come useless. However, they still have large average idle
time ratios of 51% and 79% for MINIMAX and MINISUM.

Further introducing PESSI significantly reduces the syn-
chronization overhead, especially for MINIMAX, resulting
in yielding larger speedups (18.4 and 19.1 fold average
speedups with 40 agents without and with capacity con-
straints, respectively). On the other hand, PESSI still in-
curs idle times caused by the case where an agent finishes
its speculation until the final round, therefore, has no work
to perform. This scenario becomes evident for MINISUM
(see BCAST(5)+ PESSI in Figure 2). After 25 seconds, there
are only a few agents constantly working on bid cost calcu-
lations, while the other agents remain almost always idle.
This is closely related to the fact that a few agents tend to
obtain most of the targets. We leave resolving this issue as
an important extension as future work.

Conclusions and Future Work
We evaluated the performance of bidding algorithms com-
bined with pathfinding under parallel simulations, and re-
vealed that the synchronization overhead hidden in the eval-
uation of previous work is a cause of limited scalability. We,
therefore, attempted to alleviate the synchronization over-
head by performing speculation and broadcasting. Our re-
sults on MRR demonstrated that both speculation and broad-
casting improve the efficiency of agents’ bid calculations,
and speculation impacts more on the parallel performance.

There are numerous extensions to this work, including:
(1) developing algorithms to further improve the parallel
efficiency, especially for MINISUM, (2) combining other
bidding algorithms with pathfinding efficiently and evaluat-
ing them under parallel simulations, (3) investigating ideas
for the scenario where more complicated conditions are in-
volved, such as more constraints including time windows
and dynamic changes to the target set, and (4) considering
a scenario where communication failures and delays occur
between the server and the robots.

501

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 0 10 20 30 40 50 60 70 80

A
g

en
t

Id

Time

(a) BASELINE

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 0 5 10 15 20 25 30 35 40 45

A
g

en
t

Id

Time

(b) BCAST(5)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 0 5 10 15 20 25 30

A
g

en
t

Id

Time

(c) BCAST(5)+ PESSI

Figure 1: Work and idle times of agents for MINIMAX (40
agents, 150 targets, capacity = ∞)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 0 10 20 30 40 50 60 70 80 90 100 110

A
g

en
t

Id

Time

(a) BASELINE

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 0 10 20 30 40 50 60 70

A
g

en
t

Id

Time

(b) BCAST(5)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 0 5 10 15 20 25 30 35 40

A
g

en
t

Id

Time

(c) BCAST(5)+ PESSI

Figure 2: Work and idle times of agents for MINISUM (40
agents, 150 targets, capacity = ∞)

502

References
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hier-
archical routing in road networks. In Proceedings of the
7th International Conference on Experimental Algorithms
(WEA’08), 319–333.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Kishimoto, A., and Sturtevant, N. 2008. Optimized algo-
rithms for multi-agent routing. In AAMAS, 1585–1588.
Koenig, S.; Tovey, C. A.; Lagoudakis, M. G.; Markakis, V.;
Kempe, D.; Keskinocak, P.; Kleywegt, A. J.; Meyerson, A.;
and Jain, S. 2006. The power of sequential single-item auc-
tions for agent coordination. In AAAI, 1625–1529.
Koenig, S.; Tovey, C.; Zheng, X.; and Sungur, I. 2007.
Sequential bundle-bid single-sale auction algorithms for de-
centralized control. In IJCAI, 1359–1365.
Koenig, S.; Zheng, X.; Tovey, C.; Borie, R.; Kilby, P.;
Markakis, V.; and Keskinocak, P. 2008. Agent coordina-
tion with regret clearing. In AAAI, 101–107.
Koenig, S.; Keskinocak, P.; and Tovey, C. 2010. Progress
on agent coordination with cooperative auctions. In AAAI,
1713–1717.
Lagoudakis, M. G.; Berhault, M.; Koenig, S.; Keskinocak.,
P.; and Kleywegt, A. J. 2004. Simple auctions with per-
formance guarantees for multi-robot task allocation. In Pro-
ceedings of the IEEE International Conference on Intelli-
gent Robots and Systems (IROS’04), volume 1, 1957–1962.
Lagoudakis, M.; Markakis, V.; Kempe, D.; Keskinocak, P.;
Koenig, S.; Kleywegt, A.; Tovey, C.; Meyerson, A.; and
Jain, S. 2005. Auction-based multi-robot routing. In Pro-
ceedings of the International Conference on Robotics: Sci-
ence and Systems, 343–350.
Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. R.; and Shmoys,
D. B. 1985. The Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization. Wiley Series in Dis-
crete Mathematics and Optimization.
Ma, S.; Zheng, Y.; and Wolfson, O. 2013. T-share: A large-
scale dynamic taxi ridesharing service. In Proceedings of the
29th IEEE International Conference on Data Engineering
(ICDE’13), 410–421.
Nakashima, H.; Sano, S.; Hirata, K.; Shiraishi, Y.; Matsub-
ara, H.; Kanamori, R.; Koshiba, H.; and Noda, I. 2014. One
cycle of smart access vehicle service development. In Pro-
ceedings of the 2nd International Conference on Serviceol-
ogy, 152–157.
Snir, M., and Gropp, W. 1998. MPI: The Complete Refer-
ence. MIT Press.
Sturtevant, N., and Buro, M. 2005. Partial pathfinding using
map abstraction and refinement. In AAAI, 1392–1397.

Tovey, C.; Lagoudakis, M.; Jain, S.; and Koenig, S. 2005.
The generation of bidding rules for auction-based robot co-
ordination. In Multi-Robot Systems: From Swarms to Intel-
ligent Automata, volume 3, 3–14. Springer.
Zheng, X.; Koenig, S.; and Tovey, C. 2006. Improving
sequential single-item auctions. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems
(IROS’06), 2238– 2244.

503

