
Task and Motion Policy Synthesis as Liveness Games

Yue Wang, Neil T. Dantam, Swarat Chaudhuri, and Lydia E. Kavraki
Department of Computer Science, Rice University, Houston, TX, 77005 USA

{yw27, ntd, swarat, kavraki}@rice.edu

Abstract

We present a novel and scalable policy synthesis approach
for robots. Rather than producing single-path plans for a
static environment, we consider changing environments with
uncontrollable agents, where the robot needs a policy to re-
spond correctly over the infinite-horizon interaction with the
environment. Our approach operates on task and motion do-
mains, and combines actions over discrete states with con-
tinuous, collision-free paths. We synthesize a task and mo-
tion policy by iteratively generating a candidate policy and
verifying its correctness. For efficient policy generation, we
use grammars for potential policies to limit the search space
and apply domain-specific heuristics to generalize verifica-
tion failures, providing stricter constraints on policy candi-
dates. For efficient policy verification, we construct compact,
symbolic constraints for valid policies and employ a Satisfia-
bility Modulo Theories (SMT) solver to check the validity of
these constraints. Furthermore, the SMT solver enables quan-
titative specifications such as energy limits. The results show
that our approach offers better scalability compared to a state-
of-the-art policy synthesis tool in the tested benchmarks and
demonstrate an order-of-magnitude speedup from our heuris-
tics for the tested mobile manipulation domain.

Introduction

Recently, there has been a growing interest in the integra-
tion of Task and Motion Planning (TMP) (Dornhege et al.
2009; Wolfe, Marthi, and Russell 2010; Bhatia et al. 2011;
Kaelbling and Lozano-Pérez 2011; Erdem et al. 2011; Sri-
vastava et al. 2014; Cirillo et al. 2014). These previous TMP
approaches assume the environment is static. However, in
domains involving uncontrollable agents, such as the sce-
nario shown in Fig. 1, the robot needs a policy, rather than a
pre-computed linear plan, to react to changes online, ensure
safety, and accomplish desired tasks.

This paper presents a novel approach for the generation,
or synthesis, of robot task and motion policies that is scal-
able and enables quantitative specifications through the use
of symbolic constraints and an SMT solver (De Moura and
Bjørner 2008). We extend our previous deterministic TMP
system called ROBOSYNTH (Nedunuri et al. 2014a) with ad-
ditional modeling and policy synthesis components to han-
dle non-deterministic environments.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Charge
Region

FoodPrep
Region

Chef

Dishwasher

Robot

Countertop

Storage

Figure 1: The robot must navigate through the kitchen and
pick a cleaned dish from the dishwasher, while avoiding col-
lisions with the chef. Since the chef’s movement is uncon-
trollable, the robot needs a policy to accomplish the task no
matter how the chef moves.

We formulate synthesis as a concurrent two-player game
(de Alfaro and Henzinger 2000; Alur, Henzinger, and
Kupferman 2002) over a discrete abstraction of the task and
motion domain. In each round of the game, the robot and
the environment choose their moves independently and si-
multaneously. Our method synthesizes a winning policy for
the robot by iteratively generating a candidate and verifying
its correctness (Solar-Lezama et al. 2006). We efficiently
generate candidates by limiting the search space through a
grammar of potential policies (Alur et al. 2013). To ver-
ify a generated policy candidate, we extend the proof rules
of (Beyene et al. 2014), which provide compact, symbolic
constraints that characterize the correctness of policies. We
apply an SMT solver to check the validity of the constraints,
and if they are valid, the policy is correct. Otherwise, we
generalize verification failures by finding similar states us-
ing domain-specific heuristics. We then use these counterex-
amples to guide the subsequent policy candidate generation.
This iterative policy synthesis procedure converges either to
a winning policy or a proof that no such policy exists.

Other recent work has focused on reactive synthesis for
robots and hybrid systems (Decastro and Kress-Gazit 2015;
Wongpiromsarn, Topcu, and Murray 2010; Dantam and Stil-
man 2013; Ulusoy, Marrazzo, and Belta 2013). These ap-
proaches consider the differential dynamics of hybrid sys-

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

536

Environment
Kinematics

Robot
Kinematics

Robot
Actions

Task
Specification

Environment
Actions

PLACEMENT GRAPH
GENERATOR

CONSTRAINT
GENERATOR

GAME
GENERATOR

POLICY
SYNTHESIZER

Placement
Graph Game

System
Transitions

Policy /
Failure

Figure 2: Overall structure of our policy synthesis approach.
The placement graph generator and constraint generator
(blue-colored components) function as in ROBOSYNTH (Ne-
dunuri et al. 2014a; 2014b). We add two components (green-
colored components): game generator and policy synthe-
sizer, to handle uncontrollable environment behaviors.

tems but do not incorporate efficient path planning. In
contrast, we focus on the mobile manipulation domain
where high dimensionality makes efficient, collision-free
path planning crucial, and we therefore apply fast, sampling-
based motion planning methods (Kavraki et al. 1996). Fur-
thermore, these previous works often perform a combina-
torial search over large state spaces. In contrast, we avoid
expensive combinatorial search using SMT-based symbolic
methods, improving the scalability of policy synthesis.

We validate our approach in a mobile manipulation do-
main with human-robot interaction. Our results show that
for the tested benchmarks, our method scales better than an
alternate synthesizer (Piterman, Pnueli, and Saar 2006).

Problem Formulation

In this work, we consider task and motion policy synthe-
sis for a controllable robot operating in an environment with
uncontrollable agents such as humans. The robot and the en-
vironment have both continuous, kinematic state and purely
discrete state. The robot can select actions to modify its own
state, but it cannot control the state of the adversarial envi-
ronment. Finally, we specify the desired task as a set of
valid state sequences. Our goal is to synthesize a policy that
guides the robot during execution to accomplish the task.

Fig. 2 shows the overall structure of our policy synthe-
sis method, which extends our previous ROBOSYNTH sys-
tem (Nedunuri et al. 2014a). The placement graph gen-
erator abstracts the continuous, kinematic state to a dis-
crete placement graph (Nedunuri et al. 2014a), represent-
ing a subset of the continuous, collision-free configuration
space. The robot actions are defined based on abstract Plan-
ning Domain Definition Language (PDDL) (Edelkamp and
Hoffmann 2004) actions, such as pickup(?object), the
placement graph nodes (representing locations) and edges
(representing reachability), and the specific objects in the
scene. We use a plan outline (Nedunuri et al. 2014a), i.e.,
a parameterized sequence of robot actions with unknown

parameters, to over-approximate the task specification set.
A valid policy will determine the appropriate values for
these unknown parameters such that resulting concrete plans
achieve the task. Then the constraint generator transforms
the placement graph, environment actions, robot actions,
and task specification into a logical formula representing
valid transitions of the system.

We formulate task and motion policy synthesis as a dis-
crete, concurrent game between the robot and the environ-
ment:
Definition 1 (Concurrent Game).
A concurrent game is a tuple G = (Σ, θ,Γe,Γr, δ, ϕ):
• Σ is a state space of the game.
• θ ⊆ Σ is the set of initial game states.
• Γe, Γr are valid-move functions. For each state s, Γe(s)

and Γr(s) represents the set of valid moves for the envi-
ronment and the robot at state s, respectively.

• δ is the transition function of the game. For every state s ∈
Σ, move ae ∈ Γe(s) and move ar ∈ Γr(s), δ(s, ae, ar) ∈
Σ is the corresponding successor state.
A play σ is an infinite sequence of states: s0, s1, . . ., such
that s0 ∈ θ is an initial state and for i ≥ 0, si+1 is a
successor state of si as defined by δ.

• ϕ is a set of winning plays for the robot.

The game generator formulates our domain as a con-
current game. The game state space Σ is the set of dis-
crete states in the placement graph. The set of initial game
states θ combines the robot’s initial state set and the environ-
ment’s initial state set. The environment valid-move func-
tion Γe(s) and the robot valid-move function Γr(s) are con-
structed from the robot actions and environment actions, re-
spectively. The game transition function is constructed from
the system transitions generated by the constraint genera-
tor. Finally, the winning condition ϕ is the set of valid state
sequences in the task specification.

Now, we have reduced task and motion policy synthesis to
the problem of finding a winning policy for the correspond-
ing concurrent game. We define a concurrent game policy
as follows:
Definition 2 (Concurrent Game Policy).
A concurrent game policy for the robot is a function p(s) ∈
Γr(s) that selects a next robot move for every state s.

Winning policies must satisfy the game’s winning condi-
tion. The combination of concurrent game G and policy p
defines a set of plays ψ, which are the state sequences that
occur due to the robot actions selected by p and the possible
environment actions in G. Policy p is winning for game G
if every play in set ψ satisfies G’s winning condition ϕ, i.e.,
ψ ⊆ ϕ.

In this work, we solve concurrent games with liveness
winning conditions:
Definition 3 (Liveness Games).
In a liveness concurrent game G, there is a set dst of goal
states. A play σ is a winning play σ ∈ ϕ if there exists a
state s in the play σ that is a goal sate s ∈ dst . That is, a
winning play should eventually visit a state s ∈ dst .

537

CANDIDATE
GENERATOR

POLICY
VERIFIER

GENERALIZATION

No Winning
Policy

Policy
Candidate Winning

Policy

CounterexampleGeneralized
Counterexample

Game

Figure 3: The core steps of the synthesis algorithm used in
the policy synthesizer component in Fig. 2

Policy Synthesis

The policy synthesizer iteratively constructs a winning pol-
icy for a robot in a liveness game (see Fig. 3). First, the
synthesizer generates a policy candidate based on a given
grammar. Then, the synthesizer verifies the correctness of
this candidate using an SMT solver to check symbolic con-
straints that characterize winning policies. Finally, we gen-
eralize verification failures via domain-specific heuristics to
help subsequent policy candidate generation, reducing the
number of necessary iterations and improving efficiency.
This iterative policy synthesis procedure converges either to
a winning policy or a proof that no such policy exists.

Candidate Generation We generate policy candidates us-
ing a grammar for potential policies. Specifically, our gram-
mar for policies defines conditional expressions that choose
actions based on the current state. This grammar is,

p(s)→ Γr(s)[i]

| if test(s) then p(s) else p(s)
where Γr(s)[i] is the ith valid move of the robot at state s,
i.e., the ith element of valid-move set Γr(s), and test(s) is
a first-order formula that defines a set of game states. This
grammar limits the search space for policy candidates and
improves performance (Alur et al. 2013).

We generate policy candidates from this grammar using
an adaptation of the enumeration algorithm of (Udupa et
al. 2013). At each iteration, the candidate generator sys-
tematically enumerates candidate policies from the grammar
that are consistent with the generated counterexamples, in
increasing order of expression size. If no such candidate
exists, it reports that the game has no winning policy. Oth-
erwise, it passes the candidate policy p to the proof verifier.

Policy Verification: Liveness Games The next step is to
check if the candidate p is a winning policy. The policy ver-
ifier constructs symbolic constraints based on a new exten-
sion of the proof rules in (Beyene et al. 2014), and applies
an SMT solver to verify the validity of these constraints.

In this work, we consider verifying policies for live-
ness games, where the robot should eventually reach a
certain goal state. A liveness concurrent game G =
(Σ, θ,Γe,Γr, δ, ϕ) is associated with a set dst of goal states.
In a winning play, there is at least one state that is a goal state
s ∈ dst . Many robotic mobile manipulation problems can
be modeled as liveness games. For example, the task shown

in Fig. 1 can be modeled as a liveness game with goal states
of robot holding a cleaned dish near the dishwasher.

Consider a set inv ⊆ Σ that contains every state in a win-
ning play and a set round ⊆ Σ× Σ that contains every pair
of consecutive states before the first goal state s ∈ dst . The
winning policies should guarantee that, for every s ∈ inv
and every environment move ae ∈ Γe(s), if s is not a
goal state s �∈ dst , the robot move ar ∈ Γr(s) selected
by the policy ar = p(s) should lead to a successor state
s′ = δ(s, ae, ar) such that s′ ∈ inv and (s, s′) ∈ round .
To ensure a goal state is eventually reached, round should
be well-founded, i.e., there is no infinite sequence of states
σ = s0, s1, ..., such that each pair of consecutive states
(si, si+1) is a member of the set round , for all i ≥ 0.

The following formula summarizes the above constraints:

(well-founded(round)) ∧
(∀s, ae. (s ∈ inv) ∧ (s �∈ dst) ∧ (ae ∈ Γe(s)) →
(δ(s, ae, p(s)) ∈ inv) ∧ ((s, δ(s, ae, p(s))) ∈ round))

(1)

Note that Formula 1 places assertions about every pair
of consecutive states and the conjunction of all consecutive
states is the complete play. Thus, for a play σ = s0, s1, . . .,
instead of specifying what should be satisfied in every state
s0, s1, . . ., Formula 1 specifies every pair of consecutive
states and provides a much more compact representation of
constraints. The size of the formula has a great impact on the
performance of the SMT solver. Thus, these symbolic con-
straints greatly improves the performance of our method.

Our policy synthesizer constructs the well-founded set
round using the distance DistanceToGoal(s) between the
current state and the goal region, i.e., a pair of states (s, s′) ∈
round if DistanceToGoal(s) > DistanceToGoal(s′). In-
tuitively, the well-founded set round represents the require-
ment that the successor state s′ should be closer to the goal
region than the current state s. Since we consider bounded
workspace, it is impossible to have an infinite sequence of
states where the value ofDistanceToGoal(s) keeps decreas-
ing, which guarantees the well-foundedness.

We iteratively construct the auxiliary set inv :

1. Initially, we use the state space Σ to over-approximate the
set inv , i.e., we set inv = Σ.

2. During the policy synthesis process, if we find an invalid
state s that always leads to a successor state s′ such that
(s, s′) is not a member of the set round , no matter what
robot move the policy selects, we shrink the set inv by
removing this invalid state s.

If we find a policy p with a non-empty set inv , then p is
a winning policy that can always maintain a successor state
closer to the goal region for every state s ∈ inv . Therefore, a
goal state is eventually reached due to the well-foundedness
of the set round . Otherwise, we can conclude that there is
no winning policy for the robot because every state s ∈ Σ
will result in a successor state farther to the goal region, no
matter what robot move the policy selects. Therefore, it is
impossible for the robot to reach a goal state.

538

Evader

Pursuerdistance = d

orientation = o

Figure 4: Illustration for one counterexample returned by the
verifier, indicating that in this particular game state, the out-
put of the candidate policy is incorrect. We exploit the geo-
metric information, i.e., distance and orientation between
the purser and evader to generalize this counterexample.

Generalization Formula 1 guarantees that for a candidate
policy p, if the constraints are valid against all admissible
environment behaviors, p is a winning policy. Otherwise, p
is not a winning policy and the SMT solver returns a coun-
terexample: a game state s that violates the constraints.

For robotic applications, we can utilize the geometric in-
formation learned from the low level motion planers to speed
up the synthesis process. In this generalization step, we
extract additional geometric information from this single
counter-example to generalize this failure game state to a
set of similar states. Such generalization reduces the num-
ber of policy candidates we must generate and verify, greatly
improving the efficiency of our method (see Fig. 5).

To see how the generalization procedure works, consider
a pursuit-evasion game where we synthesize a winning pol-
icy for the evader. The proof verifier discovers one partic-
ular game state where the output of the candidate policy is
incorrect (i.e., the evader will be captured by the pursuer).
Since the policy is represented symbolically and thus all the
states with the same relative pose between the pursuer and
evader (distance = d and orientation = o) are assigned
the same incorrect next move. Therefore, we also need to
include such states into our counterexample set.

Experiments

Experimental Setup: Liveness Task Benchmark We
evaluate our policy synthesizer in a kitchen environment
(Fig. 1) with a simulated PR2 robot and uncontrollable
agents (e.g., chefs) moving within the FoodPrep Region.
The robot must avoid collisions with these chefs. The live-
ness task requirement is that the robot should eventually pick
up a cleaned dish from the dishwasher. We assume the robot
can sense the exact location of the chefs and the distance that
the chefs can move between two sense actions is bounded.

This kitchen domain is a special instance of the more gen-
eral pursuit-evasion games described in the previous sec-
tion, where safety requires that the robot (evader) main-
tain a minimum distance from chefs (pursuers). In this ex-
periments, we apply the same generalization heuristic for
pursuit-evasion games to speed up the synthesis process.

The placement graph in our experiments models motion
for the human agent (x, y), the robot base (x, y, θ), and one
7-DOF arm, giving 12-DOF total. We spent about 10 sec-
onds on computing this placement graph, and we reused this
graph for all policy computations. This graph contains about

10 20 30 40

10−1

100

101

102

103

Food PrepRegion Size

Sy
nt

he
si

s
Ti

m
e

(s
)

GR(1) Synthesizer
Policy Synthesizer With Generalization

Policy Synthesizer Without Generalization

Figure 5: Performance of our policy synthesizer (with dif-
ferent settings) and LTLMoP back-end GR(1) synthesizer as
the size of the FoodPrep Region increases (semi-log scale).

10 20 30 40

5

10

Food PrepRegion Size

Sy
nt

he
si

s
Ti

m
e

(s
)

No Energy Constraint
With Energy Constraint

Figure 6: Performance of our synthesizer with energy con-
straint as the size of the FoodPrep Region increases. With
energy constraint, our policy synthesizer still scales well.

80 nodes and 400 edges.
All experiments were carried out on an 8 core 3.4 GHz

machine with 8 GB memory. We use Z3 (De Moura and
Bjørner 2008) as our backend SMT solver and utilize the
linear arithmetic and uninterpreted functions theory solvers
of Z3. For all benchmarks, the size of the workspace is fixed,
and there are 2 chefs in the kitchen.

Evaluation We compare our policy synthesizer with the
back-end of LTL MissiOn Planner (LTLMoP), a state-of-
the-art synthesis tool for robotic applications (Finucane,
Jing, and Kress-Gazit 2010). The back-end of LTLMoP is
based on the GR(1) synthesis algorithm presented in (Piter-
man, Pnueli, and Saar 2006). We note also that LTLMoP
contains many front-end features, such as natural language
processing, that are orthogonal or even complementary to
the policy synthesis work we present in this paper.

The comparison results for the liveness task benchmark
are shown in Fig. 5. To evaluate the gains from the general-
ization step (i.e., using domain-specific heuristics to general-
ize verification failures), we also test our policy synthesizer
with generalization turned off (green-triangle plot).

As we can see from Fig. 5, for small size problems, the

539

GR(1) synthesizer performs slightly better while for prob-
lems with size greater than 16, our method performs better.
Therefore, our approach provides better scalability in these
tests. Moreover, the results demonstrate that generaliza-
tion gives order-of-magnitude performance improvements.
Without generalization, our method scales worse than the
GR(1) synthesizer and cannot solve the problem with Food-
Prep Region larger than 12 in 30 minutes.

To demonstrate the scalability of our method with quan-
titative constraints, we also run the liveness task benchmark
with one additional energy constraint: the robot’s energy
state EnergyState should be always greater than a certain
threshold emin, i.e., EnergyState > emin. The results
are shown in Fig. 6. The orange-circle plot shows the per-
formance of our approach with this energy constraint. For
comparison, we also include the results for the liveness task
benchmark without the energy constraint (blue-circle plot).
With the additional energy constraint, our policy synthesizer
still scales well and the performance is roughly one-time
slower than the performance without the energy constraint.

Conclusion

We have presented a symbolic approach for task and motion
policy synthesis where the robot must accomplish tasks in
environments with uncontrollable agents. Our results show
that, compared to an existing robotic synthesis tool – the
GR(1) back-end of LTLMoP – our approach scales better
in the tested benchmark. We also show that our approach
can handle quantitative constraints such as energy limits ef-
ficiently.

There are multiple avenues to extend this work. Currently,
we assume the robot has perfect sensing with no observation
uncertainty. An important ongoing question is how to extend
the current approach to handle uncertainty in the environ-
ment, such as sensor noise or other probabilistic beliefs. In
addition, we have so far only explored generalization heuris-
tics for pursuer-evader games, an important though specific
class of problems. Additional generalization heuristics for
broader domains is another promising future direction.

Acknowledgments This work was supported in part by
NSF CCF 1139011, NSF CCF 1514372, NSF CCF 1162076
and NSF IIS 1317849.

References

Alur, R.; Bodik, R.; Juniwal, G.; Martin, M. M.; Raghothaman, M.;
Seshia, S.; Singh, R.; Solar-Lezama, A.; Torlak, E.; and Udupa, A.
2013. Syntax-guided synthesis. In FMCAD, 1–8.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002. Alternating-
time temporal logic. J. ACM 49(5):672–713.
Beyene, T.; Chaudhuri, S.; Popeea, C.; and Rybalchenko, A. 2014.
A constraint-based approach to solving games on infinite graphs.
In POPL, 221–233.
Bhatia, A.; Maly, M.; Kavraki, L.; and Vardi, M. 2011. Motion
planning with complex goals. Robotics & Automation Magazine,
IEEE 18(3):55–64.
Cirillo, M.; Pecora, F.; Andreasson, H.; Uras, T.; and Koenig, S.
2014. Integrated motion planning and coordination for industrial
vehicles. In ICAPS.

Dantam, N., and Stilman, M. 2013. The motion grammar: Analysis
of a linguistic method for robot control. Robotics, IEEE Transac-
tions on 29(3):704–718.
de Alfaro, L., and Henzinger, T. 2000. Concurrent omega-regular
games. In Logic in Computer Science, 2000. Proceedings. 15th
Annual IEEE Symposium on, 141–154.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient smt solver.
In TACAS, 337–340.
Decastro, J. A., and Kress-Gazit, H. 2015. Synthesis of nonlin-
ear continuous controllers for verifiably correct high-level, reactive
behaviors. Int. J. Rob. Res. 34(3):378–394.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B. 2009. Inte-
grating symbolic and geometric planning for mobile manipulation.
In Safety, Security & Rescue Robotics (SSRR), 2009 IEEE Interna-
tional Workshop on, 1–6.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language
for the classical part of the 4th international planning competition.
Technical Report 195, Albert-Ludwigs-Universität Freiburg, Insti-
tut für Informatik.
Erdem, E.; Haspalamutgil, K.; Palaz, C.; Patoglu, V.; and Uras,
T. 2011. Combining high-level causal reasoning with low-level
geometric reasoning and motion planning for robotic manipulation.
In ICRA, 4575–4581.
Finucane, C.; Jing, G.; and Kress-Gazit, H. 2010. Ltlmop: Experi-
menting with language, temporal logic and robot control. In IROS,
1988–1993.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical task and
motion planning in the now. In ICRA, 1470–1477.
Kavraki, L. E.; Svestka, P.; Latombe, J. C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on Robotics
and Automation 12(4):566–580.
Nedunuri, S.; Prabhu, S.; Moll, M.; Chaudhuri, S.; and Kavraki,
L. 2014a. Smt-based synthesis of integrated task and motion plans
from plan outlines. In ICRA, 655–662.
Nedunuri, S.; Wang, Y.; Prabhu, S.; Moll, M.; Chaudhuri, S.; and
Kavraki, L. E. 2014b. Synthesis of integrated task and motion
plans from plan outline using smt solvers. Technical report, Rice
University.
Piterman, N.; Pnueli, A.; and Saar, Y. 2006. Synthesis of reactive
(1) designs. In Verification, Model Checking, and Abstract Inter-
pretation, 364–380. Springer.
Solar-Lezama, A.; Tancau, L.; Bodik, R.; Seshia, S.; and Saraswat,
V. 2006. Combinatorial sketching for finite programs. In ASPLOS,
404–415.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.; and
Abbeel, P. 2014. Combined task and motion planning through an
extensible planner-independent interface layer. In ICRA, 639–646.
Udupa, A.; Raghavan, A.; Deshmukh, J. V.; Mador-Haim, S.; Mar-
tin, M. M.; and Alur, R. 2013. Transit: Specifying protocols with
concolic snippets. In PLDI, 287–296.
Ulusoy, A.; Marrazzo, M.; and Belta, C. 2013. Receding hori-
zon control in dynamic environments from temporal logic specifi-
cations. In Robotics: Science and Systems.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined task and
motion planning for mobile manipulation. In ICAPS.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. M. 2010. Receding
horizon control for temporal logic specifications. In HSCC, 101–
110.

540

