
Accelerating SAT Based Planning with Incremental SAT Solving

Stephan Gocht
Karlsruhe Institute of Technology

Karlsruhe, Germany
stephan.gocht@student.kit.edu

Tomáš Balyo
Karlsruhe Institute of Technology

Karlsruhe, Germany
tomas.balyo@kit.edu

Abstract

One of the most successful approaches to automated plan-
ning is the translation to propositional satisfiability (SAT).
We employ incremental SAT solving to increase the capabili-
ties of several modern encodings for SAT based planning. Ex-
periments based on benchmarks from the 2014 International
Planning Competition show that an incremental approach sig-
nificantly outperforms non incremental solving. Although we
are using sequential scheduling of makespans, we can outper-
form the state-of-the-art SAT based planning system Mada-
gascar in the number of solved instances.

Introduction

One of the most successful approaches to automated plan-
ning is encoding the planning problem into satisfiability
(SAT) formulas and then use a SAT solver to solve them.
The method was first introduced by Kautz and Selman
(Kautz and Selman 1992) and is still very popular and com-
petitive. This is partly due to the power of SAT solvers,
which are getting more efficient year by year. Since then
many new improvements have been made to the method,
such as new compact and efficient encodings (Huang, Chen,
and Zhang 2010; Rintanen, Heljanko, and Niemelä 2006;
Robinson et al. 2009; Balyo 2013).

In this paper we apply incremental SAT solving in two
different ways to state-of-the-art encodings of SAT based
planning. The advantage of incremental SAT solving is that
the SAT formula can be modified and solved again, while
reusing information from previous solving steps.

We will use sequential scheduling and a SAT solver,
which is not optimized for planning. There exist better
ways of scheduling the makespans (Rintanen, Heljanko, and
Niemelä 2006) and other improvements such as modifying
the SAT solver’s heuristics to be more suitable for solving
planning problems (Rintanen 2012). These features are not
implemented within the current version of our planner but
are planned as future work.

The experimental results (for a preview see Figure 1) are
based on benchmarks from the International Planning Com-
petition (IPC) 2014 and confirm previous work (Nabeshima
et al. 2006; Ray and Ginsberg 2008) on the reuse of learned

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparison of Madagascar and our approach us-
ing the exists-step encoding on IPC 2014 benchmarks.

clauses in planning: The incremental version is a significant
improvement over the non incremental version and our ap-
proach can even outperform the state-of-the-art SAT-based
planner Madagascar.

Preliminaries

Incremental SAT Solving

A clause is a disjunction (OR) of literals, a literal is a
Boolean variable or its negation and a Boolean variable
is variable with two possible values (True and False). A
conjunctive normal form (CNF) formula is a conjunction
(AND) of clauses. A CNF formula is satisfiable if there is
an assignment of truth values to its variables that satisfies at
least one literal in each clause of the formula.

The idea of incremental SAT solving is to utilize the effort
already spent on a formula to solve a slightly changed but
similar formula. The assumption based interface (Eén and
Sörensson 2003) has two methods. One adds a clause C and
the other solves the formula with additional assumptions in
form of a set of literals A:

add(C)

solve(assumptions = A)

Note that we will add arbitrary formulas, but they will
be transformable to CNF trivially. The method solve deter-
mines the satisfiability of the conjunction of all previously

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

135



added clauses under the condition that all literals in A are
true. Note that it is only possible to extend the formula, not
to remove parts of the formula. However, this is no restric-
tion. If we want to add a clause C we plan to remove later
we add it with an activation literal: Instead of adding C we
add (a ∨ C). If the clause needs to be active, ¬a is added
to the set of assumptions for the solve step. Otherwise, no
assumption is added and the solver can always satisfy the
clause by assigning True to a.

SAT-Based Planning

A planning problem is to find a plan – a sequence of actions,
that transforms the initial state into a goal state. The basic
idea of solving planning as SAT (Kautz and Selman 1992)
is to express whether a plan of length i exists as a Boolean
formula Fi such that if Fi is satisfiable then there is a plan
of length i. Additionally, a valid plan must be constructible
from a satisfying assignment of Fi. To find a plan the plan
encodings F0, F1, . . . are checked until the first satisfiable
formula is found, which is called sequential scheduling.

There also exist more advanced algorithms to schedule the
solving of plan encodings with different makespans (Rinta-
nen, Heljanko, and Niemelä 2006). Since our goal is only to
check the effect of incremental SAT solving, we will use the
basic sequential scheduling algorithm.

Representation of the Plan Encoding
To apply incremental SAT solving it is necessary to break the
plan encoding down to its essential parts. While an arbitrary
encoding does not necessarily have this structure, all existing
encodings already use this structure or are easily expressed
within the presented terms.

The variables of the plan encoding Fi are divided into i+1
groups called time points with the same number of vari-
ables N , vk@j represents variable k at time point tj . The
clauses of Fi are divided into four groups:
• initial clauses I: satisfied in the initial state t0

• goal clauses G: satisfied in the goal state ti

• universal clauses U : satisfied at every time point tj
• transition clauses T : satisfied at each pair of consecutive

time points (t0t1, t1t2, . . . , ti−1ti)
The clauses of I,G,U operate on the variables of one time

point and T operates on the variables of two time points.
T (j, k) indicates that the transition clauses are applied from
time point j to time point k and similarly for I,G,U . The
plan encoding Fi for makespan i can be constructed from
these clause sets:

Fi = I(0) ∧
(

i−1
∧
k=0

U(k) ∧ T (k, k + 1)

)
∧ U(i) ∧ G(i)

As U is never used alone we can simplify Fi to

Fi = I(0) ∧
(

i−1
∧
k=0

T ′(k, k + 1)

)
∧ G′(i)

where
T ′(j, k) := U(j) ∧ T (j, k)
G′(k) := U(k) ∧ G(k)

Appending Time Points Incrementally
With sequential scheduling of makespans the plan encodings
are newly generated in every step and the SAT solver does
not learn anything from previous attempts. With an incre-
mental SAT solver it is possible to append a new time point
in each step. The trivial way is to add an activation variable
to the goal clauses. This allows activating only the latest goal
clause and extend the formula by one transition in each step.

step(0) : add
(
I(0) ∧ [a0 ∨ G′(0)]

)
solve(assumptions = {¬a0})

step(k) : add
(
T ′(k − 1, k) ∧ [ak ∨ G′(k)]

)
solve(assumptions = {¬ak})

We will call this approach single ended incremental en-
coding as it can be understood as a single stack: New time
points are pushed to the top. The bottom of the stack con-
tains the first time point with the initial clauses and the goal
clauses are only applied to the time point at the top. Interme-
diate time points are linked together with transition clauses.

This solution still has one disadvantage: The solver will
not be able to apply clauses learned from the goal clauses
in future steps as the goal clauses will not be activated. To
avoid this problem two stacks can be used instead of one,
which will be called double ended incremental encoding.
One stack contains the time point with initial clauses at
the bottom, the other contains the time point with the goal
clauses at the bottom. New time points are pushed alternat-
ing to both stacks. The time points at the top of both stacks
are linked together with link clauses, such that they represent
the same time point, i.e. each variable has the same value in
both time points: L(j, k) := ∧N

l=1vl@j ⇔ vl@k. Activation
variables ensure that only the latest link is active.
step(0) :

add
(
I(0) ∧ G′(n) ∧ [a0 ∨ L(0, n)]

)
solve(assumptions = {¬a0})

step(2k + 1) : add tk+1

add
(
T ′(k, k + 1) ∧ [a2k+1 ∨ L(k + 1, n− k)]

)
solve(assumptions = {¬a2k+1})

step(2k) : add tn−k

add
(
T ′(n− k, n− k + 1) ∧ [a2k ∨ L(k, n− k)]

)
solve(assumptions = {¬a2k})

Note that n is neither a precomputed number nor a fixed
upper bound but a symbol which always represents the last
time point and n− k is the kth time point before the last. In
step zero there is no transition between the first time point
0 and the last time point n. Therefore, both time points are
the same. In step one there is one transition between the first
and the last time point. In step two there are two transitions
in between and so on.

With this encoding the solver is able to perform unit prop-
agation and resolve new learned clauses using both the initial
and goal states. The motivation is that connecting initial and
goal state with too few transitions causes the conflict. There-
fore, we add new transitions in between initial and goal state
instead of adding a new goal state.

136



(a) Non Incremental vs Single Ended
Incremental

Excluding Encoding Time

(b) Non Incremental vs Double Ended
Incremental

Excluding Encoding Time

(c) Single Ended Incremental vs Double
Ended Incremental

Excluding Encoding Time

Figure 2: The Scatter Plots show a data point for each problem. Trivial and difficult problems are not shown, i.e. problems
solved by none of the approaches or solved within one second by both. If a problem is only solved by one approach but not
the other it is plotted behind the 300 second mark. One configuration is faster than the other if the problem is plotted on the
opposing side.

Experiments

The introduced approaches are implemented and available at
GitHub1 with detailed instructions to reproduce the experi-
ments. The experiments were run on a computer with two
Intel R© Xeon R© E5-2683 v4 CPUs (32 cores with 2.10GHz)
and 512 GB of memory. Each instance solving a benchmark
had a runtime limit of 300 seconds and resource limitation to
1 CPU core and 8 GB of memory. The benchmark problems
are from the Agile Track of the 2014 International Planning
Competition (IPC) (Vallati et al. 2015): 280 problems are di-
vided into 14 domains with 20 problems each. Three of the
domains (openstacks, transport and visitall) do not occur in
Table 1 because none of the benchmarked approaches was
able to solve any problem from those domains within the
time limit of 300 seconds.

Communication with the SAT solver is implemented via
the IPASIR interface introduced in the 2015 SAT Race (Ba-
lyo et al. 2016) which means that any SAT solver supporting
IPASIR can be used in our planner. To select the incremen-
tal SAT solver for our experiments we evaluated all solvers
from the Incremental Library Track of the 2016 SAT Com-
petition. We chose COMiniSatPS 2Sun nopre (Oh 2016)
since it was able to solve the highest number of instances
within the time limit. As SAT solvers are changing rapidly
we decided to diversify our experiments with different en-
codings and select a single solver.

In our experiments we used two encodings from the solver
Madagascar (Rintanen, Heljanko, and Niemelä 2006) – the
forall-step (∀) and exists-step (∃) and two encodings from
freelunch – reinforced (reinf.) (Balyo, Barták, and Trunda
2015) and relaxed relaxed exists-step (R2∃) (Balyo 2013).

1https://github.com/StephanGocht/incplan

Each sub figure in Figure 2 shows a logarithmic scatter
plot comparing two different approaches and Table 1 sum-
marizes the number of solved instances in each domain.

All encodings clearly profit from the single ended incre-
mental encoding (Figure 2a). The double ended incremental
encoding leads to further improvement (Figure 2b). How-
ever, there are some problems where the single ended incre-
mental encoding is still better (see Figure 2c).

The difference between the Madagascar version MpC and
double ended incremental ∃ encoding (Figure 1) is not solely
caused by the incremental approach, but already present in
the non incremental version as can be seen in Figure 3 and
Table 1. The chosen SAT solver seems to be better than
MpCs internal SAT solver. This is also true, if we change

Figure 3: Comparison to Madagascar (MpC)
Including Encoding Time

137



en
co

di
ng

in
cr

em
en

ta
l

ba
rm

an

ca
ve

di
vi

ng

ch
ild

sn
ac

k

ci
ty

ca
r

flo
or

til
e

ge
d

hi
ki

ng

m
ai

nt
en

an
ce

pa
rk

in
g

te
tr

is

th
ou

gh
tf

ul

to
ta

l

MpC - 4 5 7 9 20 12 6 14 9 8 5 99
∀ non incremental 0 7 18 16 9 0 6 20 0 3 5 84

single ended 0 7 20 15 9 0 6 20 0 3 5 85
double ended 0 7 20 16 15 0 6 20 0 3 5 92

∃ non incremental 0 7 18 16 20 0 8 20 0 4 5 98
single ended 0 7 19 17 20 0 8 20 0 4 5 100
double ended 0 7 20 18 20 0 8 20 0 7 5 105

R2∃ non incremental 0 7 19 1 17 0 3 20 0 7 5 79
single ended 0 7 20 1 19 0 3 20 0 8 5 83
double ended 0 7 19 1 19 0 2 20 0 6 5 79

reinf. non incremental 0 7 18 2 13 0 5 3 0 3 5 56
single ended 0 7 18 2 13 0 5 3 0 3 5 56
double ended 0 7 18 2 15 0 5 3 0 4 5 59

Table 1: Number of problems solved within 300 seconds by default Madagascar (MpC) and the four tested encodings.

Madagascar to use the VSIDS heuristic instead of the plan-
ing specific heuristic.

We believe that MpC is able to solve more problems in
the domains barman, ged and parking (see Table 1) due to
the difference in scheduling makespans: Our incremental
approach uses only sequential scheduling and the achieved
makespans are rather small. The maximal makespan of a
solution from the double ended incremental ∃ encoding is
18. In contrast, MpCs maximal makespan is 529 and the
makespans are above 90 for problems only solved by MpC.
Therefore, applying advanced scheduling methods is a nec-
essary future work.

Related Work

Incremental SAT solving is an established technique in SAT
based model checking. It was first applied for temporal in-
duction (Eén and Sörensson 2003), which is similar to SAT
based planning but allows detecting if the goal state is un-
reachable. Recently it is used for the IC3 algorithm (Bradley
2011) and its variants (Griggio and Roveri 2016) to refine
an abstraction of reachable states. This approach was also
applied to planning (Suda 2014).

Lemma reusing (Nabeshima et al. 2006) is the foundation
for reuse of learned clauses in the context of planning. The
idea is to extract learned clauses, when the SAT encoding
for makespan n is unsatisfiable and add them to the SAT
encoding for makespan n + 1. This is comparable to our
Single Ended Incremental approach but does not need acti-
vation literals. Instead, there are limitations on the learned
clauses and the encoding. This is to ensure the reusability
of learned clauses. A problem Nabeshima et al. encountered
is that reusing all learned clauses may be harmful. With the
use of an incremental SAT solver both aspects are delegate
to the SAT solver.

Another approach to retain learned clauses is to use a sin-
gle call to a SAT solver (Ray and Ginsberg 2008). To get a
solution with the smallest makespan it is necessary to change
the SAT solver such that it assigns the activation variables
first. Encoding all possible makespans into one encoding is
usually not feasible due to memory constraints. Therefore, in
contrast to our approach, they require an upper bound to the
makespan. The disadvantage is that additional SAT solver
calls are necessary if no plan is found within the provided
upper bound, in which case no information is reused.

Finally, incremental satisfiability modulo theories (SMT)
solving was used for planning (Dantam et al. 2016). How-
ever, the focus of Dantam et al. is to add information about
the physical feasibility of an action based on motion plan-
ning. Our focus is to preserve learned clauses while increas-
ing the makespan.

Conclusion

In this work we implemented and evaluated incremental
SAT-based planning. The experiments clearly show that this
approach is very beneficial. The time needed to find a plan
is reduced and the number of solved instances increased
across different encodings. Additionally, the advantage can
be increased further if the incremental solver is able to learn
clauses based on the goal clauses.

We were able to increase the number of solved instances
compared to the state-of-the-art SAT based planner Mada-
gascar, but we did not outperform it in all domains. Com-
bining Madagascars more advanced scheduling techniques
and planning heuristics with incremental SAT solving is left
for future work.

138



Acknowledgments.

This work was partially supported by DFG grants SA
933/11-1.

References

Balyo, T.; Barták, R.; and Trunda, O. 2015. Reinforced
encoding for planning as SAT. In Acta Polytechnica CTU
Proceedings, volume 2, 1–7. Czech Technical University in
Prague.
Balyo, T.; Biere, A.; Iser, M.; and Sinz, C. 2016. SAT Race
2015. Artificial Intelligence 241:45–65.
Balyo, T. 2013. Relaxing the relaxed exist-step parallel
planning semantics. In 2013 IEEE 25th International Con-
ference on Tools with Artificial Intelligence, 865–871. IEEE
Computer Society.
Bradley, A. R. 2011. SAT-Based model checking without
unrolling. In Verification, Model Checking, and Abstract In-
terpretation - 12th International Conference, VMCAI 2011,
volume 6538 of Lecture Notes in Computer Science, 70–87.
Springer.
Dantam, N. T.; Kingston, Z. K.; Chaudhuri, S.; and Kavraki,
L. E. 2016. Incremental task and motion planning: A
constraint-based approach. In Proceedings of Robotics: Sci-
ence and Systems XII.
Eén, N., and Sörensson, N. 2003. Temporal induction by
incremental SAT solving. Electronic Notes in Theoretical
Computer Science - BMC’2003, First International Work-
shop on Bounded Model Checking 89(4):543–560.
Griggio, A., and Roveri, M. 2016. Comparing different
variants of the ic3 algorithm for hardware model checking.
IEEE Trans. on CAD of Integrated Circuits and Systems
35(6):1026–1039.
Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel tran-
sition based encoding scheme for planning as satisfiability.
In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence. AAAI Press.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In 10th European Conference on Artificial Intelligence,
ECAI 92, 359–363.
Nabeshima, H.; Soh, T.; Inoue, K.; and Iwanuma, K. 2006.
Lemma reusing for SAT based planning and scheduling.
In Proceedings of the Sixteenth International Conference
on Automated Planning and Scheduling, ICAPS 2006, 103–
113. AAAI Press.
Oh, C. 2016. COMiniSatPS the chandrasekhar limit and
GHackCOMSPS. In Proceedings of SAT Competition 2016
- Solver and Benchmark Descriptions, 29–30.
Ray, K., and Ginsberg, M. L. 2008. The complexity of
optimal planning and a more efficient method for finding
solutions. In Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling, ICAPS
2008, 280–287. AAAI Press.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.

Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intelligence 193:45–86.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-Based parallel planning using a split representation of
actions. In Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2009.
AAAI Press.
Suda, M. 2014. Property directed reachability for automated
planning. Journal of Artificial Intelligence Research (JAIR)
50:265–319.
Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.; Roberts,
M.; and Sanner, S. 2015. The 2014 international planning
competition: Progress and trends. AI Magazine 36(3):90–98.

139




