
Integrating Planning and Control for Efficient Path Planning
in the Presence of Environmental Disturbances

Sandip Aine and P. B. Sujit
Indraprastha Institute of Information Technology Delhi (IIIT-Delhi)

New Delhi - 110020, India.
sandip+sujit@iiitd.ac.in

Abstract

Path planning for nonholonomic robots in real-life environ-
ments is a challenging problem, as the planner needs to con-
sider the presence of obstacles, the kinematic constraints, and
also the environmental disturbances (like wind and currents).
In this paper, we develop a path planning algorithm called
Control Based A* (CBA*), which integrates search-based
planning (on grid) with a path-following controller, taking the
motion constraints and external disturbances into account. We
also present another algorithm called Dynamic Control Based
A* (DCBA*), which improves upon CBA* by allowing the
search to look beyond the immediate grid neighborhood and
thus makes it more flexible and robust, especially with high
resolution grids. We investigate the performance of the new
planners in different environments under different wind dis-
turbance conditions and compare the performance against (i)
finding a path in the discretized grid and following it with a
nonholonomic robot, and (ii) a kinodynamic sampling-based
path planner. The results show that our planners perform con-
siderably better than (i) and (ii), especially in difficult situ-
ations such as in cluttered spaces or in presence of strong
winds/currents. Further, we experimentally validate the ap-
proach using a quadrotor in the outdoor environment.

Introduction

Path planning is an important problem in mobile robotics,
where, a robot needs to find a collision free path between a
given source and goal positions in the presence of obstacles.
Several applications like surveillance, monitoring, etc. need
collision free paths to perform theirs tasks successfully. Over
the last two decades, several flavors of path planning tech-
niques have been developed, catering for different sensor,
environmental, and motion constraints. As the robots have
kinematic constraints (such as minimum turning radius), de-
termining control policies to steer them towards the goal
in the continuous domain with obstacles is often difficult
(LaValle 2006). Planning becomes even more complicated
when there are environmental disturbances, such as winds
and currents, that may considerably impact the control poli-
cies. In this work, we focus on the planning problem where
a robot needs to compute a minimum cost collision free path
adhering its kinematic constraints in presence of environ-
mental disturbances.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The generic path planning algorithms in the literature can
be broadly classified into three main categories, i) optimal
control based approaches (Barraquand and Ferbach 1994;
Kimmel, Amir, and Bruckstein 1995; Mitchell and Sas-
try 2003), ii) search based approaches (Likhachev, Gordon,
and Thrun 2004; Likhachev and Ferguson 2009) and iii)
sampling based approaches (Karaman and Frazzoli 2010;
Kavraki et al. 1996; Lavalle and Kuffner 2000). Unfortu-
nately, all these approaches have deficiencies when we con-
sider the presence of external disturbances in addition to
obstacles and kinematic constraints. Most optimal control
based algorithms are time consuming and require signif-
icant computational power that the robots may not have,
and hence are not suitable for large scale real life applica-
tions. On the other hand, most search based planners re-
quire an offline discretization of the planning space, either
grid based (Likhachev, Gordon, and Thrun 2004) or lattice
based (Likhachev and Ferguson 2009). Grid based search
algorithms do not handle kinematic constraints efficiently.
The lattice based planners rectify this problem by precom-
puting motion primitives, which are short, kinematically fea-
sible moves. However, even this approach fails in presence
of external disturbances as pre-computed motion primitives
may not be universally viable (a motion primitive feasible
for a particular wind speed and angle, may not apply for
another wind speed). The sampling based planners do not
require specific discretization of the environments, and thus
are more suitable for planning in continuous domains. How-
ever, these planners generally focus on finding a feasible tra-
jectory, rather than minimizing the path cost, and therefore,
the paths computed are often sub-optimal and inconsistent.
Moreover, in the presence of external disturbances, the dy-
namics of the environment can change substantially affect-
ing the performance.

A naive approach to plan in presence of kinematic con-
straints and environmental disturbances can be to use a stan-
dard grid-based planner (such as A*) to generate a colli-
sion free path and ask the robot to follow the path using a
control algorithm. Since the path generation was open-loop
and the planner did not take the motion constraints of the
robot nor the effect of environmental disturbances into ac-
count, the produced path may not be realizable, or the path
cost may vary significantly from the cost computed on the
grid. For example, consider the scenario as shown in Fig-

Proceedings of the Twenty-Sixth International Conference on 
Automated Planning and Scheduling (ICAPS 2016)

441



Figure 1: An example of path planning in presence of obstacles, kinematic constraints and environmental disturbances. Figure
1a shows the original environment with start and goal states. The vehicle velocity is 5m/s, and the current velocity is 2.5 m/s
blowing from left to right. Figure 1b shows a discretization of the environment in 5m×5m grid, and two planned paths, one by
grid based A* (path shown in blue) and the other using integrated planning and control (path shown in black). Figure 1c shows
the resulting continuous control paths when the original planned paths were given to the actual controllers. The blue path is not
realizable as the control policy cannot satisfy the constraints in the presence of wind, whereas the integrated strategy computes
a feasible path.

ure 1a, where, the robot needs to navigate from ’S’ to ’G’
avoiding the polyhedral obstacles. The blue path shown in
Figure 1b is computed by running an A* search on a dis-
cretized 8-connected grid obtained from the original envi-
ronment (shown in Figure 1a). Now, while this path is cost
optimal on the underlying grid, it is not a feasible path when
we consider the kinematic and environmental constraints, as
a result the controller cannot convert this discretized path
into a control sequence that takes the robot to the goal and
returns with a failure.

We present a relatively simple solution to this problem,
we propose a search based planning algorithm called Con-
trol Based A* (CBA*) that works on an underlying grid to
compute a path in terms of grid cells, but when perform-
ing the search, it uses a control algorithm to determine ex-
act cost of the intended traversal considering all the factors,
namely, kinematic constraints, environmental disturbances
and presence of obstacles. target point (mid-point of the tar-
geted grid cell), and attempts to find a feasible sequence of
control steps that can take the robot from the current posi-
tion to the intended position. If the robot can reach any point
on the target grid (not necessarily the exact mid-point), we
consider that to be a feasible trajectory and in that case, the
controller returns the exact cost of this traversal to the search
algorithm. On the other hand, if such a control sequence can-
not be computed (due to constraints or collisions), the con-
troller lets the planner know that this transition is not fea-
sible by setting the cost to ∞. Figure 1 shows an example
of integrated planning and control, the black line in Figure
1b shows a discrete path on grid computed by CBA*. As
this path is computed considering all the constraints, it can
be realized by the actual controller (as shown by the black
contour in Figure 1c).

We also propose a second algorithm, called Dynamic
Control Based A* (DCBA*), which follows the same prin-
ciple as CBA*, but improves the chances of convergence
by dynamically discovering additional feasible connections
(not restricted to grid neighbors) and using them to search.
DCBA* provides a more robust approach to compute a fea-

sible path, especially for high-resolution grids where con-
necting to an immediate grid neighbor may not always be
that easy due to kinematic/environmental constraints.

On the theoretical side, we show that the algorithms pro-
vide the usual guarantees on completeness/optimality (on
the underlying graph), like most search based planners. In
addition, the paths obtained by CBA* and DCBA* are al-
ways realizable by the actual controller with the exact same
costs reported by the search. On the experimental side,
we test the proposed algorithms for different environments
parameterized by obstacle densities, environmental distur-
bances (wind velocities), and grid resolutions. Comparison
with the naive grid search planner and a randomized kin-
odynamic planner (LaValle and Kuffner 2001), shows that
our planners are more robust (in terms of success rates)
and they generally produce better quality solutions, with
the performance gap increasing in adverse conditions (harsh
weather/cluttered spaces). Finally, we carry out a field ex-
periment on a quadrotor to demonstrate the usability of our
algorithm for real-world applications.

Background and Related Work

Earlier, we broadly classified the path planning algorithms
into three categories. In this section, we review several tech-
niques in each category relevant to the proposed approach.

Optimal path planning problem

Given a source location X0 = (x(0), y(0)) and the goal lo-
cation Xg = (x(tg), y(tg)) along with the obstacle space
and region of operation, the problem of finding an optimal
path from X0 to Xg can be formulated as a optimal con-
trol problem. A typical performance index for the optimal
control problem is to minimize travel time as we assume the
velocity of the vehicle to be constant,

J =

∫ tg

t0

dt, (1)

subject to the kinematic constraints given in equation 2 and
the boundary condition that at time tg , the vehicle position

442



p = Xg . The robot kinematic constraints and environmental
disturbances are modeled using a Dubin car model (Dubins
1957)

ẋ = va cosψ + vw cosψw,

ẏ = va sinψ + vw sinψw,

ψ̇ = u, (2)

where, va is the speed of the robot, vw is the wind or currents
speed at angle ψw (environmental disturbance), u is control
that determines the desired steering angle rate and is con-
strained as −ωmax ≤ u ≤ ωmax, ψ is the current heading
angle, and p = {x, y} is the current location of the vehicle.

Solving the optimal control in the continuous domain
is difficult and hence numerical techniques such as level
sets (Kimmel, Amir, and Bruckstein 1995), fast marching
methods (Mitchell and Sastry 2003), dynamic programming
(Barraquand and Ferbach 1994), and navigation functions
(Rimon and Koditschek 1992) are used. These techniques
are typically computationally intensive and are not scalable
for obstacle rich environments. Some modifications like us-
ing a pre-computed table for implementation can be per-
formed (Barraquand and Ferbach 1994), but not always fea-
sible for obstacle rich environments. Furukawa et al. (Fu-
rukawa et al. 2004) proposed a time optimal trajectory for
UAVs by parameterizing control and time discretization,
which is then solved using sequential quadratic program-
ming technique. Yang and Kapila (Yang and Kapila 2002)
propose a optimal planning technique to visit several tar-
get locations using a combination of arcs and straight lines.
However, both the approaches in (Furukawa et al. 2004;
Yang and Kapila 2002) do not consider the presence of ob-
stacles and disturbances.

Search based planning

Heuristic search algorithms have been extensively used for
path planning in robotics, as they are easy to understand
and implement, and they guarantee important theoretical
properties like completeness/optimality. The classical plan-
ning technique is based on A* (Hart, Nilsson, and Raphael
1968), which is a provably optimal algorithm. There are sev-
eral variants of A*, like incremental (Koenig and Likhachev
2002; Aine and Likhachev 2013), anytime (Likhachev, Gor-
don, and Thrun 2004; Aine, Chakrabarti, and Kumar 2007),
and multi-heuristic (Aine et al. 2014) searches, that are used
for various applications, such as motion planning for ground
(Likhachev and Ferguson 2009) and air (MacAllister et al.
2013) vehicles, high-dimensional manipulation (Narayanan,
Aine, and Likhachev 2015), footstep planning (Hornung,
Maier, and Bennewitz 2013; Zucker et al. 2011), and etc.

Heuristic search is essentially a discrete optimization al-
gorithm. Thus, for motion planning problems (which are
inherently continuous), the planners need to discretize the
search space. The easiest way to discretize a space is to par-
tition it into cells, forming a grid. This requires no knowl-
edge about the kinematic constraints or the control strate-
gies, and thus can be done without extra overheads. How-
ever, as shown in Figure 1 a path obtained on a grid may
not be feasible (due to kinematic constraints/disturbances).

In (Barraquand and Latombe 1993), the problem of satis-
fying kinematic constraints was (partially) addressed by us-
ing control based discretization to generate the search space,
which then led to the development of lattice based planners
(Likhachev and Ferguson 2009), where the actions used to
get successors for states are a set of motion primitives, that
are short kinematically feasible motion sequences. These
motion primitives are pre-computed, and during planning
they are applied directly to a robot configuration to gen-
erate the successor configurations. However, even this ap-
proach suffers from two shortcomings. First, it is non-trivial
to compute an effective set of motion primitives, as it targets
a balance between search space size and quality of results.
More importantly, computing motion primitives offline be-
comes infeasible when we consider environmental distur-
bances such as winds and currents. As these parameters can
only be known at runtime pre-computed motion primitives
cannot be used directly to construct a feasible control se-
quence. In (Dolgov et al. 2008), a search algorithm is pro-
posed (Hybrid State A*) that maps the continuous states
to discrete buckets instead of specific points, we adopt the
same policy in CBA*/DCBA*. However, our algorithms dif-
fer from Hybrid State A* in terms of i) exploration, ii) con-
trol models and iii) efficiency.

Sampling based planning

An alternative approach to path planning is adopted by
the sampling based planners (Kuffner and LaValle 2000;
Kavraki et al. 1996; Lavalle and Kuffner 2000). These plan-
ners do not require specific discretization of the environ-
ments, and thus are more suitable for planning in contin-
uous domains, also these methods can easily be integrated
with different kinodynamic controllers (LaValle and Kuffner
2001). In general, these planners focus on finding any fea-
sible trajectory, rather than minimizing the cost of the solu-
tion with the exception of the RRT* (Karaman and Frazzoli
2010) (and related algorithms), which asymptotically con-
verges to an optimal solution. As a result, the paths com-
puted by these planners are often sub-optimal. More im-
portantly, to our knowledge, none of these planners take
the effect of environmental disturbances into account, which
can significantly alter the dynamics of the system and thus
can affect the underlying assumptions of the planning algo-
rithms. For example, the RRT based algorithms like RRT-
Connect (Lavalle and Kuffner 2000) (with or without kino-
dynamic constraints), RRT* (Karaman and Frazzoli 2010),
and etc, attempt to connect a newly found point (in the free
space) to the closest point in the explored horizon (the points
to which a path has already been discovered). Now, this clos-
est point in terms of physical distance may not be the easiest
one to connect to when we consider a strong wind or cur-
rent. On the other hand, to find the easiest point to connect
to is not trivial to compute and may considerably increase
the overhead. Therefore, while most of the sampling based
algorithms can be applied seamlessly to the problem of path
planning considering obstacles, kinematic and environmen-
tal constraints, their performance may degrade in presence
of disturbances.

443



Algorithm 1 NLGL method (Park, Deyst, and How 2007)

1: Input: x, y, ψ, Cxy, C
′
xy, va, L,Δt, vw, ψw

2: Output: x′, y′, ψ′ � : Configuration after Δt
3: Determine q = (xt, yt) � : Target position
4: Θ = atan2(yt − y, xt − x), η = Θ− ψ, u = 2v2a sin(η)/va
5: if u > 0 then
6: u = min(u, ωmax)
7: else
8: u = max(u,−ωmax)

9: x′ = x+ (va cosψ + vw cosψw)Δt
10: y′ = y + (va sinψ + vw sinψw)Δt

11: vg =
√

(va cosψ + vw cosψw)2 + (va sinψ + vw sinψw)2

12: ψ′ = ψ + u ∗Δt/vg

Algorithms

In this section, we describe the proposed algorithms and
their properties. The flow of our approach is fairly simple.
For our planner, a given path computation problem is de-
fined using a start configuration (x, y, ψ) and end configura-
tion (xt, yt) for the robot, the obstacle co-ordinates, the vehi-
cle’s velocity va, and the wind (or current) velocity (vw) and
direction ψw. We assume an underlying grid where each cell
is a square of certain size, a cell is assumed to be navigable
if all the obstacles are out of its boundary, else it is termed
blocked. All blocked cells are included in the obstacle set
O. We also use a time unit Δt, which is the resolution used
by the control algorithm. Given this formulation, we design
the planner with two components, search and control. The
search component works on the underlying grid trying to
compute a path (a sequence of cells) from the start to end
configuration, whereas the control component works on the
actual configuration space computing the exact cost to move
the vehicle from a given cell to a target one, feeding the re-
sult to the search component.

Control Module for Connecting Cells

The controller determines the feasibility of constructing a
path segment from the current cell C to the target cell C ′
and computes the cost of that path, i.e., it starts with a given
configuration that belongs to the cell C and tries to find a
sequence of control steps that takes the vehicle to a config-
uration belonging to the target cell C ′. We treat this path
segment as two way-points - {Cxy, C

′
xy}, where Cxy de-

termines the x, y cell center coordinates for a given cell C.
In order to follow a path given by the way-points, we can
use any path following controllers (for example (Sujit, Sari-
palli, and Sousa 2014)). In this paper, we use nonlinear guid-
ance law (NLGL) due to its simple implementation (Park,
Deyst, and How 2007). The path following controller can
handle constant and random wind disturbances which has
been tested in (Sujit, Saripalli, and Sousa 2014).

The NLGL method uses a virtual target technique, where
a virtual target is placed on the path towards C ′

xy and the
vehicle must follow the virtual target. Consider the scenario
as shown in Figure 2, where q is the virtual target and the
angle η is the angle that the vehicle needs to move towards q.
The virtual target q is obtained by drawing a circle of radius

Figure 2: The geometry of determining η for a given
L, va, ψ, Cxy and C ′

xy using NLGL

Algorithm 2 PathCost Procedure

1: procedure FOLLOWPATH(x, y, ψ, C,C′, cost)
2: Input: va, L,Δt,O
3: Output: x′, y′, ψ′, cost
4: [x′, y′, ψ′] ← Execute Algorithm 1
5: xCell = Cell (x′, y′)
6: if xCell ∈ O then
7: cost= ∞
8: else
9: cost = cost +vaΔt

10: procedure PATHCOST(x, y, ψ, C,C′)
11: Input: va, L,Δt
12: Output: x, y, ψ, cost
13: while ‖(x, y)− C′

xy‖ ≤ vaΔt do
14: [x, y, ψ,cost] = FOLLOWPATH (x, y, ψ, C,C′, cost)
15: if cost == ∞ then
16: break

L from p and the circle intersects the path segment at q. The
circle may intersect at another point also, in which case, the
point that is closest to C ′

xy is selected. The angle between
the way-points is Θ.

Given a current and a target configuration (in terms of
way-points), the NLGL algorithm in Algorithm 1 will up-
date the position and heading angle of the vehicle for time
Δt. However, to compute a path we may require multi-
ple such collision-free steps. Moreover, for such a given
path segment, we need the associated travel cost in terms
of distance. The PathCost routine (Algorithm 2), deter-
mines the path cost for such a path segment. It uses the
FollowPath function to determine the distance cost per Δt.
The FollowPath function executes the NLGL algorithm
(Algorithm 1) to determine the new location and heading
of the vehicle. The new vehicle position may be inside ob-
stacles, hence we check if the new position is in the obstacle
cell set O (line 6). If the new position is not in O, then the
cost is updated based on the distance traveled (line 9), other-
wise ∞ is assigned to cost (line 7). Now, the PathCost re-
peatedly calls the FollowPath function with updated con-
figurations (x, y, ψ) till it reaches the desired cell or hits an
obstacle. If it reaches the desired cell (as close to the targeted
midpoint as possible), the function returns the exact cost of
this path (here, in terms of distance traveled, however any
other cost function will be equally applicable), else the cost
is set to ∞ indicating that such a path cannot be constructed
following this control policy.

444



Algorithm 3 Control Based A*
1: procedure EXPANDSTATE(s)
2: C = Cell(s)
3: for all neighbors C′ of C on the grid do
4: if (C′ /∈ O) and (State(C′) /∈ CLOSED) then
5: [x, y, ψ, cost] = PATHCOST (x, y, ψ, C, C′)
6: if cost 	= ∞ then
7: s′ = CreateState(x, y, ψ, C′)
8: g(s′) = g(s) + cost
9: f(s′) = g(s′) + h(s′)

10: bp(s′) = s
11: if f (State(C′)) > f(s′) then
12: delete State(C′)
13: State(C′) = s′

14: update OPEN repositioning State(C′)
15: else
16: delete s′;
17: procedure CBA*
18: OPEN = ∅; CLOSED = ∅
19: g(sstart) = 0; bp(sstart) = null
20: f(sstart) = h(sstart)
21: insert sstart into OPEN with f(sstart)
22: while OPEN is not empty do
23: remove s with smallest f -value from OPEN
24: insert s into CLOSED
25: if s == sgoal then
26: CONSTRUCTPATH; Return
27: EXPANDSTATE (s)

Search Module for Constructing Paths

The search module computes a sequence of grid cells (path)
that connects the start position to the goal position. The first
algorithm (Control Based A*) we propose is a simple A*
like search performed on the underlying grid (8-connected),
the difference being that while the search is done on the grid
the actual vehicle configurations (x, y, ψ) and the related
costs are obtained using control algorithm (Algorithm 2).

In Algorithm 3, we include a pseudocode for Control
Based A* (CBA*). CBA* follows the usual A* way of
expanding states in an increasing order of their f -values
(where f = g + h) till it expands the goal state (sgoal) at
line 26 or there is no state to expand at line 22 (this means
the search ends in a failure). In our case, each search state
contains a vehicle configuration (x, y, ψ). From this config-
uration we can directly compute the grid cell C(cur) the ve-
hicle belongs to. When expanding a state we use the control
algorithm to find out the exact cost of visiting a particular
neighbor along with the configuration (line 5), and let the
search use this cost.

The primary difference between a standard A* search and
CBA* comes in the expansion part (lines 6-16). As we are
using the configuration based control algorithm to connect
two grid positions (say C and C ′) which essentially works
in the continuous domain, we may have several states (with
different configurations) for a given grid cell. This can easily
blow up the search space, severely affecting the performance
(memory/runtime). To counter this, in CBA*, we always
store a single state corresponding to a particular grid cell, if
a new state s2 is discovered during the search for a given cell

Algorithm 4 DynamicPathCost Procedure

1: procedure DYNAMICFOLLOWPATH(x, y, ψ, C,C′, cost, V )
2: Input: va, L,Δt,O
3: Output: x′, y′, ψ′, cost, V
4: [x′, y′, ψ′] ← Execute Algorithm 1
5: xCell = Cell (x′, y′)
6: if xCell ∈ O then
7: cost= ∞
8: else if xCell 	= C′ then
9: Store [x′, y′, ψ′] and cost in V

10: else
11: cost = cost +vaΔt
12: procedure DYNAMICPATHCOST(x, y, ψ, C,C′)
13: Input: va, L,Δt
14: Output: A vector V of configurations (x, y, ψ, cost)
15: V = ∅‘
16: while ‖(x, y)− C′

xy‖ ≤ vaΔt do
17: [x, y, ψ,cost,V ] = DYNAMICFOLLOWPATH

(x, y, ψ, C,C′, cost, V )
18: if cost == ∞ then
19: break
20: include [x, y, ψ, cost] in V

C which already has a valid state s1 (i.e., state(C) = s1),
we compare the f -values of s1 and s2 and only store the state
with minimum f -value (lines 11-16). This way we ensure
that the possible number of states in CBA* is never more
than the number of states that can be explored for an A*
without any control information (for a given grid).

One thing to note here is that in A*, if two paths are dis-
covered to a given state the path with best g cost is stored
(using the bp pointer). However, in CBA*, many configura-
tions can belong to a given grid, thus, we store the state with
best f value. This can be seen as a generalization of A*, if
the h values for two such states are the same (for example,
if the h is computed on the grid) then this condition reduces
to the A* way of storing best g, however, if the h values also
differ (for example, if we use Euclidean distance as h), then
we opt for the state with best f rather than the best g.

In CBA*, we integrate continuous control with discrete
planning, but it does not maximally utilize the information
obtained from the control component. For example, let us
consider the case where we use Algorithm 2 to compute the
cost moving the vehicle from one cell C to a neighboring
cell C ′. If this procedure can find a realizable control path
to cell C ′ from the current robot configuration, it will re-
turn a finite cost, otherwise it will return ∞. However, it
may happen that while trying to reach C ′, we reach another
cell C ′′ (i.e., obtain a configuration that lies in cell C ′′).
This intermediate cell information is not used in CBA*, al-
though it can help the planner to construct a feasible path to
sgoal. Such flexibility can be very useful when we are plan-
ning at a high resolution, where reaching the exact neighbors
may be difficult for the control algorithm because of (strong)
wind/current and/or turning radius constraints.

Next, we present another algorithm called Dynamic Con-
trol Based A* (DCBA*) which improves upon CBA* by ex-
panding the grid neighborhood of CBA* to include the other
cells visited while reaching the neighborhood cells. For this,

445



Algorithm 5 Dynamic Control Based A*
1: procedure EXPANDSTATE(s)
2: C = Cell(s)
3: for all neighbors C′ of C on the grid do
4: if (C′ /∈ O) and (State(C′) /∈ CLOSED) then
5: V = DYNAMICPATHCOST (x, y, ψ, C,C′)
6: for all C′′ (with cost c′′) in V do
7: if (c′′ 	= ∞) and (State(C′′) /∈ CLOSED)

then
8: s′ = CreateState(x, y, ψ, C′′)
9: g(s′) = g(s) + c′′

10: f(s′) = g(s′) + h(s′)
11: bp(s′) = s
12: if f (State(C′′)) > f(s′) then
13: delete State(C′′)
14: State(C′′) = s′

15: update State(C′′) in OPEN
16: else
17: delete s′;
18: procedure DCBA*
19: OPEN = ∅; CLOSED = ∅
20: g(sstart) = 0; bp(sstart) = null
21: f(sstart) = h(sstart)
22: insert sstart into OPEN with f(sstart)
23: while OPEN is not empty do
24: remove s with smallest f -value from OPEN
25: insert s into CLOSED
26: if s == sgoal then
27: CONSTRUCTPATH; Return
28: EXPANDSTATE (s)

we modify the FollowPath routine (line 1, Algorithm 2) to
store information about the intermediate cells visited. Sub-
sequently, the PathCost routine is now changed to return a
vector of configurations (along with costs) that can be real-
ized, instead of a single configuration and cost. The routine
is included in Algorithm 4, where the important changes are
in lines 8-9, which stores all the intermediate reachable cell
information. The rest of the algorithm is essentially similar
to the CBA* (Algorithm 5). The only changes are in lines 4-
17, that show that in DCBA*, when we expand a state, we
consider all the states that are visited during the call for find-
ing cost, which may include state beyond its immediate grid
neighborhood. Similar to the earlier case, here also we never
store (or expand) more than one state per grid cell. However,
in DCBA*, the number of successors of a state can be more
than CBA*, as in CBA*, only the immediate neighbors are
considered as possible successors.

The following theorems discuss some of the properties of
CBA*/DCBA*. These state that CBA*/DCBA* mostly fol-
low the properties of A* with a consistent heuristic func-
tion (Pearl 1984) in terms of solution quality and expan-
sion/storage complexity (Theorems 1 and 2). In addition, the
handshaking between the discrete search with continuous
control ensures that the path computed using CBA*/DCBA*
is realizable with the same cost as reported by the algorithm.

Theorem 1. If the heuristic function is consistent, both
CBA* and DCBA* produces an optimal solution on the dis-
crete graph it constructs. In other words, the path computed

by CBA*/DCBA* is optimal on the underlying grid if we
consider the actual realization costs.
Proof Sketch: If we consider the discrete space, this theorem
directly follows from the properties of A* (Hart, Nilsson,
and Raphael 1968; Pearl 1984) with a consistent heuristic
function. Note that, if we replace the cost finding routine
in CBA*/DCBA* with the grid distance, CBA*/DCBA* re-
duces to pure A* on grids. The control part helps the search
ascertain accurate costs of the grid based transitions. �
Theorem 2. In CBA*/DCBA*, a) at most one state per grid
cell is stored in memory and b) a state is expanded at most
once.
Proof Sketch: Whenever a new configuration is discovered,
both CBA*/DCBA* checks whether there is another state
visited which belongs to the same grid cell in memory,
if such a state exists and it is already expanded (i.e., in
CLOSED), they do not consider the new state (checks at
line 4, Algorithm 3 and lines 4-7, Algorithm 5). If the cor-
responding state is not expanded then CBA*/DCBA* either
keeps the earlier state or replaces it with the new one de-
pending on their f -values. �
Theorem 3. In CBA*/DCBA*, a solution obtained on the
grid is always realizable in the continuous space (if all other
conditions remain unchanged) with the same cost as re-
ported by CBA*/DCBA*.
Proof Sketch: This is guaranteed by the integration of con-
trol along with the planning part, whenever CBA*/DCBA*
sets the back-pointer for a state to another state (parent) (eg.
line 11 in Algorithm 5), it ensures that there is a control se-
quence which translates the vehicle from the parent config-
uration to the state configuration with exactly the same cost
as it reports. �

It should be noted that while Theorem 1 guarantees an op-
timal convergence on the discrete graph CBA*/DCBA* con-
structs (using both the grid resolution and also the f -values
of the paths reaching a particular grid) and Theorem 3 guar-
antees that the cost information is accurate in the continuous
domain, we cannot directly combine these results to guaran-
tee optimality (or for that matter completeness) in the con-
tinuous domain. The optimality guarantee is on the under-
lying search graph obtained from the grid, but it can always
happen that CBA*/DCBA* chose a particular configuration
for a grid cell and that particular configuration does not lead
us to the goal, or may be the goal is not at all reachable fol-
lowing the grid neighbors, in such cases the algorithm may
return a failure in spite of the fact that there is a path to goal.

Experimental Results

We evaluated the performance of the proposed algorithms
(CBA* and DCBA*) by simulation and on a quadrotor. For
comparison, we selected two planning algorithms, i) a grid
based A* algorithm (GrA*), where an optimal path is com-
puted on the grid, and later the control algorithm attempts
to realize the path (as mentioned in Introduction) and ii)
a sampling based planner following the kinodynamic RRT-
Connect algorithm (LaValle and Kuffner 2001) with suitable
extensions for handling the environmental disturbances.

446



GrA* RRTConnect CBA* DCBA*
SR 22 76 90 91
SC 3487 4523 3446 3434
RT 1.06 2.91 8.04 10.20

Table 1: Comparison of GrA*, RRTConnect, CBA* and
DCBA* for 500 × 500 grids with 5% obstacle density and
vw = 0.5 × va. Legend: SR - Success Rate, SC - Average
Solution Cost, RT - Average Runtime.

Simulation Results

We tested the algorithms in different environments, by vary-
ing the obstacle density (od), wind/current velocity (vw)
(both static and dynamically changing) and resolution of the
grids (gr). For each such parameter combination we gener-
ated a set of 100 random test-cases to create the benchmark
suite. For the A* based algorithms, namely, grid based A*
(GrA*), CBA* and DCBA*, we used the Euclidean distance
as a consistent heuristic function.

In Table 1 we compare GrA*, CBA*, DCBA* and RRT-
Connect for 500 × 500 grids with 5% of its cells blocked
(with regular shaped obstacles), the grid resolution is 5 ×
5(m2) per cell, the velocity for the vehicle is va = 5m/sec
and the wind/current velocity is 0.5 × va. The time resolu-
tion (Δt) for the control algorithm is 0.1 sec. The start and
goal positions are chosen randomly along the border of the
grid. Each algorithm was allowed a maximum runtime of
30 seconds. The results clearly point to the advantages of
using CBA*/DCBA* over the competitive algorithms both
in terms of success rate and solution quality. The results
show that success rate wise CBA*/DCBA* are considerably
better compared to GrA* and slightly better than RRTCon-
nect, and solution quality wise they are much better than
RRTConnect. On the flip side, the runtime requirement for
CBA*/DCBA* is more than both GrA* and RRTConnect.
However, as shown, the average runtime is ≤ 10 secs, which
should be acceptable for most real life scenarios. Next, we
compare these algorithms’ performance by varying the envi-
ronment parameters, namely, obstacle density, wind/current
velocity, grid resolution.

In Figure 3, we include the results with different obstacle
densities (from 1% to 20%). The results show some inter-
esting trends, Figure 3a highlights that the success rates of
both GrA* and RRTConnect drop substantially with increas-
ing obstacle densities. In comparison, both CBA*/DCBA*
maintain a high success level even for cluttered environ-
ments. The solution cost results in Figure 3b strengthen our
earlier observation that the search based algorithms usually
produce better quality solutions. Considering Figure 3c, we
observe that the runtime for RRTConnect increases substan-
tially with higher obstacle densities, making CBA*/DCBA*
better choices for cluttered environments.

Figure 4 depicts the results with different wind/current ve-
locities, ranging from 0.1 − 0.9 × va (for 500 × 500 grids,
gr = 5m × 5m and od = 5%). The success rate results
(Figure 4a) shows that both GrA* and RRTConnect suf-
fer greatly with increasing wind/current velocity, whereas
CBA*/DCBA* remains consistent. The impact of strong

Figure 3: Experiments on 500× 500 grids with varying ob-
stacle densities (1 − 20%), gr = 5m × 5m, va = 5m/sec,
vw = 0.5 × va. (a) compares the success rates of GrA*,
RRTConnect, CBA* and DCBA*, b) compares the average
solution costs and c) compares the average runtimes.

Figure 4: Experiments on 500 × 500 grids with varying
wind/current velocities (0.1 − 0.9 × va), od = 5%, gr =
5m × 5m, va = 5m/sec. (a) compares the success rates,
b) compares the average solution costs and c) compares the
average runtimes.

wind/current on RRTConnect is more pronounced than the
increase in obstacle rates, we see that a strong wind/current
causes a close-to-exponential degradation (after a limit). An-
other interesting trend can be observed in Figure 4c, which
shows the runtime for CBA*/DCBA* increases (moder-
ately) with wind/current velocities, this is mainly due the
control algorithm which takes more runtime in presence of
strong disturbances.

In Figure 5, we present the results for different grid res-
olutions (gr = 1m × 1m − 10m × 10m) for 500 × 500
maps with od = 5%, va = 5m/sec and vw = 0.5 × va.
These results are included mainly to highlight the difference
between CBA* and DCBA*. From Figure 5a we observe
that in case of coarse grids, both the algorithms work fine,
but CBA*’s success rate reduces dramatically for finer grids.
This is primarily due to the fact the CBA* only considers
the direct neighborhood of a given cell as potential children,
when we have finer resolution grids, reaching such neigh-
bors becomes exceedingly difficult due to both wind/current
velocity and turning radius constraints. In contrast, DCBA*

447



Figure 5: Experiments on 500× 500 grids with varying grid
resolutions (1m × 1m − 10m × 10m), od = 5%. vt =
5m/sec, vw = 0.5× va.

Figure 6: Experiments on 500×500 grids with gr = 5×5m2,
od = 5%. vt = 5m/sec, with randomly varying vw (for low
0.25× va ≤ vw ≤ 0.5× va, for moderate 0.5× va ≤ vw ≤
0.75× va, and for high 0.75× va ≤ vw ≤ 1.0× va).

performs quite well, as it does not limit the successors to grid
neighbors only. It may be noted that the results here do not
highlight the advantages of fine resolution planning, instead
it shows that for a finer resolution DCBA* is a better choice.
In general, it is good to use finer resolution for planning in
cluttered environments as coarse grids may result in inflated
obstacles (an entire cell is blocked even if the obstacle only
intersects with a small fraction), making planning difficult.

Finally, we compare the performance of all the algorithms
for dynamic environments where the magnitude and direc-
tion of the environmental disturbances (wind/current) vary
randomly. To simulate this, we express vw and ψw as a
(pseudo) random function of time and space. We include the
time information in the robot’s configuration state so that
the online control function can access the correct values for
wind/current velocities using the robot’s position and time.
Note that, as vw and ψw depend on time, we cannot use the
bidirectional RRTConnect algorithm in this case. Instead,
we use a uni-directional sampling based approach for com-
parison. We include the results of this simulation in Figure 6,
the experiments were run for 500×500 maps with od = 5%,
va = 5m/sec and gr = 5m × 5m). We used three kind
of environments simulating low, moderate and high distur-

Figure 7: Outdoor experiment with a quadrotor robot. (a)
Shows the path flown by the quadrotor along with the
planned paths, (b) shows an image of the quadrotor used
and (c) shows the path flown by the quadrotor in the mis-
sion planner software.

bance cases. For low, we randomly varied vw between 0.25
to 0.50 of va, for moderate we varied vw between 0.50 and
0.75 of va and for high, between 0.75 and 1.00 of va. In each
case ψw was randomly chosen between 0 and 2π. The results
show that both CBA* and DCBA* can adapt well for such
dynamic conditions, in contrast the performance of the other
algorithms (GrA* and RRT) degrades when compared to
static conditions. For RRTs the degradation is mainly due to
the fact that we cannot use the bi-directional search, whereas
for GrA* more variability leads to more failures.

Overall, the results with changing obstacle rates and
wind/current velocities depict the efficacy of CBA*/DCBA*
in difficult scenarios (cluttered environments/harsh condi-
tions), where integrated planning and control produces sig-
nificantly better solutions compared to other algorithms.

Quadrotor results

In order to validate the approach in a realistic scenario, we
performed an outdoor experiment using Arducopter quadro-
tor (Figure 7b). The plan generated by the CBA*/DCBA*
was given as a set of way-points to the quadrotor. The
quadrotor speed was set to 2.5m/s and the area of opera-
tion was 100m× 100m. The path flown by the quadrotor is
shown in Figure 7a. The figure also shows the planned path
and path taken by the robot during simulation. In figure 7c,
we can see the quadrotor path taken from the mission log
using Mission planner software. The results show that the
vehicle was able to fly the path generated by CBA*/DCBA*
algorithm nicely.

Conclusions

We presented two algorithms that integrates search based
planning with continuous control, and thus, are able to ef-
ficiently compute realizable paths in presence of obstacles,
environmental disturbances and kinematic constraints. The
experimental results show that the proposed methods outper-
form the competitive algorithms by a fair margin, especially
in cluttered environments/harsh conditions. It may be noted
that although we have used grid based search throughout this

448



work, the algorithms are not restricted to grids (the grid cells
are only used for selecting the target points). In fact, we can
seamlessly apply these algorithms any discretization, control
and collision resolution frameworks.

References

Aine, S., and Likhachev, M. 2013. Truncated incremen-
tal search: Faster replanning by exploiting suboptimality. In
desJardins, M., and Littman, M. L., eds., AAAI. AAAI Press.
Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2014. Multi-Heuristic A*. In Proceedings of
the Robotics: Science and Systems (RSS).
Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA* - A
Window Constrained Anytime Heuristic Search Algorithm.
In Veloso, M. M., ed., IJCAI, 2250–2255.
Barraquand, J., and Ferbach, P. 1994. Path planning through
variational dynamic programming. In Proc. of the IEEE In-
ternational Conference on Robotics and Automation, 1839–
1846 vol.3.
Barraquand, J., and Latombe, J.-C. 1993. Nonholonomic
multibody mobile robots: Controllability and motion plan-
ning in the presence of obstacles. Algorithmica 10(2-4):121–
155.
Dolgov, D.; Thrun, S.; Montemerlo, M.; and Diebel, J. 2008.
Practical search techniques in path planning for autonomous
driving. Ann Arbor 1001:48105.
Dubins, L. E. 1957. On curves of minimal length with a
constraint on average curvature, and with prescribed initial
and terminal positions and tangents. American Journal of
mathematics 497–516.
Furukawa, T.; Bourgault, F.; Durrant-Whyte, H.; and Dis-
sanayake, G. 2004. Dynamic allocation and control of co-
ordinated uavs to engage multiple targets in a time-optimal
manner. In Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004 IEEE International Conference on, vol-
ume 3, 2353–2358 Vol.3.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Hornung, A.; Maier, D.; and Bennewitz, M. 2013. Search-
based footstep planning. In Proc. of the ICRA Workshop on
Progress and Open Problems in Motion Planning and Navi-
gation for Humanoids.
Karaman, S., and Frazzoli, E. 2010. Incremental Sampling-
based Algorithms for Optimal Motion Planning. In Robotics:
Science and Systems. Zaragoza, Spain: The MIT Press.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic Roadmaps for Path Planning in
High-dimensional Configuration Spaces. IEEE T. Robotics
and Automation 12(4):566–580.
Kimmel, R.; Amir, A.; and Bruckstein, A. M. 1995. Finding
shortest paths on surfaces using level sets propagation. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on 17(6):635–640.

Koenig, S., and Likhachev, M. 2002. D* Lite. In Dechter, R.,
and Sutton, R. S., eds., AAAI/IAAI, 476–483. AAAI Press /
The MIT Press.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-Connect: An
Efficient Approach to Single-Query Path Planning. In ICRA,
995–1001. IEEE.
Lavalle, S. M., and Kuffner, J. J. 2000. Rapidly-exploring
random trees: Progress and prospects. In Algorithmic and
Computational Robotics: New Directions, 293–308.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized kin-
odynamic planning. The International Journal of Robotics
Research 20(5):378–400.
LaValle, S. M. 2006. Planning algorithms. Cambridge uni-
versity press.
Likhachev, M., and Ferguson, D. 2009. Planning Long Dy-
namically Feasible Maneuvers for Autonomous Vehicles. I.
J. Robotic Res. 28(8):933–945.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In
Advances in Neural Information Processing Systems 16.
Cambridge, MA: MIT Press.
MacAllister, B.; Butzke, J.; Kushleyev, A.; and Likhachev,
M. 2013. Path Planning for Non-Circular Micro Aerial Ve-
hicles in Constrained Environments. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 3933–3940.
Mitchell, I. M., and Sastry, S. 2003. Continuous path plan-
ning with multiple constraints. In Proc. of the IEEE Confer-
ence on Decision and Control, volume 5, 5502–5507.
Narayanan, V.; Aine, S.; and Likhachev, M. 2015. Improved
multi-heuristic A* for searching with uncalibrated heuristics.
In Proceedings of the Eighth Annual Symposium on Combi-
natorial Search (SOCS), 78–86.
Park, S.; Deyst, J.; and How, J. P. 2007. Performance and
lyapunov stability of a nonlinear path-following guidance
method. AIAA Journal on Guidance, Control, and Dynamics
30(6):1718–1728.
Pearl, J. 1984. Heuristics: intelligent search strategies for
computer problem solving. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Rimon, E., and Koditschek, D. E. 1992. Exact robot navi-
gation using artificial potential functions. Robotics and Au-
tomation, IEEE Transactions on 8(5):501–518.
Sujit, P.; Saripalli, S.; and Sousa, J. 2014. Unmanned aerial
vehicle path following: A survey and analysis of algorithms
for fixed-wing unmanned aerial vehicless. Control Systems,
IEEE 34(1):42–59.
Yang, G., and Kapila, V. 2002. Optimal path planning for un-
manned air vehicles with kinematic and tactical constraints.
In Decision and Control, 2002, Proceedings of the 41st IEEE
Conference on, volume 2, 1301–1306 vol.2.
Zucker, M.; Ratliff, N.; Stole, M.; Chestnutt, J.; Bagnell,
J. A.; Atkeson, C. G.; and Kuffner, J. 2011. Optimization
and learning for rough terrain legged locomotion. Interna-
tional Journal of Robotics Research 30(2):175–191.

449


