
Path Planning under Interface-Based
Constraints for Assistive Robotics

Alexander Broad and Brenna Argall
Department of Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208

alex.broad@u.northwestern.edu, brenna.argall@northwestern.edu

Abstract

We present a heuristic-based search method for path plan-
ning in shared human-robot control scenarios in which the
robot should adhere to specific motion constraints imposed
by the human’s control interface. This approach to path plan-
ning gives special consideration to kinematic and dynamic
constraints introduced to reconcile discrepancies between the
control space of the user and the control space of the robot.
The resulting paths more closely mirror paths produced by
users of the same interface; which is helpful, for example,
when inferring human intent or for control sharing. Our first
insight is to develop a hierarchical finite state machine de-
scribing the constrained state space, state transitions and as-
sociated costs. We then use this definition to embed the con-
straints of the interface into our heuristic planning algorithm,
named C*, with simple modifications to the A*/D* fam-
ily of graph search algorithms. This approach allows us to
maintain powerful theoretical guarantees such as complexity
and completeness. In this paper, we ground our augmented
path planning algorithm with an implementation on a robotic
wheelchair system and a Sip-and-Puff interface. We demon-
strate that the new approach produces paths and control sig-
nals that more closely resemble user-generated data and can
easily be incorporated into real hardware systems.

1 Introduction
Robot path planning involves developing algorithms that are
designed to optimize specific aspects of a robot’s motion
which allow it to safely and efficiently navigate through
static and dynamic environments. Modern approaches are
predominantly developed with respect to fully autonomous
systems that must navigate through unknown environments
on their own. However, as we transition to a world of greater
collaboration between humans and robots, it will be neces-
sary to develop path planning approaches that are easily un-
derstood by, and even collaborative with, human users.

The concept of shared human-robot control is already an
integral facet of many robotics applications including manu-
facturing (Parker Owan 2015), assistance and rehabilitation
(Argall 2014), prostheses (Cipriani et al. 2008), search and
rescue, and extraterrestrial robotics (Trautman 2015). Col-
laboration in these domains spans from task-level shared
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control (Sa and Corke 2014), where the user must provide
a set of reference points for the autonomous system to track,
to signal-level shared control (Trautman 2015), where the
user and autonomy each provide a low-level signal which
are then synthesized into a final command that is sent to
the robotic system. The selection of which level of shared
control is based on how directly the user wants to control
the robotic system and how well the user’s control signal
matches the state space of the robotic system.

Consider a differential drive robot. This system can be
controlled with a two dimensional signal consisting of lin-
ear and angular velocities. As common user interfaces, such
as a 2-axis joystick, are able to span the full control space
of this robot, it is possible to use signal-level control syn-
thesis techniques, such as linear blending (Argall 2014), to
produce a final command. That is because the control sig-
nal produced by the user and the autonomy both exist in the
same state space (linear and angular velocities), and presum-
ably use similar optimization metrics (e.g. safely reach the
desired position via the shortest route).

However, signal-level control synthesis techniques like
linear blending are only valid when the user and autonomy
are planning in the same state space with the same high
level considerations, a premise that is often invalidated by a
mismatch between the user’s control interface and the state
space of the robotic system. This inconsistency can be a
result of either a restriction in dimensionality imposed by
the user interface, or due to the inherently high-dimensional
state space of the robotic system.

As an example of interface restrictions, consider a power-
wheelchair user with limited motor capabilities who is un-
able to operate a standard 2-axis joystick and is limited to
options like a Sip-and-Puff interface. Such an interface can
only provide a one dimensional control signal, which means
that the user must provide separate signals to control the
translational and angular movement. As a result of these re-
strictions, the paths that user’s generate with a limited con-
trol interfaces tend to exhibit distinct properties when com-
pared to users of higher-dimensional control interfaces as the
interface alters how difficult it is to perform certain actions
(e.g. making tight turns while moving forward).

As an example of an inherently high-dimensional task
space, consider a user trying to control a six degree-of-
freedom (DoF) robotic manipulator using a 2-axis joystick.
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Regardless of whether the user is operating within the task
space (position of the end-effector) or joint space (position
of each joint), the system is highly underactuated. The joy-
stick can only produce a 2D signal, while the task space
of the robot is the 6D position and orientation of the end-
effector. A user would need to switch between control modes
to select which subset of position and/or orientation dimen-
sions they would like to move in at a given time step. It
should be clear that the paths generated would likely dif-
fer greatly from those of a standard autonomous planning
approach—a planar optimizing path length would generate
the shortest path through all six spatial dimensions, while
the 2-axis joystick user is only able to generate a sequence
of path segments that are shortest within subsets of the con-
trol dimensions (of the active mode).

In both examples above, we run into the same issue –
namely, the user interface is not able to produce a control
signal in the same space as the autonomous system, and
as such, we expect to see paths planned with characteristi-
cally different properties. Importantly, this also means that
signal-level control sharing techniques like linear blending
are non-intuitive and can lead to dangerous behaviors. Us-
ing the robotic manipulator as an example, we can see that
blending signal-level commands from a user of a 2-axis joy-
stick with those from an autonomous system that does not
consider the constraints of a user interface may result in the
robot moving through a part of space that is far away from
where either the user or autonomy desired. Therefore, if we
want to use autonomous planning algorithms in a shared
control paradigm, the interplay between human and robot
must be considered in the planning process.

The contribution of this paper is to enforce the same con-
straints that control interfaces place on users’ control sig-
nals on our planning algorithm. The resulting paths can be
used to generate autonomous control signals that are ap-
propriate to use in a signal-level shared control paradigm.
We demonstrate that with simple modifications to standard
heuristic-based search algorithms (e.g. A* (Hart, Nilsson,
and Raphael 1968) and D* (Stentz 1994)) we are able to em-
bed the specific constraints of a limited control interface into
a planning algorithm that we name C*. We then ground this
work with an implementation in the domain of assistive and
rehabilitation robotics, where shared control is particularly
important as continuing to use any residual motor capabili-
ties can be paramount in the patient’s rehabilitative process.

We begin by discussing some related work in Section 2,
followed by the definition of our problem statement and an
explanation of our algorithm in Section 3. We ground our
work in an implementation in Section 4 and analyze the re-
sulting paths as they compare to standard grid search algo-
rithms, user generated paths and user generated signals in
Section 5. Lastly, we conclude in Section 6.

2 Related Work
Our work builds on a variety of related research areas in-
cluding grid– and sampling–based path planning methods,
hierarchical state machines and shared human-robot control.

Grid-based search algorithms have progressed from the
now standard A* (Hart, Nilsson, and Raphael 1968) to be

able to handle dynamic environments through incremen-
tal search methods such as D* (Stentz 1994) and D* Lite
(Koenig and Likhachev 2005). Additionally, researchers
have developed methods for planning paths that can traverse
grids at any-angle such as Field D* (Ferguson and Stentz
2007) and Theta* (Nash et al. 2010). These approaches are
extremely successful, however they do not consider the con-
straints of a user interface, as they are mainly developed for
use with fully autonomous systems.

Sampling-based path planning methods, such as Rapidly
Exploring Random Trees (RRTs) (LaValle 1998) and Prob-
abilistic Roadmaps (PRMs) (Hsu et al. 1998), are com-
monly used in both large and kinematically constrained state
spaces. These methods are empirically faster than grid-based
search methods as they randomly subsample the state, or
configuration, space and intelligently remove invalid paths.
However, sampling-based approaches do not guarantee op-
timality nor do they deterministically produce the same path
from a given start position. As path comprehension is one of
the main aspects of this work, we view the stochasticity of
sampling-based planners to be undesirable.

There is also related work in hierarchical graph-based
planning. These approaches tend to focus on programat-
ically developing a hierarchical abstraction of the two-
dimensional planning space (Holte et al. 1996), (Botea,
Müller, and Schaeffer 2004). In our work, we use apriori
knowledge of a control interface to build a hierarchical def-
inition of the user’s state and action space, thereby embed-
ding the constraints into the planning problem.

Lastly, there is related work in the shared-control and in-
tent prediction domains. Namely there have been previous
studies in task-level shared control where the user provides
high-level commands and the system provides low-level be-
haviors to achieve those commands (Yanco 2000), (Philips
et al. 2007) and (Wang and Liu 2014). (Demeester et al.
2008) also uses a task-level shared control approach and de-
velops a POMDP to perform intent prediction. There is also
previous research in signal-level shared control such as in
(Parikh et al. 2004), (Argall 2014). In the first instance, the
author’s allow the system to deliberate between a hierarchi-
cal set of commands, while in the second, the author’s use
machine learning to blend user and robot commands. How-
ever, as stated earlier, to our knowledge, all previous work is
agnostic to constraints of a user interface.

3 Problem Statement
We consider the problem of robot path planning in shared
control scenarios. We formalize the problem to explicitly
account for the kinematic constraints and associated state-
action costs that control interfaces place on a joint human-
robot system. Our approach ensures that the user and au-
tonomous agent develop plans in the same state space. This
allows us to more appropriately analyze the resulting paths
by comparing both macro-level characteristics of the path,
such as the number of required turns, and micro-level char-
acteristics, such as how well the resulting control signals
align with user inputs. By developing a planning algorithm
that accounts for the constraints of a user interface, we can
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be confident that the resulting control signal can be used in
a shared control paradigm.

3.1 Algorithm Overview
We introduce a constrained grid-based search algorithm in
the A*/D* framework that we name C*. At a high-level, our
approach is twofold. First, we explicitly enforce the same
kinematic constraints of the user interface in our search algo-
rithm. Second, we directly model the ease and/or difficulty
of each viable action given the user interface. This approach
requires altering the system’s state space to embed the cur-
rently active actions, and altering the costs associated with
particular actions in our search method. To account for state-
action costs without significantly increasing the search space
or number of parameters, we develop a hierarchical model
to better capture the important aspects of an interface-robot
system. The desire is to produce paths that display attributes
similar to those of paths generated by human users, whose
commands are filtered through the control interface.

3.2 Hierarchical Statecharts
To incorporate the constraints enforced by a limited control
interface into our path planning algorithm, we must first cod-
ify the constraints in a way that both restricts the possible
state transitions and specifies the modified set of path char-
acteristics that we would like to optimize.

We begin by defining a finite state machine (FSM) that
models the set of states and transitions available to the user
given their chosen control interface. The goal is to then in-
corporate the FSM into our search algorithm to exactly rep-
resent the user’s control options given the limited interface.

However, for a given control interface, there may be many
ways in which one could define the state machine. In fact,
to help account for the inherent restrictions of a limited in-
terface, it is often necessary to develop a control logic that
produces different results from the same input conditioned
on the current state of the system. This can lead to the state-
explosion problem (Harel 1987), which in turn can signifi-
cantly expand the size of the state space that we must search
over in our planning problem. As our goal is to incorporate
the constraints of the interface into our planning algorithm,
it is particularly important that we design a representation
that is both complete and economical in its description. To
this end, we describe our state machine in the language of
Harel statecharts (Harel 1987).

Harel statecharts, or more generally, hierarchically nested
finite state machines, provide a level of abstraction necessary
for maintaining a manageable set of states by allowing one to
define superstates, or composite states, comprised of sets of
low-level states. Using this technique, we are able to reduce
the search space of our planning algorithm.

Our approach is to develop a high-level representation by
defining a set of orthogonal regions, Q, that represent high-
level states, and actions, T, that represent transition between
high-level states. Using this definition, we group low-level
states, S, together into a composite state based on their re-
spective low-level transition functions, A, as defined by the
user interface. The low-level states and actions are the tradi-
tional definitions of states and actions in the configuration or

task space of the robot. The high-level states and actions are
hierarchical abstractions of those same properties. The pur-
pose of this new definition is to marginalize internal transi-
tions between low-level states while developing a language
by which we can explicitly interact with external transitions.

With this new model, we can then modify our planning
algorithm’s cost structure to place special importance on the
external transitions by applying different costs to high-level
actions, T, as compared to low-level actions, A.

While it is possible to achieve similar results with a
higher-dimensional A* variant, it would require both search-
ing over a significantly larger state space as well as devel-
oping a complex cost structure that appropriately weights
each state-transition. Finding the appropriate weighting pa-
rameters can be a difficult and time consuming task. By
contrast, with our approach, it is possible to design a very
compact description of the system by using a hierarchi-
cal modeling technique and restricting state transitions. To
analyze the complexity of creating a cost structure with a
higher-dimensional A* variant, consider that N actions re-
quires N ·N cost assignments (since self-transitions between
low-level states are possible). By contrast under C*, what
needs to be specified are the transition costs between M
Harel states ((M − 1) · (M − 1) assignments) and between
low-level states within a given Harel state (at fewest 1 and
at most N − M + 1 assignments, for each of N low-level
states). By observing that M ≤ N − 1 and 2 ≤ M , we can
prove that the number of elements to specify for a C* cost
function (at fewest N · 1 + (M − 1) · (M − 1) and at most
N · (N − M + 1) + (M − 1) · (M − 1)) is always less than
what needs to be specified without the HFSM structure.

To incorporate the statechart description, we expand the
state space to include the composite state, Q. This expanded
state space enables us to both appropriately constrain the
possible set of motions as well as develop plans in the same
space as the user. Additionally, the magnitude of this extra
dimension is relatively small as it is based on the number of
high-level composite states. This state space definition can
be used with any control interface as the description only re-
lies on the inherent task space of the robot and a generic def-
inition of the composite states. Using our examples from the
introduction, this would mean that we expand the state space
of a differential drive robot from (x, y, θ) to (x, y, θ, q) and
the state space of a robotic manipulator from (x, y, z, r, p, y)
to (x, y, z, r, p, y, q). That is, in both cases we expand the
initial state space (two transitional and one rotational dimen-
sions, and three transitional and three rotational dimensions,
respectively) to include the system’s current composite state.

3.3 Constrained Path Planning
In addition to altering the state space, we need to incorporate
the constrained state transitions and update the associated
costs in our algorithm. We achieve this by augmenting the
standard A* family of algorithms in two main areas. These
are the functions CONSTRAINEDNEIGHBORS (lines 18-21)
and UPDATEG (lines 22-29) in the C* pseudocode.

First, we alter how unexplored nodes are generated and
added to the open set. We limit these states based on
kinematic– and interface–based constraints (line 18-21).
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Specifically, we constrain the set of all possible neighbors
to the subset that are valid under the constraints of the com-
posite state q.

The second way in which we modify the standard A* al-
gorithm is that we augment the associated state-action costs
to account for internal and external state transitions. The
standard A* approach expands vertices in the open set in
an order defined by a vertex’s f-value:

f(s) = g(s) + h(s, sgoal)

where g(s) defines the true cost of reaching vertex s from
the initial position and h(s, sgoal) is a chosen heuristic that
estimates the cost from the current vertex to the goal.

We augment the standard g-value to include an extra cost
when transitioning composite states. This concept is illus-
trated in the function defined at line 22 in the C* pseu-
docode. In this definition αI < αE encodes the fact that it
is preferential to perform transitions within composite states
instead of transitions between composite states. Note that it
is only necessary to define one value for αI and one value for
αE (s.t. αI < αE) which, with the Harel states definition,
now encodes the difficulty and ease of transitioning between
all combinations of high– and low–level states.

Algorithm C*
1: Given: s, sgoal, open set, closed set
2: while s �= sgoal do
3: s ← argminso∈openset f(so)
4: open set ← open set \ s
5: closed set ← closed set ∪ s
6: for s′ ∈ CONSTRAINEDNEIGHBORS(s) do
7: if s′ /∈ closed set then
8: gtentative ← UPDATEG(s, s′)
9: if s′ ∈ open set || gtentative < g(s′) then

10: assign g(s′) ← gtentative

11: if s′ /∈ open set then
12: open set ← open set ∪ s′

13: end if
14: end if
15: end if
16: end for
17: end while
18: function CONSTRAINEDNEIGHBORS(s)
19: q ← extract q from s
20: Return {ALLNEIGHBORS(s) | q}
21: end function
22: function UPDATEG(s, s′)
23: q, q′ ← extract q, q′ from s, s′

24: if q = q′ then
25: Return g(s′) + αI

26: else
27: Return g(s′) + αE

28: end if
29: end function

Any heuristic-based search algorithm in the A*/D* family
can easily be extended to incorporate these modifications–it
requires only altering the state space, how vertices are added
to the open set and how the g-value is updated.

This approach, along with a consistent (i.e. monotonically
non-decreasing) heuristic, allows us to perform a sparse

Figure 1: Sip-and-Puff interface.

search over the state space resulting in an efficient algorithm
(Koenig, Likhachev, and Furcy 2004). The specified modi-
fications also do not affect the algorithm’s completeness. In
fact, with the simple requirement of an admissible heuristic
(Pearl 1984), C* retains the guaranteed optimality of other
heuristic-based search algorithms.

4 Implementation Details
We ground our algorithm with an example interface and im-
plementation from the domain of assistive and rehabilitation
robotics. The goal in this domain is to develop technolo-
gies, such as autonomous wheelchairs, that are operated by,
and assist, people with varying degrees of physical disabil-
ity. When the disability negatively affects a person’s motor
control, it is often the case that standard interfaces, such as
a 2-axis joystick, are insufficient to control the platform. In
this case, the user must rely on alternative interfaces that
better fit his or her physical capabilities.

For example, users with high spinal cord injuries often
have severely limited control of their arms and hands, but
maintain control over their diaphragm and breathing. In this
case, a Sip-and-Puff interface (Figure 1) is a viable option.
Using a Sip-and-Puff, a user can control their wheelchair by
providing one of four discrete signals: a hard puff, a soft
puff, a hard sip or a soft sip. In general, these signals are
mapped to the following control logic :

• Hard Puff → Move Forward (latch)

• Hard Sip → Move Backward (latch)

• Soft Puff → Rotate Counterclockwise

• Soft Sip → Rotate Clockwise

Using a Sip-and-Puff, the hard puff and hard sip commands
are latching–this means that once they are activated, they
remain so until the user explicitly unlatches. It is possible,
but requires a decent level of expertise, to execute turning
schemes while latched, effectively providing a 2D signal.

The latching behavior illustrates one of the control chal-
lenges when using the Sip-and-Puff interface. Because of
this latching behavior, a user can only transition from mov-
ing forwards to moving backwards by first sending a signal
to stop their forward motion and then sending a second sig-
nal to continue backwards. For this reason, it can be difficult
to transition between forward and backward motion.

The limited input space means that actions that would
generally be possible using a single joystick command may
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take multiple steps to achieve using a Sip-and-Puff. In addi-
tion to transitioning between forwards and backwards move-
ment, it can be difficult to perform actions such as turning
in tight spaces as the Sip-and-Puff interface provides non-
proportional control of the wheelchair’s linear and angular
speed. This means that the force with which a user sips or
puffs does not affect the magnitude of the speed signal. For
this reason, it is often necessary for a user to come to a com-
plete stop before making a tight turn.

To model the Sip-and-Puff interface constraints within our
algorithm, we begin by developing a finite state machine for
the Sip-and-Puff interface, which can be seen in Figure 2.

Figure 2: State diagram of the Sip-and-Puff interface.

In this state diagram, we have five low-level states and five
low-level actions. They are defined in Table 1. 1

states actions
s0 not moving a0 null input
s1 moving forwards a1 hard puff
s2 moving backwards a2 hard sip
s3 turning right a3 soft sip
s4 turning left a4 soft puff

Table 1: Sip-and-Puff state and action definitions.

We recast the state diagram as a Harel statechart. Our stat-
echart for the Sip-and-Puff interface is shown in Figure 3.

This representation allows us to explicitly model the dif-
ficulty of performing specific actions with a limited user in-
terface, while minimizing the effect it has on the state space.

1Another valid state decomposition for this interface could in-
clude separate states for when the robot is turning left while mov-
ing forward, turning right while moving forward, turning left while
moving backward, and turning right while moving backward.

Figure 3: Harel statechart for Sip-and-Puff interface.

We develop this representation by defining a set of orthog-
onal regions, q0 and q1, that represent high-level states, and
actions, t0 and t1, that transition between them. In this defi-
nition we group states s0, s3 and s4 together into composite
state q0, and states s1 and s2 together into composite state
q1. We choose this grouping to separate the low-level latch-
ing switch states from their momentary switch counterparts.
This allows us to marginalize internal transitions such as a0,
a3, and a4 while focusing on external transitions such as t0
and t1. Note that there are no direct transitions between low-
level states s1 and s2 in either the FSM or Harel statechart
definition as the Sip-and-Puff interface restricts that behav-
ior. Using this hierarchical modeling technique and restrict-
ing state transitions, we are able to design a very compact
description of the system.

We then embed this state definition in our algorithm by
augmenting the state space of the grid-based search algo-
rithm to include the composite state as such:

S = (x; y; θ; q)

In the standard 2D A* approach, up to 8 vertices are ex-
panded at each iteration. In our approach, this number is re-
duced based on kinematic– and interface–based constraints.
Using the Sip-and-Puff we expand three vertices if the sys-
tem is in composite state q0 and four if it is in composite
state q1. That is, from state q0 the system can rotate clock-
wise, counterclockwise, or transition to state q1, and from
state q1, the system can translate linearly along its current
heading, linearly while rotating clockwise or counterclock-
wise, or transition to state q0.

Lastly, we set αE = 2 ∗ αI to impart a preference for the
easier transitions. This parameter can be tuned to better align
with user generated data in a given use case, however, we
found this was a good value for our experiments.

As a final point, it is worthwhile to note that the HFSM
formulation generalizes to other control interfaces where
constraints can be encoded as between-harel-state transi-
tions. While defining an HFSM that effectively captures
these constraints will be interface-specific, we can identify a
few broad categories, namely: (1) When there is a mismatch
in the dimensionality of the interface (lower) and the control
space of the robot (higher). These interfaces require methods
(e.g. buttons) of switching between control mappings (i.e.
to different subspaces of the robot control space). Actions
that require a switch are inherently more expensive than ac-
tions that do not require a switch. The Harel statechart can be
built along these lines, grouping actions that do not require
a switch into a single harel state. (2) Where taking the same
action from different low-level states incurs different costs.
For example, some actions are inherently riskier to perform
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at high speeds (e.g. robotic systems with complex dynamics
like quadcopters).

5 Analysis
We validate our approach with a number of different quan-
titative and qualitative techniques. We perform a multi-fold
analysis comparing the results of C* to multiple A* imple-
mentations as well as user-generated paths.

Our entire software suite runs in the Robot Operating
System (ROS) framework (Quigley et al. 2009), includ-
ing a simulated version of our semi-autonomous power
wheelchair that is faithful in dimension and mechanics to
the real system. The simulated system is missing only the
onboard computational system that sits atop the base of the
wheelchair (Figure 4). We plan all paths in the costmap pro-
vided by the ROS Navigation Stack, as such, it is trivial to
transition between running the system on the real hardware
and in simulation. We therefore demonstrate the efficacy of
our approach using a range of simulated environments de-
veloped in Gazebo, which allows us to exactly reproduce
the conditions of a particular experiment for multiple users.
It also allows us to design environments with varying de-
grees of maneuverability to best examine different classes
of realistic scenarios.

Figure 4: Top: Power wheelchair robot. Simulation (left),
real hardware (right). Bottom: Simulation environments.

All simulated environments can be seen in Figure 4. The
first environment contains only a single wall and doorway.
The second environment is slightly more complex, has mul-
tiple rooms, two doorways and a tight corridor. The third,
and last, environment is the most intricate. It is a simulated
replica of the floor plan of the Willow Garage office space.
It contains numerous rooms, hallways and doorways.

5.1 Path Analysis
We begin our analyses by directly comparing paths gen-
erated with our constrained approach, C*, with a standard
2D A* (x,y) implementation and a 3-dimensional A* (x,y,θ)
variant. The 3D A* cost function consists of the same costs
on state transitions in (x,y) as is used in the 2D A* cost func-
tion (Euclidean distance), and the same cost on state transi-
tions in θ as is used in the C* cost function. We choose a

representative sampling of start and goal locations. In par-
ticular, we chose start and goal locations that exemplify the
differences between the standard 2D A* approach and C*.
The resulting paths must navigate through doorways, tight
corners and otherwise restricted environments. In these clut-
tered areas, we find the greatest juxtaposition between al-
gorithms. This is due to a trade-off between optimizing the
specified path solely for distance versus a balance of dis-
tance and ease of achieving the path under the constraints
of the user interface. Using the Sip-and-Puff, moving in a
sequence of straight lines, even if they do not adhere to the
shortest path, is easier to do then making tight turns. Ta-
ble 2 presents pertinent path information for these three ap-
proaches on six different sets of start and goal locations.

In particular, we observe that C* produces paths that are
on average the same length (only 0.72% longer) as those
produced by the standard 2D A* implementation, but require
an average of 61% fewer turns. In comparison to 3D A*, we
find C* to again produce paths with equivalent length, but
require an average of 21% fewer turns.

In less restricted environments, all approaches produce
similar, if not identical results. For example, we observe in
Figure 5 that the majority of differences in the 2D A* and
C* generated paths are nearby changes in heading. Along
straight paths, both approaches find that the optimal solution
is to take the most direct route, as we would expect.

5.2 Experimental Path Analysis
We additionally compare our constrained planning approach
and the 2D A* implementation to user-generated paths. To
do so, we gathered pilot data from three lab members.

Each trial consisted of a user navigating the simulated
wheelchair between a specific start and goal location. Prior
to the trials, users were given 10 minutes of free time to ex-
plore the state space and improve their understanding of the
Sip-and-Puff interface. Odometery data was recorded as the
user navigated the robot through the environment. Figure 5
provides a visual comparison of the user paths, those gener-
ated using C* and the standard 2D A* implementation.

We quantify distinctions between our approach and A* by
computing the difference in average density between the two
algorithms and the user-generated paths. The density defined
by two paths is the area of the polygon specified by joining
the paths at their respective ends. Unlike the Frechet distance
(Alt and Godau 1995) or dynamic time warping (Sakoe and
Chiba 1978), the average density approach does not account
for the location or ordering of the points along the curves.
Instead, density computations consider only the area of the
polygon which removes any importance placed on reaching
a particular point along the path. This is a more appropriate
measure for our purposes as the planning algorithms do not
take speed or acceleration into account. Example polygons
created in this manner can be seen in Figure 6.

Using this analysis we find that the density of the dif-
ference between user paths and those generated by C* is
84.7% as large as the density of the difference between user
paths and those generated by A*. This shows that user paths
more closely align with paths generated by C* than those
generated by A*. Additionally, when compared with user
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Figure 5: Visual comparison of example paths generated by users, C* and A*.

A* 3D A* C*
Trial Path Length # Turns Path Length # Turns Path Length # Turns

1 3.89 12 3.99 6 3.95 6
2 5.14 12 5.14 7 5.14 5
3 3.70 19 3.89 7 3.76 7
4 19.65 43 19.65 19 19.65 13
5 18.71 39 18.89 24 18.93 17
6 18.44 32 18.44 16 18.44 10

Table 2: Path analysis. Path length reported in meters.

paths, the C* approach produced smaller densities than A*
in 88.9% of the trials.

An environment-based breakdown of the relative densities
can be seen in Table 3. This table helps elucidate the point
that C* is particularly useful in larger, more complex en-
vironments such as environments 2 and 3. In these environ-
ments, the user is more likely to need to perform very precise
maneuvers around objects and tight corners. As such, users
account more for ease of achievement rather than directly
optimizing their path for distance.

5.3 Experimental Signal Analysis
Lastly, we compare how well the autonomous control sig-
nals match those generated in the user trials. We perform this
analysis by comparing the vector of the user’s control signal
with that of the vector between the current position and the
first point along the planned A* and C* paths. We compute
these values at equally spaced intervals along the user path

Environment 1 2 3
Mean Density Ratio (C*/A*) 0.90 0.81 0.78

Table 3: Mean density ratio breakdown by environment.The
density ratio is computed as the C* density divided by the
A* density. A lower ratio is correlated with a path that more
closely aligns with the user generated paths.

Figure 6: Example polygon comparisons between users, 2D
A* and C*. Left: In red is the polygon defined by a user
generated path and A*, the blue dotted line is the C* path.
Right: In blue is the polygon defined by a user generated
path and C*, the red dotted line is the A* path. We see that
the density of the left–hand polygon is larger, meaning that
there is greater difference between the A* and user paths.

and analyze the results by calculating three metrics. First,
we calculate how often the heading of the signal produced
by the path planning algorithm exactly aligns with the sig-
nal provided by the user–we call this metric agreement. Sec-
ond we compute the average divergence between the two
signals, which refers to the angle (in radians) between the
heading of the path planning algorithms and the user signal
over the course of the entire path. Lastly, we present the av-
erage divergence subject to the condition that the user and
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Trial Mean Std.
1 2 3 4 5 6 Err.

Avg. Agreement (A*) 52.06 % 32.00 % 41.39 % 44.74 % 47.45 % 55.52 % 45.53 % 3.40
Avg. Agreement (C*) 59.26 % 47.12 % 67.14 % 69.98 % 72.29 % 73.63 % 64.90 % 4.13
Avg. Divergence (Total A*) 0.65 rad 0.70 rad 0.51 rad 0.96 rad 0.93 rad 0.49 rad 0.71 rad 0.08
Avg. Divergence (Total C*) 0.40 rad 0.48 rad 0.35 rad 0.46 rad 0.55 rad 0.30 rad 0.43 rad 0.15
Avg. Divergence (Disagreement A*) 1.36 rad 1.04 rad 0.85 rad 1.66 rad 1.80 rad 1.10 rad 1.30 rad 0.04
Avg. Divergence (Disagreement C*) 0.99 rad 0.91 rad 1.06 rad 1.50 rad 2.00 rad 1.15 rad 1.27 rad 0.17

Table 4: Signal Analysis. Each row represents the average value of the designated metric over all users. The last two columns
represents the mean and standard error of each metric over all users over all trials.

path planning algorithm are not in agreement. We perform
this analysis for each user in our study and present the aver-
age results in Table 4.

Using these metrics, we find that our C* algorithm pro-
duces signals that are in agreement with those provided by
users an average 42.5% more often than those produced
by standard A*. Over the course of an entire path, we
find the headings produced by C* are an average of 60%
more aligned with the user produced headings. Lastly, we
find, that even when the user and path planning algorithm
disagree, C* is no worse than A* at predicting the user-
generated signal.

5.4 Discussion
The results of our hierarchical constrained planning algo-
rithm are paths that clearly respect the cost structure and lim-
itations of the control interface. In particular, in our example
application we see that C* tends to create paths made up
of sequences of straight lines with significantly fewer turns
than in the unconstrained case. This behavior is similar to
what we observe in the pilot study and is validated by the
post-study questionnaire, in which users reported an aver-
sion to ‘starting and stopping’ and ‘sharp turns’.

Additionally, our C* approach generalizes immediately to
more complex domains with higher controllable degrees of
freedom (e.g. robotic manipulators) where users similarly
report control challenges based on interface constraints.
While the control space of such problems will be larger, we
are able to apply the same planning algorithm modifications
by defining a Harel statechart to constrain the kinematics and
assigning weights to the defined internal and external transi-
tions. We would expect similar results, where the difficulties
in operating a particular interface-robot combination result
in specific path characteristics that are captured by C*.

Achieving similar results to C* with an expanded A* vari-
ant would perhaps be possible by tuning of the associated
cost for each state-transition pair. However, using the C*
algorithm, we only need to tune the single parameter rep-
resenting how difficult external Harel state transitions are
compared to internal transitions.

One limitation to our pilot study is that the participants
were all new to the Sip-and-Puff interface. This interface is
not trivial to master and can often take weeks for a user to be-
come fully comfortable using. As such, we observed partici-
pants unintentionally follow paths they would otherwise not.
For example, on several occasions, we noticed users strug-

gle to unlatch from a latched state resulting in some unin-
tended back-tracking. We expect that with experienced Sip-
and-Puff users we would still see a difference between paths
generated by their odometry data and the C* algorithm, but
we could be more confident that all differences were due to
user preference and not unfamiliarity with the interface.

A notable difference between the paths generated by our
algorithm and those generated by the users is that C* tends
to produce control sequences that only transition composite
states twice. That is, the general structure of paths gener-
ated by our algorithm is the following. Beginning in the first
composite state, the robot rotates towards its next goal. It
then transitions to the second composite state which allows
it to begin moving forward towards its goal location. Then
the robot continues along this path, turning while moving
until arriving at the goal location. Finally, it transitions back
to the first composite state, allowing the robot to rotate in
place until it achieves the goal orientation. By contrast, even
with the constraint on the robot’s heading, users produced
paths that exaggerate turns even more than our algorithm
requiring a greater number of external state transitions. We
believe this area could be improved upon by learning aver-
age turning rates from further user studies and introducing
those rates into our planning algorithm.

Lastly, it should be reiterated that our approach produces
plans in the same state space as the user interface, which al-
lows us to directly compare output signals from a user and
the algorithm. The results of our pilot study show that C*
produces control signals that align with user signals sig-
nificantly more often than standard grid based search ap-
proaches and also reduce the average divergence between
the user and autonomous signal. This is useful for control
blending and analyzing the intent of a user.

6 Conclusion
We have presented a novel addition to heuristic-based search
algorithms for robot path planning in shared human-robot
control scenarios. The modifications are easy to understand
and implement and can be used to alter any grid-search
method and with any limited control interface. The result-
ing algorithm has many benefits including the ability to plan
in the same state space, with the same constraints, as a user
with a given control interface. Additionally, this work pro-
duces paths that more closely mimic those develop by a user,
and as such, could be used more readily as part of a collab-
orative control schema.
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