
Experience-Based Robot Task Learning and Planning with Goal Inference

Vahid Mokhtari, Luı́s Seabra Lopes and Armando J. Pinho
IEETA, University of Aveiro, Aveiro, Portugal

{mokhtari.vahid, lsl, ap}@ua.pt

Abstract

Learning and deliberation are required to endow a robot
with the capabilities to acquire knowledge, perform a vari-
ety of tasks and interactions, and adapt to open-ended en-
vironments. This paper explores the notion of experience-
based planning domains (EBPDs) for task-level learning and
planning in robotics. EBPDs rely on methods for a robot to:
(i) obtain robot activity experiences from the robot’s perfor-
mance; (ii) conceptualize each experience to a task model
called activity schema; and (iii) exploit the learned activity
schemata to make plans in similar situations. Experiences are
episodic descriptions of plan-based robot activities includ-
ing environment perception, sequences of applied actions and
achieved tasks. The conceptualization approach integrates
different techniques including deductive generalization, ab-
straction and feature extraction to learn activity schemata. A
high-level task planner was developed to find a solution for
a similar task by following an activity schema. In this paper,
we extend our previous approach by integrating goal infer-
ence capabilities. The proposed approach is illustrated in a
restaurant environment where a service robot learns how to
carry out complex tasks.

Introduction
Robots are today leaving industrial environments and start
becoming part of our everyday life. This evolution raises the
major challenge of personalizing the programming of our
robots and making them compatible with human-inhabited
environments. Despite the impressive results of manual
robot programming, handcrafted solutions are not likely
to transfer to the large variety of tasks and environmental
states. A new approach seems essential to learn the appro-
priate behavior in many situations. We are interested here in
autonomous intelligent robots that are able to interact with
their environment, acquire knowledge to adapt to dynamic
and changing environments, and act deliberately in order to
achieve their mission. Acting deliberately means performing
actions that are selected based on reasoning motivated by
some intended objectives. Deliberation endows autonomous
intelligent robots with adaptability and robustness (Ingrand
and Ghallab 2015). This paper presents an approach to en-
dow a robot with capabilities to adapt to changes in its envi-
ronment and tasks, and to improve its models and behaviors.
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The work described in this paper is based on the general
idea of learning from experience, in which a human user
instructs a robot how to perform complex tasks, and allows
the robot to conceptualize its experiences. More specifically,
the main contribution of this work is the development and
demonstration of a task learning and planning system for
complex robotic applications. This system integrates previ-
ously developed methods as well as new techniques. We pro-
pose a learning system that allows for: (i) verbally instruct-
ing a robot how to carry out complex tasks using a set of
predefined primitive behaviors and previously learned con-
cepts; (ii) extracting plan-based robot activity experiences
from working memory contents; (iii) conceptualizing robot
activity experiences in the form of activity schemata; and
(iv) to close the loop, exploiting activity schemata to make
plans for similar situations. This learning system aims to en-
able a service robot to learn complex task models in a restau-
rant environment. We assume that the robot is equipped with
a set of basic skills, e.g., move base, pick up object,
place object etc. and we focus on a strategy that would
help the robot to construct a high-level task representation
of a complex task (e.g., serve a coffee to a guest) built from
the existing behavior set.

An activity schema is a learned goal-directed task model
consisting of a sequence of abstract operators, a goal to be
achieved during problem solving, and the features of objects
involved in an experience. Activity schemata are learned
for two main purposes. On one hand, they are used for
grounding task vocabulary used by the human user. This
way the user’s language is transmitted to the robot. Activ-
ity schemata also capture normative principles about how a
task should be achieved (e.g., although a guest can be served
on the left side, s/he should be served on the right by social
convention). On the other hand, for complex tasks, an activ-
ity schema can serve as a guide for speeding up search.

Figure 1 provides an overview of the developed learning
and planning system. Working memory is an RDF1 database
where different modules share information. Every unit of
data written to the working memory is a predicate with tem-
poral extent, called fluent (Hertzberg et al. 2014). The user
interface allows a human to instruct a robot how to perform

1http://www.w3.org/RDF/ “Resource Description Framework
(RDF)”
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Figure 1: An overview of the learning and planning system.

a complex task using a set of primitive operators (i.e., ba-
sic behaviors) as well as teach that task to the robot (Lim
et al. 2014). During task execution, the experience extrac-
tor extracts a subset of fluents including the sequence of
applied actions, from working memory. This information is
then recorded as a plan-based robot activity experience into
the experience memory (Mokhtari et al. 2016). The concep-
tualizer receives an experience identifier, takes the respec-
tive description from experience memory, and constructs
and records an activity schema into the concept memory.
The role of experience memory and concept memory in this
system is similar to that of episodic memory and semantic
memory in cognitive science (Wood, Baxter, and Belpaeme
2012). Activity schemata are abstract semantic structures
that are used later during planning to find solutions for sim-
ilar problems. The developed planner uses a modified A∗
heuristic search approach that takes a ground task as well as
the initial state of the environment as inputs and follows a
task relevant activity schema to find a solution to the given
task. The execution manager receives the plan generated by
the planner and dispatches the planned actions to the robot
platform, and records success or failure information into the
working memory (Konec̆ný et al. 2014). The conceptualizer
and planner are addressed in this paper.

In this paper, we present several improvements and exten-
sions to our earlier works, one focused on experience ex-
traction and conceptualization (Mokhtari et al. 2016) and
the other on formalization of experience-based planning do-
mains and planning capabilities (Mokhtari et al. 2015). In
particular, the main novelty of this paper with respect to the
previous works is the inclusion of goal inference capabilities
and the improvement of feature extraction and planning to
take into account the inferred goal. Moreover, we present a
more extensive evaluation of the learning and planning sys-
tem. We demonstrate the performance of this system in a
real environment, where a service robot performs a given
task within a set of restaurant scenarios. The experiments
are carried out both in a gazebo simulated environment and
on a real PR2 robot.

Related work

Task planning faces two main problems. On one hand, if the
task is complex, some extra knowledge on how to plan the
task is needed to speed up the search for a solution. On the
other hand, when there are different alternatives to achieve
a goal, some alternatives may be preferable based on differ-
ent factors, such as social norms, physical constraints, etc.

Therefore, task planning systems often require generic task
models that specify how tasks should be correctly achieved
and/or guide the search for a task plan. The focus of this pa-
per is precisely on the acquisition and exploitation of these
task models.

Some previous research has focused on interaction capa-
bilities for teaching high-level task knowledge (Rybski et al.
2007; Mohseni-Kabir et al. 2015). Here, the teacher uses a
convenient communication mechanism to teach action com-
positions, i.e., to directly transfer high-level planning knowl-
edge to the robot. However, the acquired models lack flex-
ibility to be adapted to slightly different variations. More-
over, these approaches do not involve learning from experi-
enced episodes.

Much of the work has focused on research into learning
from demonstration (LfD) and artificial cognitive systems to
quickly transfer task models to a robot (Billard et al. 2008;
Argall et al. 2009; Mugan and Kuipers 2012). Nicolescu and
Mataric (2003) present an LfD approach to enable a robot
to learn and generalize complex tasks from multiple demon-
strations. A Longest Common Subsequence between differ-
ent topological representations of tasks is computed for rep-
resenting a common sequence of behaviors as an abstract
behavior network.

In some approaches that learn task models through inter-
action with human tutors, the learned models represent the
achieved goals and not the actions required. She et al. (2014)
identify the goal simply as a difference between the start and
end states of an experience guided through human-robot di-
alog. In another approach, the task model includes, not only
the goal, but also a set of ordering constraints between ac-
tions (Ekvall and Kragic 2008). This representation is an al-
ternative to the DAG representations proposed by others.

Overall, the learning techniques used so far in task learn-
ing from instructions and/or demonstrations are character-
ized by poor expressivity of the adopted representations as
well as by limitations of the generalization techniques. The
inference of task goals is either missing or too simplistic.
Moreover, the exploitation of the learned knowledge by a
planner is given little attention.

The application of classical Artificial Intelligence (AI)
techniques for knowledge representation, planning and
learning are likely to significantly improve the capabilities
of experience-based planning systems. Numerous methods
have been proposed in AI for improving planners by acquir-
ing different types of planning knowledge. These efforts are
usually concerned with planning speed, but may be relevant
for other purposes (Zimmerman and Kambhampati 2003;
Jiménez et al. 2012; Ingrand and Ghallab 2015). Macro-
operators are among the first attempts to improve plan-
ning systems by learning compound actions from individual
actions frequently used together (Fikes, Hart, and Nilsson
1972; Chrpa 2010). Some works have addressed how to infer
a generalized plan which works over all instances of a class
of problems by efficiently instantiating plans for given prob-
lems (Hu and De Giacomo 2011). Other works have focused
on learning Hierarchical Task Networks (HTN) for hierar-
chically representing planning knowledge about a problem
domain (Hogg, Muñoz-Avila, and Kuter 2014). Although
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these approaches have seldom been used in robotics (In-
grand and Ghallab 2015), they use more expressive repre-
sentations and more advanced algorithms than those used so
far in robot learning from demonstration, thus we see high
application potential.

In this work, we assume an equipped robot with a set of
basic skills, and develop a strategy for constructing a high-
level task representation of a complex task, built from the
existing behavior set. Our approach learns a task model from
a single task demonstration. An operators abstraction hierar-
chy is employed to support more generic concepts, in con-
trast to other LfD approaches that generalize from multiple
demonstrations. We present a method for inferring the goal
in a generalized experience, and a mechanism of generating
a plan from a learned task model for a given task problem.

Representation

A formal definition of Experience-Based Planning Domain
(EBPD), i.e., a planning domain that evolves through learn-
ing from experiences is proposed in this section.

Definition 1 An EBPD is a tuple,

D = (L,Σ,S,A,O, E ,M),

where L is a first-order logic language that has finitely many
predicate and constant symbols, Σ is a set of ground atoms
of L that are always true (i.e., static world information), S
is a set of states in which every state s ∈ S is a set of ground
atoms of L which may become false (i.e., transient world
information), A is a set of abstract operators, O is a set
of planning operators, E is a set of plan-based robot activity
experiences, and M is a set of methods in the form of activity
schemata2.

Planners usually either retain the previously generated
world states or have a method to reproduce them later as
needed. For complex planning domains that have a large
number of planning operators and a large set of predicates,
retaining or reproducing the whole of world states during
planning will affect the performance of the planners. A dis-
tinction between static and transient world information, al-
ready explored in (Seabra Lopes 1999; 2007), allows a plan-
ner to only retain or reproduce the transient information in
the world states during planning, and retrieve the static infor-
mation from a global storage when it is required. This idea
improves the efficiency of planning in terms of both time
and memory.

Definition 2 An abstract operator a ∈ A is a class of
planning operators, which is described by a head. A head
takes the form n(x1, ..., xk≥0), in which n is the name, and
x1, ..., xk are the arguments, e.g. move(from, to).

Definition 3 A planning operator o ∈ O is a tuple,

o = (h, a, S, P,E),

2We have extended PDDL to represent the proposed EBPDs.
To fully grasp the notions of EBPDs, an instance of the def-
initions and the concepts in these domains are available in
https://github.com/mokhtarivahid/icaps2016

Table 1: Primitive and abstract operators in this project.

Abstract operators Primitive operators

move(from, to) move base(oat, from, gat, to)
; move a robot to a goal area
move base blind to ma(oat, from, gat, to)
; move a robot to a goal manipulation area
move base blind to pma(oat, from, gat, to)
; move a robot to a goal pre-manipulation area

pick(obj, arm) pick up object(obj, arm, on, at, ma, pa, g, gh, tp, op, gp)
; pick an object with an arm

place(obj, arm, pa) place object(obj, arm,at, ma, pa, g, tp, h, on, ogp, ggp)
; place an object with an arm in a placing area

nil tuck arms(olpt, orpt, olp, orp, glpt, grpt, glp, grp)
; tuck both arms into goal postures
move arms to carryposture(olpt, orpt, olp, orp, glp, grp)
; move both arms to carry posture
move arm to side(arm, oapt, oap, gap)
; move an arm to a goal posture
move torso(torso, otpt, otp, gtpt, gtp)
; move robot’s torso to a goal posture

where h is the operator’s head, a is an abstract operator
which is the superclass or parent of o, S is the static world
information, and P and E are respectively the preconditions
and effects of o. A ground instance of an operator is called
an action.

Table 1 shows the implemented abstract and planning op-
erators in this work. One planning operator represented in
EBPDs is shown in Listing 1.

The process of learning starts with experience gathering.
Experiences are episodic descriptions of plan-based robot
activities including environment perception, sequences of
applied actions and achieved tasks.

Definition 4 A plan-based robot activity experience e ∈ E
is a triple of ground structures,

e = (t,K, π),

where t is the head of a task, taught by a human user to
a robot, e.g., serve_coffee(guest1), K is a set of
key fluents, i.e., propositions in the form of first-order binary
predicates with qualitative timestamps, and π is a plan, i.e.,
a sequence of applied actions to achieve t.

The timestamps specify the temporal extent of the pred-
icates in an experience. Three types of timestamps are
used in the representation of fluents, at start (true at
the initial state, e.g. at start(on(mug1,paelc1))),
throughout (always true during the experience, e.g.
throughout(at(guest1,sawt1))) and at end (true
in the final state, e.g. at end(on(mug1,pawrt1))).

Listing 2 shows a plan-based robot activity experience for
the “serve a coffee” task. In (Mokhtari et al. 2016) an ap-
proach is proposed to extract plan-based robot activity ex-
periences. Extracted experiences are used to acquire activ-
ity schemata. An activity schema is a task model obtained
from a plan-based robot activity experience. The knowledge
stored in an activity schema is about actions, goal to be
achieved and features of objects involved in the experience:
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(:action place_object
:parameters (?obj ?arm ?at ?ma ?pa ?grip ?tp ?h

?on ?ogp ?gap)
:parent (place (?obj ?arm ?pa))
:static (and

(instance arm ?arm)
(instance gripper ?grip)
(hasmanipulationarea ?pa ?ma)
(hasgripper ?arm ?grip))

:precondition (and
(instance robotat ?at)
(hasarea ?at ?ma)
(instance armtosideposture ?ap)
(hasarmposture ?arm ?ap)
(instance torsoupposture ?tp)
(hasgripperposture ?grip ?ogp)
(instance ?ogpt ?ogp)
(instance holding ?h)
(hasgripper ?h ?grip)
(haspassiveobject ?h ?obj)
(= ?ogpt gripperholdingposture))

:effect (and
(not (instance holding ?h))
(not (hasgripper ?h ?grip))
(not (haspassiveobject ?h ?obj))
(not (hasgripperposture ?grip ?ogp))
(not (instance ?ogpt ?ogp))
(new_constant on ?on)
(instance on ?on)
(hasarea ?on ?pa)
(hasphysicalentity ?on ?obj)
(new_constant gripperopenposture ?ggp)
(instance gripperopenposture ?ggp)
(hasgripperposture ?grip ?ggp)))

Listing 1: PDDL-like representation of a planning operator.
With respect to the standard PDDL, parent and static are
new added properties to the domain.

Definition 5 An activity schema m ∈ M is a triple,
m = (h,G,Ω),

where h is the head of the target task (e.g.
serve coffee(guest)), G is a set of generalized
propositions called goal propositions that are inferred from
the possible relationships between arguments of h in an
experience, and Ω is an abstract plan, i.e., a sequence of
abstract operators enriched with features.
Definition 6 An enriched abstract operator ω is a pair,

ω = (a, F ),

where a ∈ A is an abstract operator, and F is a set of fea-
tures, in the form of reified fluents, that documents the argu-
ments of a.
Definition 7 A task planning problem is a triple,

P = (σ, s0, t),

where σ ⊆ Σ is the static world information, s0 ∈ S is the
initial state (i.e., transient world information), and t is a task
to be planned (e.g. serve coffee(guest1)).

A plan solution π is generated for task t, iff there is a
learned activity schema m ∈ M in which the head of m
matches task t and π can be derived from m in s0.

Conceptualizing experiences
The term conceptualization in this work refers to the pro-
cess of learning an activity schema from a robot activity ex-
perience. The conceptualization approach is a combination
of different techniques including deductive generalization,
different forms of abstraction, goal inference and feature ex-
traction.

(:task serve_coffee
:parameters (mug1 guest1)
:key-propositions (....) ; omitted
:actions
((tuck_arms aunp aunp aunp1 aunp0 atp atp atp7 atp13)
(move_base at0 fatr1 at7 pmaec1)
(move_torso torso1 tdp tdp0 tup tup2)
(tuck_arms atp atp atp7 atp13 atp atp atp1001 atp17)
(move_arm_to_side rightarm1 atp atp17 asp19)
(move_base_blind_to_ma at7 pmaec1 at9 maec1)
(pick_up_object mug1 rightarm1 on4 at9 maec1 paerc1

rg1 h1 tup2 asp19 asp27)
(move_base_blind_to_pma at9 maec1 at11 pmaec1)
(move_torso torso1 tup tup2 tdp tdp4)
(move_arms_to_carryposture atp asp atp1001 asp27

acp31 acp33)
(move_base at11 pmaec1 at13 pmast1)
(move_torso torso1 tdp tdp4 tup tup6)
(move_arm_to_side rightarm1 acp acp33 asp35)
(move_base_blind_to_ma at13 pmast1 at16 mast1)
(place_object mug1 rightarm1 at16 mast1 on3 pawrt1

rg1 h1 tup6 asp35 asp42)
(move_base_blind_to_pma at16 mast1 at19 pmast1)))

Listing 2: A plan-based robot activity experience for serve
a coffee task. It contains 16 primitive actions and 122 key
propositions.

Generalization and abstraction

Generalization is the first step in conceptualizing a plan-
based robot activity experience. Through deductive gener-
alization, it is possible to formulate general concepts from
single training examples and domain knowledge. A goal re-
gression algorithm, as in explanation-based generalization
(EBG) (Mitchell, Keller, and Kedar-Cabelli 1986), is em-
ployed to: (i) build an explanation of how a plan-based robot
activity experience is solved with domain operators; and (ii)
generalize the obtained explanation. The generalization is
carried out by variabilizing the observed constants in an ex-
perience and propagating the substitution of constants for
variables in the whole experience.

To reduce the level of detail in a generalized experience,
an operator abstraction hierarchy was developed, which re-
sults in more widely applicable task knowledge. This hi-
erarchy is specified in an EBPD using the parent property
of planning operators which links to an abstract operator
(Table 1). In this abstraction hierarchy, some operators are
mapped onto abstract operators, some others are mapped
onto nil, meaning they are excluded from the learned activ-
ity schema, and some arguments of operators are excluded
in the respective abstract operators. The nil class of opera-
tors contains auxiliary operators that are filled later during
instantiation of a learned activity schema for a given prob-
lem.

Generalization and abstraction allow a planner to generate
plans with different objects, different sequences of actions,
and different plan lengths.

Goal inference

The ability to recognize, formulate, select, and manage goal-
s/objectives is of great interest to intelligent robotics. Recog-
nizing the goal of a task in an experience enables to better
understand the experience and to better capture the essential
aspects of the applied solution. We have developed a goal in-
ference procedure which extracts a set of goal propositions
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Algorithm 1 Inferring goal propositions in an experience
Input:

Task arguments A and key propositions K in a generalized
experience

Output:
A set of generalized goal propositions G

1: procedure GOALINFERENCE(A,K)
2: if A = φ then
3: return φ
4: G← GOALINFERENCE(tail(A),K)
5: for all b in tail(A) do
6: P ← FINDPATHS(head(A),b,K,φ)
7: G← G ∪ SHORTESTPATH(P )
8: return G

1: procedure FINDPATHS(a, b,K, p)
2: if a = b then
3: return {p}
4: F ← fluents in K containing a as argument
5: P ← φ
6: for all f in F do
7: x← the other argument of f � x �= a
8: if x does not appear in p then
9: P ← P ∪ FINDPATHS(x,b,K,p ∪ {f})

10: return P

from the final state of a generalized experience (i.e., from
the set of key propositions with timestamps throughout
and at end). This inferred goal will be useful in solving
different instances of the same problem. The arguments of a
taught task, identified by an instructor (e.g., mug1, guest1
etc.), define the main targets for the task, and are used as
cues for inferring goal propositions. Algorithm 1 describes
the process of goal inference. The GOALINFERENCE proce-
dure takes as input the set of generalized arguments and the
set of generalized key propositions in an experience. For ev-
ery pair of task arguments, key propositions with timestamps
throughout and at end are explored to find all possible
paths between the arguments. Each path is a set of proposi-
tions that reveals a relation between two task arguments in
the final state of the experience. For each pair of arguments,
the shortest connecting path is selected. Finally, the union
of the shortest paths computed for all pairs of arguments is
used as a description of the goal. Figure 2 shows some of the
possible paths between two task arguments mug and guest
in an experience. For the purpose of feature extraction, the
at end key propositions in the generalized experience are
replaced by the extracted goal propositions with at goal
timestamps.

Feature extraction

Concepts derived by generalization and abstraction are en-
riched through feature extraction. Features are properties of
objects involved in an experience. During planning, features
define preferences for finding the closest instantiation of an
activity schema to a given task problem. In the current con-
ceptualization approach, a feature is a fluent or a set of flu-
ents, which describes a relation between an argument of an
action in the experience and an argument of the taught task.
The key propositions in a generalized and abstracted robot

on(mug,pawrt)

hasmanipulationarea(pawrt,mast) hasplacingarea(table,pawrt)

hasplacingarearight(sawt,pawrt) ...hasplacingarea(table,paelt) hasmanipulationarea(table,mast)

hasplacingarea(table,pawlt)hassittingarea(table,sawt)

at(guest,sawt)

hasplacingarealeft(sawt,pawlt)

guest

mug

Figure 2: A small part of the paths between the task
arguments mug and guest in a generalized experience
serve coffee(mug, guest). A total of 62 paths were
found in this experience. The shortest path identifies the set
of propositions, which describes the goal (solid lines).

activity experience are used for discovering potentially rel-
evant features. For this purpose, all possible one-step and
two-step relationships between the arguments of abstract op-
erators and the arguments of the taught task are extracted.

The set of features, F , for an abstract operator a in a
generalized and abstracted experience of a task t with key
propositions K is computed as:

F (a, t,K) = F1(a, t,K) ∪ F2(a, t,K) (1)

where F1 and F2 are sets of one-step and two-step features
respectively:

F1(a, t,K) =
{
τ
(
p(x, y)

) ∈ K
∣∣ p ∈ L,

(x ∈ A ∧ y ∈ B) ∨ (x ∈ B ∧ y ∈ A)
}
,

(2)

F2(a, t,K) =

{(
τ1
(
p(x, z)

)
, τ2

(
q(z, y)

)) ∈ K2
∣∣∣

p, q ∈ L, (x ∈ A ∧ y ∈ B) ∨ (x ∈ B ∧ y ∈ A)

}
,

(3)

where τ , τ1 and τ2 are qualitative timestamps (i.e., at start,
throughout and at goal), A is the set of arguments of a, and
B is the set of arguments of t.

For every abstract operator in an experience, a set of pos-
sible features is discovered and added to the corresponding
abstract operator. During planning, features help a planner
to select actions that best match the abstract operators in a
used activity schema. They also reduce the probability of
backtracking in a search tree, thus speeding up planning.
During planning, the percentage of features of the abstract
operators in the adopted activity schema that are verified in
the actions applicable in the target problem determines the
extent of similarity of the produced plan to the used activ-
ity schema. Listing 3 shows an example of a learned activity
schema after generalization, abstraction, goal inference and
feature extraction.

Planning based on activity schemata

An adapted A∗ heuristic search planner, Schema-Based
Planner (SBP), was developed to find a solution for a given

513



1.(:method serve_coffee
2. :parameters (?mug ?guest)
3. :goal (and (on ?mug ?pawrt)
4. (hasplacingarearight ?sawt ?pawrt)
5. (at ?guest ?sawt))
6. :abstract-plan
7. ((!move ?fatr ?pmaec) (()-())
8. (!move ?pmaec ?maec) (()-
9. ((at_start(on ?mug ?paerc))
10. (throughout(hasmanipulationarea ?paerc ?maec))))
11. (!pick_up ?mug ?paerc)
12. (((at_goal(on ?mug ?pawrt))
13. (at_start(on ?mug ?paerc)))-
14. ((throughout(hasplacingarearight ?sawt ?pawrt))
15. (at_goal(on ?mug ?pawrt))))
16. (!move ?maec ?pmaec) (()-())
17. (!move ?pmaec ?pmast) (()-())
18. (!move ?pmast ?mast) ((....)-()) ; omitted
19. (!place ?mug ?pawrt) ((....)- ; omitted
20. ((throughout(hasplacingarearight ?sawt ?pawrt))
21. (throughout(at ?guest ?sawt))))
22. (!move ?mast ?pmast) (()-(....)))) ; omitted

Listing 3: A learned activity schema for serving a coffee to
a guest containing 8 abstract operators. Lines 3-5 show a
generalized goal which is instantiated based on a given task
problem and should be achieved during planning. Some ab-
stract operators are enriched with features. During planning,
these features give preferences to find the best matched ac-
tion to the one in the activity schema. For instance, features
on lines 20-21 help the SBP planner to prefer an action,
among all applicable actions belonging to the class of place,
that closely matches these features in a given task problem.

problem. This algorithm searches forward from the initial
state of the world by following an activity schema and tries
to reach the end of the activity schema where a given task is
achieved. Searching by following an activity schema is the
key difference with respect to standard search.

The SBP planner takes as input a planning domain
D = (L,Σ,S,A,O, E ,M) and a task planning problem
P = (σ, s0, t). If there is an activity schema for task t, the
planner attempts to generate a plan for t; otherwise it fails.
The SBP planner is presented in Algorithm 2. SBP begins by
selecting an activity schema (h,G,Ω0) ∈ M correspond-
ing to a given task t (line 4). The task signature h and the
goal G are instantiated based on the given problem P (line
5), and this instantiation is also propagated into the abstract
plan Ω0. Each node in the search tree retains a state, s, the
plan built so far, π, the remaining part of the abstract plan,
Ω, and the costs f , g and h. Line 6 creates the initial node.
In each planning iteration, a leaf node with the lowest f cost
is retrieved (line 8). If the current plan is not yet complete,
the planner selects actions belonging to the class of the first
abstract operator, ω, in the abstract plan, Ω, as well as auxil-
iary actions from the nil class (line 12). If action a belongs
to the class of ω (lines 17-21), the accumulated cost gn is
computed taking into account the features in ω verified and
not verified in a. Suppose k is the total number of features
in ω and v is the number of these features that are verified
for action a. In this case, gn is given by:

gn = g + creal · (k + 1)/(v + 1), (4)

where creal is the real cost of a (e.g. creal = 1). This
means that applicable actions belonging to the class of ω
which verify all features in ω, gain the real cost. The lower
the percentage of verified features, the higher will be the

Algorithm 2 Schema-Based Planner (SBP)
Input:

a planning domain D = (L,S,A,O, E,M) � Def. 1
a planning problem P = (σ, s0, t) � Def. 7

Output:

a plan π

1: procedure SBP(D,P)
2: if there is no schema in M for task t then

3: return failure
4: (h,G,Ω0) ← select a schema from M for task t

5: instantiate(h,G,P) � instantiate h and G based on P
6: Open ← {(s0, φ,Ω0, 0, 0, α · length(Ω0))}
7: while Open �= φ do

8: (s, π,Ω, f, g, h) ← pick a node with lowest f from Open

9: if (Ω = φ ∧ G is satisfied in s) then

10: return π

11: ω ← head(Ω)

12: A ← {all applicable actions from classes nil and ω}
13: for all a ∈ A do

14: sn ← γ(s, a) � transition function
15: πn ← π.a

16: Ωn ← Ω

17: if a belongs to the class of ω then

18: k ← number of features in ω

19: v ← number of features in ω verified for a
20: gn ← g + creal · (k + 1)/(v + 1) � creal = 1
21: Ωn ← tail(Ω)

22: else � a belongs to the class of nil
23: gn ← g + creal
24: hn ← α · length(Ωn) � α = 2.5
25: fn = gn + hn

26: n ← (sn, πn,Ωn, fn, gn, hn)

27: if no node with same s, Ω and lower f is in Open then

28: Open ← add n

29: return failure

cost. If action a belongs to the nil class, the cost is always
creal for this action (lines 22-23). This means if there is no
applicable action belonging to the class of ω and verifying
all features, actions in the nil class may be preferred for
expansion. In all cases, the heuristic hn is estimated as the
length of the remaining abstract plan Ωn multiplied by a fac-
tor α that estimates the average number of actions in a plan
per operator in the abstracted version of the plan (line 24).
Based on empirical tests, we use α = 2.5 for our test do-
main. Finally, the cost function is computed as fn = gn+hn

for each new node, n. Based on the selected actions and re-
sulting states and costs, new nodes are created and added
to the search tree (lines 27-28). The planner stops when it
retrieves a node with an empty Ω and a state s satisfying
the goal G (lines 9-10). Figure 3 illustrates how an activity
schema guides a planner to progress towards generating a
plan.

Experimental results

The learning approach was demonstrated and evaluated in
two different tasks, “serve a coffee” and “clear a table”. To
learn an activity schema, a plan-based robot activity expe-
rience is generated through human-robot interaction. This
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Figure 3: Illustration of how the SBP planner follows an ac-
tivity schema. Black and gray nodes are generated by op-
erators which have as parents the abstract operators in the
activity schema. Gray nodes are generated by operators that
don’t verify all features, while black nodes verify all fea-
tures. White nodes are generated by operators that belong to
the nil class. The planner always expands the black nodes
in the highest priority. White nodes are preferred for expan-
sion when there is no black node to expand. Gray nodes are
expanded in the lowest priority.

interaction involves a sequence of instructions to carry out
and teach a complex task. An infrastructure for teaching
a robot how to perform a task, and extracting a robot ac-
tivity experience from working memory was presented in
(Mokhtari et al. 2016). A “serve a coffee” experience is
shown above in Listing 2. The conceptualization is carried
out immediately after a plan-based robot activity experience
is generated. Listing 3 showed a learned activity schema
after generalization, abstraction, goal inference and feature
extraction. The proposed conceptualizer was tested with a
PR2 robot in a real environment. An online video of the
experience gathering and conceptualization process for the
“serve a coffee” task in a real robot PR2 is available in
https://youtu.be/5Z6PJX6Ucfg.

Since an activity schema is learned, it can be followed by
the SBP to make plans for similar task problems. The mea-
sures of penetrance, effective branching factor and precision
are used to evaluate the performance of the planner over the
learned activity schemata.

The penetrance ratio, P , of a search is,

P = L/X, (5)

where L is the length of the plan, and X is the total number
of expanded nodes. The penetrance is the extent to which
the search has focused toward a goal (Russell and Norvig
2010). It shows how the extracted features guide the planner
to avoid expanding irrelevant nodes during the search.

The average branching factor, B, is the average number
of successors generated for each node in a search problem,

B = (N − 1)/X, (6)

where N is the total number of nodes generated during the
search.

The effective branching factor is a measure of the heuris-
tic’s usefulness. If a method generates N nodes to find a
solution of depth d, the effective branching factor of β that

Figure 4: Snapshots of “serve a coffee” scenario with PR2
robot in gazebo simulated environment. In this scenario,
(top-left) robot moves to the counter1, (top-right) picks
up mug1 from the counter, (bottom-left) moves to the
table1, and (bottom-right) puts the mug on the table in
front of a guest.

a uniform tree of depth d requires to contain N nodes is,

N = (β(L+1) − 1)/(β − 1), (7)

where L is the length of the plan, and N is the total number
of nodes generated during the search.

The precision metric is used to evaluate the quality of the
produced plans, and is defined as,

Precision = ca/(ca+ wa), (8)

where ca is the total number of correct actions, and wa is
the total number of wrong actions in the produced plan.

The learning approach was evaluated in the tasks “serve a
coffee to a guest” and “clear a table”. Since the arguments of
the taught task are the cues for inferring the goal as well as
for extracting features during conceptualization, we taught
several variations of these tasks with different sets of argu-
ments: srv(guest,counter), srv(mug,guest),
srv(mug,guest,counter), clr(table), clr(
table,counter), and clr(mug,table,counter).
For each task, one scenario is set up to teach the robot and
three other scenarios are used to evaluate the performance of
the planner using that learned task. The test scenarios differ
in the initial location and configuration of the robot and in
the number of objects and their positions in the world state.
Listing 4 sketches the plan executed in the teaching scenario
of srv(mug,guest), as well as the plans generated for
the three test scenarios.

The performance metrics of the SBP planner for “serve a
coffee” and “clear a table” scenarios are presented in Ta-
bles 2 and 3 respectively. The penetrance ratio increased
and the effective branching factor decreased with respect
to the number of task arguments. The activity schemata
srv(g,c) and clr(t) showed lack of precision due to
lack of features as well as due to lack of goal proposi-
tions (i.e., no goal propositions were inferred for these ac-
tivity schemata). Since the activity schemata srv(m,g),
srv(m,g,c) and clr(m,t,c) have goal, the obtained
plan solutions are the real solutions to the given task prob-
lems. It was observed that the extracted features are suf-
ficient for the abstract operators in the activity schema
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Table 2: Planner’s performance in serve coffee.
Activity schema∗ srv(g, c)† srv(m, g) srv(m, g, c)
Experiment #1 #2 #3 #1 #2 #3 #1 #2 #3

Plan length 15 16 17 15 16 17 15 16 17
Search tree size 2862 5240 16035 1211 1717 2851 877 1451 2557
Nodes expanded 1139 2173 6801 356 448 697 241 345 585
Penetrance (%) 1.32 0.74 0.25 4.21 3.57 2.44 6.22 4.64 2.91
Average branching factor 2.51 2.41 2.36 3.40 3.83 4.09 3.63 4.20 4.37
Effective branching factor 1.51 1.60 1.67 1.49 1.48 1.49 1.45 1.46 1.48
Precision 0.73 0.75 0.94 1.00 1.00 1.00 1.00 1.00 1.00

∗ srv stands for serve coffee task, and m, g and c stand for mug, guest and counter.
† No goal propositions were inferred for these activity schemata.

Table 3: Planner’s performance in clear table.
Activity schema∗ clr(t)† clr(t, c)† clr(m, t, c)
Experiment #1 #2 #3 #1 #2 #3 #1 #2 #3

Plan length 15 16 17 15 16 17 15 16 17
Search tree size 2814 2874 3121 1001 1061 1308 1068 1096 1375
Nodes expanded 1136 1145 1216 299 308 379 292 283 372
Penetrance (%) 1.32 1.40 1.40 5.02 5.19 4.49 5.14 5.65 4.57
Average branching factor 2.48 2.51 2.57 3.34 3.44 3.45 3.65 3.87 3.69
Effective branching factor 1.58 1.54 1.50 1.46 1.43 1.42 1.47 1.43 1.42
Precision 0.73 0.75 0.76 1.00 1.00 1.00 1.00 1.00 1.00

∗ clr stands for clear table task, and m, t and c stand for mug, table and counter.
† No goal propositions were inferred for these activity schemata.

clr(t,c). Hence this activity schema fully achieved the
given task problems, despite the fact that it was not pos-
sible to infer its goal. This system was tested with a PR2
robot in both a gazebo simulated environment (Figure 4)
and a real environment. An online video showing the op-
eration of the proposed SBP planner in a “serve a coffee”
scenario in a real PR2 robot is available in https://youtu.be/
mjrP3hiMRnw. The original experiences and the given task
problems used in these experiments can be obtained from
https://github.com/mokhtarivahid/icaps2016/.

A more detailed description of this work will appear in
(Mokhtari, Seabra Lopes, and Pinho 2016).

Conclusion and future work

This paper proposed: (i) a formalization of experience-based
planning domains; (ii) a unified framework for learning and
problem solving in these domains; and (iii) a goal inference
approach that allowed to improve the previously developed
conceptualization and planning algorithms. The terms ex-
perience, activity schema and schema-based planning are
tightly integrated in the proposed framework. The activity
schemata are learned task models enriched with features
and goal propositions. During planning, features give prefer-
ences to achieve the most similar interpretation of the orig-
inal experience while the inferred goal propositions help to
guarantee that the given task is fully achieved. An interest-
ing issue for future work is detecting and analyzing loops of
actions in an experience. Identifying loops of actions during
conceptualization enables the planner to deal with similar
tasks with different number of objects.
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13. (move_arm_to_side leftarm1 acp acp90703 atsp90960)
14. (place_object mug1 leftarm1 pawrt1)
15. (move_base_blind_to_pma mast1 pmast)

---------------------------------------------------------
Experiment #2

1. (tuck_arms aunp aunp aunp0 aunp1 atp atp atp1981 ...)
2. (move_base fatr1 pmaec1)
3. (move_base_blind_to_ma pmaec1 maec1)
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Listing 4: Sketches of the generated plans for an experience
of the srv(m,g) task and for three given task problems
of the same class. Depending on the given task problems,
plans with different lengths and different sequences of ac-
tions were generated. Some arguments of actions are omit-
ted due to lack of space.
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