
Complete Local Search: Boosting Hill-Climbing
through Online Relaxation Refinement

Maximilian Fickert, Jörg Hoffmann
Saarland Informatics Campus

Saarland University
Saarbrücken, Germany

{fickert,hoffmann}@cs.uni-saarland.de

Abstract

Several known heuristic functions can capture the input at dif-
ferent levels of precision, and support relaxation-refinement
operations guaranteeing to converge to exact information in
a finite number of steps. A natural idea is to use such re-
finement online, during search, yet this has barely been ad-
dressed. We do so here for local search, where relaxation re-
finement is particularly appealing: escape local minima not
by search, but by removing them from the search surface.
Thanks to convergence, such an escape is always possible.
We design a family of hill-climbing algorithms along these
lines. We show that these are complete, even when using
helpful actions pruning. Using them with the partial delete
relaxation heuristic hCFF, the best-performing variant out-
classes FF’s enforced hill-climbing, outperforms FF, outper-
forms dual-queue greedy best-first search with hFF, and in 6
IPC domains outperforms both LAMA and Mercury.

Introduction

Many heuristic functions can capture the input at different
levels of precision. Abstractions (e. g. (Clarke, Grumberg,
and Long 1994; Culberson and Schaeffer 1998; Edelkamp
2001)) span the entire range between the exact heuristic
h∗ and the null heuristic h = 0. Critical-path heuristics
(e. g. (Haslum and Geffner 2000; Haslum 2006; Hoffmann
and Fickert 2015)) yield more information through treating
larger sets C of conjunctions as being atomic. Partial delete
relaxation heuristics (e. g. (Keyder, Hoffmann, and Haslum
2014; Domshlak, Hoffmann, and Katz 2015)) allow to inter-
polate between the delete relaxation and exact planning.

All these methods have powerful parameters allowing to
choose the trade-off between computational effort and preci-
sion. One wide-spread means to make that choice in practice
are refinement operations, starting from a null or simple re-
laxation, converging to an exact relaxation given sufficient
time & memory (Clarke et al. 2003; Haslum et al. 2007;
Seipp and Helmert 2013; Helmert et al. 2014; Keyder, Hoff-
mann, and Haslum 2014; Steinmetz and Hoffmann 2017).

The traditional approach is to refine the relaxation offline,
prior to search, up to some computational limit. Yet the most
pertinent information for targeted refinement – the difficul-
ties actually encountered during search – becomes known
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online only. Online relaxation refinement appears to be the
right answer, but has barely been addressed. Seipp (2012)
touches Cartesian-abstraction online refinement, yet only
briefly at the end of his M.Sc. thesis (with disappointing re-
sults). Steinmetz and Hoffmann (2017) refine a critical-path
dead-end detector instead of a distance estimator. Wilt and
Ruml’s (2013) bidirectional search uses the backwards part
as a growing perimeter to improve the forward-part heuris-
tic function, which can be viewed as a form of relaxation
refinement. Certainly, this is not all there is to be done.

That said, online relaxation refinement is one form of on-
line heuristic-function learning, which has been explored in
some depth for different forms of learning. The most tradi-
tional form is per-state value updating, as in transposition ta-
bles (Akagi, Kishimoto, and Fukunaga 2010), LRTA∗ (Korf
1990), and real-time dynamic programming (Barto, Bradtke,
and Singh 1995; Bonet and Geffner 2003). This lacks
the generalization inherent in refining a heuristic function.
Various works learn or refine the combination of a given
ensemble of heuristic functions (Felner, Korf, and Hanan
2004; Fink 2007; Katz and Domshlak 2010; Karpas, Katz,
and Markovitch 2011; Domshlak, Karpas, and Markovitch
2012). This does not refine the actual relaxations, i. e.
the information sources underlying the heuristics. Online
training of machine-learned (ML) distance predictors has
been realized through bootstrapping and local surface-error
correction (Humphrey, Bramanti-Gregor, and Davis 1995;
Arfaee, Zilles, and Holte 2011; Thayer, Dionne, and Ruml
2011). This lacks a comparable convergence guarantee: in
a finite number of steps, for arbitrary inputs, without having
to design/choose a sufficient feature representation.

A common perception in favor of offline heuristic-
function refinement/learning presumably is that a frequently
changing heuristic yields volatile search guidance. For
global searches like A∗ or greedy best-first search (GBFS),
do we need to reevaluate the entire open list upon each re-
finement step? Possibilities are to instead restart, or spawn
parallel search processes (Arfaee, Zilles, and Holte 2011).
The alternative we consider here is to use local search in-
stead. This is particularly appealing as the local view re-
moves the need for global reevaluation. When stuck in a lo-
cal minimum, instead of trying to escape it by search, refine
the relaxation to remove it from the search space surface.
Observe that convergence guarantees this to work: after suf-
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ficient refinement, the local minimum will be gone. Indeed,
as we show, this renders local search complete.

We design a family of online-refinement hill-climbing al-
gorithms. Like FF’s enforced hill-climbing (EHC) (Hoff-
mann and Nebel 2001), we consider lookahead searches on
each state during a hill-climbing run. In difference to EHC,
we limit the lookahead horizon by a parameter k. This trades
off the amount of search vs. refinement used to escape local
minima: we invoke refinement if search does not find a bet-
ter state within the horizon. In particular, for k = 1, this
yields a standard hill-climbing algorithm, but invoking re-
finement when no strictly better immediate successor exists.

We identify suitable convergence properties as eventually
(i) detecting all dead-end states, and (ii) forcing the relaxed
solutions underlying the heuristic function to be real solu-
tions on solvable states. We show that, given these proper-
ties and using restarts on dead-end states, our hill-climbing
algorithms are complete. This remains so even when using
helpful actions pruning, i. e., when restricting the search to
those actions appearing in the relaxed solutions.

We test our algorithms with the partial delete relaxation
heuristic hCFF, that combines the delete relaxation with
critical-path heuristics, considering a set C of conjunctions
to be atomic (Haslum 2012; Keyder, Hoffmann, and Haslum
2012; 2014; Hoffmann and Fickert 2015; Fickert, Hoffmann,
and Steinmetz 2016). Refinement operations here consist in
adding new conjunctions into C. This is known to provide
the necessary properties (i) and (ii). In our experiments on
IPC benchmarks, the best-performing hill-climbing variant
vastly outclasses EHC, outperforms FF, outperforms dual-
queue greedy best-first search with hFF, and in 6 domains
outperforms both LAMA and Mercury. For reference, we
also experiment with variants of online-refinement GBFS.

Background

Framework and Basic Concepts

We use the STRIPS framework. A planning task is a tuple
Π = (F ,A, I,G) where F is a set of facts, A a set of ac-
tions, I ⊆ F is the initial state, and G ⊆ F is the goal.
Each action a ∈ A is a triple (pre(a), add(a), del(a)) of
precondition, add list, and delete list, each a subset of F .

A state s is a subset of facts s ⊆ F . An action a is appli-
cable to s if pre(a) ⊆ s; in that case, applying a in s leads to
the state (s∪ add(a)) \ del(a). A plan π for s is a sequence
of iteratively applicable actions leading from s to a state sG
s.t. sG ⊇ G. π is optimal if its length is minimal among all
plans for s (we consider unit action costs for simplicity). A
plan for Π is a plan for the initial state I.

We denote the set of all states by S. A heuristic function,
short heuristic, is a function h : S �→ N0 ∪ {∞} mapping
states to natural numbers, or to ∞ to indicate that the state
is unsolvable (a dead-end). We assume that h(s) = 0 iff
s ⊇ G; and that h(s) = ∞ only if s is a dead-end, i. e., if the
heuristic indicates s to be a dead-end then this is indeed so.
These assumptions are satisfied for most if not all heuristics
in planning. The perfect heuristic h∗ maps any state s to the
length of an optimal plan for s, or to ∞ if s is a dead-end.

Heuristic functions h are generally based on relaxations,
and can typically be phrased in terms of returning the length
of a relaxed solution π[h](s). The helpful actions (aka pre-
ferred operators) associated with h then are those actions in
π[h](s) that are applicable to s. We denote that action set
by H(s). A search uses helpful actions pruning if, when
expanding a state s, only the actions in H(s) are considered.

We say that a planning algorithm is sound if, whenever it
returns an action sequence π, then π is a plan. The algorithm
is complete if it terminates in finite time, finds a plan in case
Π is solvable, and proves unsolvability otherwise. All algo-
rithms we consider here are sound, but only some of them
are complete. In particular, H(s) typically does not guar-
antee to contain an action starting a plan for s, so helpful
actions pruning is a source of incompleteness.

The hCFF Heuristic & its Refinement Operation

Our design of online-refinement search algorithms is inde-
pendent of the heuristic used. But in our experiments we use
hCFF, and also the convergence properties we identify are in-
spired by hCFF. So we next give a brief summary of hCFF

and its refinement operation. For details please see Fickert
et al.’s (2016) respectively Keyder et al.’s (2012) work.

The hCFF heuristic combines the critical-path heuristic
hC (Haslum and Geffner 2000; Haslum 2006; Hoffmann and
Fickert 2015) with the delete relaxation heuristic hFF (Hoff-
mann and Nebel 2001). The critical-path relaxation under-
lying hC assumes that, to achieve a set G of facts, it suffices
to achieve the most costly atomic conjunction c (fact set)
contained in G. The set C of atomic conjunctions is a pa-
rameter. (Originally, in hm, C was set to all conjunctions up
to size m; later on, this was generalized to arbitrary C.)

The delete relaxation assumes that all delete lists are
empty (Bonet and Geffner 2001). The ideal, but hard to
compute, heuristic h+ returns the length of an optimal re-
laxed solution, or ∞ if no relaxed solution exists. Its approx-
imation hFF returns ∞ in the same case (deciding relaxed
plan existence is easy), and otherweise returns the length of
some, not necessarily optimal, relaxed solution π[hFF].

The combination of hC and hFF results from perceiv-
ing the delete relaxation as being like h1, but requiring to
achieve every fact p, rather than only the single most costly
p, in a subgoal G. The relaxation then amounts to consid-
ering each p ∈ G in isolation, ignoring interferences across
these p. The generalization to arbitrary sets C of atomic
conjunctions applies that same principle, but to the conjunc-
tions c ⊆ G, c ∈ C instead of the single facts p ∈ G. The
idealized heuristic hC+ returns the length of an optimal plan
in this extended relaxation. Its approximation hCFF returns
the length of a not necessarily optimal such plan π[hCFF].

If C contains exactly the singleton conjunctions, then
hC+ = h+. However, hC+ converges to h∗, i. e., the value
of hC+ can only grow as we add more conjunctions into C,
and there always exists C such that hC+ = h∗. In this sense,
hC+ incorporates a partial delete relaxation, allowing to in-
terpolate all the way between h+ and h∗. Yet how to actually
find a good set C in practice, i. e., one that yields an accurate
but not too expensive heuristic hCFF?
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All known answers are based on refinement steps.
Such a step proceeds as follows, given a state s where
hCFF(s) 	= ∞: extract a partially relaxed plan, π[hCFF](s);
if π[hCFF](s) actually is a real plan for s, then do nothing;
otherwise, identify one reason why π[hCFF](s) fails to be a
real plan, and generate atomic conjunctions addressing that
reason. Haslum’s (2012) variant of this technique guarantees
progress in a strong sense, namely that adding the generated
atomic conjunctions into C excludes π[hCFF](s) from the
space of partially relaxed plans for s. Keyder et al.’s (2012;
2014) variant of refinement generates, in each step, a single
atomic conjunction c only, and guarantees a weaker form
of progress, namely that the generated c is new, c 	∈ C.
Here we use Keyder et al.’s method, which tends to con-
struct smaller C and thus incur less overhead. Henceforth,
when we say refinement, we mean Keyder et al.’s variant.

Converging Heuristic Functions

As pointed out, hC+ converges to h∗. This is the strongest
convergence property possible – after a finite number of re-
finement steps, the heuristic will be perfect. We now identify
a weaker convergence property that still suffices for our hill-
climbing algorithms to be complete as advertised. That con-
vergence property is satisfied by hCFF. We start with hCFF

to make things concrete, then derive our general definition.
The reason why hCFF does not converge to h∗ is overes-

timation: hCFF is not an admissible heuristic function. It
does, however, (i) converge to perfect information regarding
dead-end states (as both hC+ and hCFF return ∞ in the same
cases); and (ii) its relaxed solutions π[hCFF] converge to real
plans on solvable states. This follows directly from prior re-
sults. To state it precisely, given a planning task with fact set
F , denote by C∗ := P(F) the maximal set of conjunctions,
considering all conjunctions to be atomic. We have:

Proposition 1 Let Π = (F ,A, I,G) be a planning task,
and let s be a state. Then there exists C such that (i) in case
s is unsolvable, we have hCFF(s) = ∞; and (ii) in case s is
solvable, π[hCFF](s) is a plan for s. In particular, both (i)
and (ii) hold for C = C∗.

Proof: We prove (i) and (ii) for C∗ = P(F).
For (i): By Fickert et al.’s (2016) Corollary 1, hCFF(s) =

∞ iff hC+(s) = ∞, and there exists C s.t. hC+(s) = h∗(s).
As hC∗+ ≥ hC+ for any C, this shows the claim.

For (ii): As s is solvable, h∗(s) 	= ∞, so hC∗+(s) 	= ∞
and hC∗FF(s) 	= ∞. Thus we can run C-refinement on s.
Assume that π[hCFF](s) is not a plan for s. Then, by Keyder
et al.’s (2014) Lemma 3, C-refinement on s generates an
atomic conjunction c 	∈ C∗, in contradiction.

Observe that continued C-refinement will eventually re-
sult in C∗, unless we terminate it earlier on: if we keep refin-
ing C, each step adding a new conjunction, then eventually
C will contain all conjunctions. Therefore, Proposition 1
shows that, starting from any arbitrary C, hCFF will eventu-
ally (i) detect all dead-ends and (ii) solve all solvable states.
This is precisely the convergence property we will need.

Given a heuristic h, we capture a refinement operation
at an abstract level as a mapping ρ from h to a modified

heuristic ρ[h], where ρ is again applicable to ρ[h] (and ρ
possibly but not necessarily requires, as hCFF does, also an
input state s where h(s) 	= ∞ and π[h] is not a plan for s).
We can then define convergence as follows:

Definition 1 (Converging Heuristic) Let Π be a planning
task. Let h be a heuristic function based on relaxed solutions
π[h], associated with a refinement operation ρ. We say that
h is converging with ρ if there exists N ∈ N0 s.t. (i) for all
s ∈ S where h∗(s) = ∞, ρN [h](s) = ∞; and (ii) for all
s ∈ S where h∗(s) < ∞, π[ρN [h]](s) is a plan for s.

As argued, hCFF is converging with Keyder et al.’s refine-
ment method. The same is true, in principle, of arbitrary
abstraction heuristics, so long as the refinement step allows
to obtain h∗ (i. e., to have the abstract state space equal the
real state space in the limit). Similarly, critical-path heuris-
tics are converging with any refinement operation that adds
at least one new atomic conjunction in each step. Thus all
of these heuristic functions qualify for the search algorithms
and completeness results in the next section. (Though it re-
mains to be investigated of course whether heuristics other
than hCFF are practically userful in this role.)

Online-Refinement Hill-Climbing

We introduce a family of local search algorithms with online
relaxation refinement. Essentially, the algorithms are hy-
brids between standard hill-climbing (HC) and enforced hill-
climbing (EHC) as introduced in FF (Hoffmann and Nebel
2001), enriched by restarting and relaxation refinement. By
HC, we mean a simple gradient descent, a loop of action-
selection steps each considering a current state s, stopping
when h(s) = 0 and otherwise selecting an immediate suc-
cessor with best (lowest) h value. EHC modifies this through
a complete lookahead within each action selection step, run-
ning a breadth-first search for a state s′ with strictly better
heuristic value h(s′) < h(s). We obtain hybrids between
HC and EHC by fixing the lookahead horizon k. This is well
suited to online refinement as the limited horizon provides us
with a crisp definition of when h is not “good enough”: we
refine h if there is no better state within the horizon.

Observe that k trades off search vs. refinement. For k = 1,
the base search is plain HC and refinement does all the “hard
work”; for k = ∞ the base search is EHC and refinement
is only triggered if the entire search space below s was un-
successfully exhausted; for intermediate values of k, e. g.
k = 2, simple situations are handled by a quick search,
while tougher ones call on refinement.

Towards designing our algorithm family, that we call
Refinement-HC, it will be convenient to first design an in-
termediate family Episode-EHC, which is like EHC but run-
ning multiple episodes, with restarting in between episodes,
to handle failure.1 An EHC failure occurs if the search space
in a lookahead phase becomes empty, because either the
current state s is a dead-end, or helpful actions pruning is

1Episode-EHC is related to Coles et al.’s (2007) stochastic
EHC, in that both use restarts in some form. But Coles et al. inves-
tigate stochastic local search, while for us Episode-EHC is merely
an intermediate construction for online-refinement search.
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procedure Episode-EHC:
Cde := ∅; /* cross-episode dead-end cache */
s0 := I; π0 := 〈〉; /* first episode, start state and plan */
while TRUE do /* loop over EHC episodes */

s := s0; π := π0;
while TRUE do /* one EHC episode */

if h(s) = 0 then return π; endif;
[Breadth-First Search for state s′ s.t. h(s′) < h(s)];
if [Failure Trigger] then /* EHC episode failed */

if ¬Helpful then store s in Cde; endif;
[Failure Handling];

else
[Refinement Phase]; /* ONLY in Refinement-HC */
π := π◦ path from s to s′; s := s′;

endif;
endwhile;

endwhile;
[Breadth-First Search]:
Standard BrFS, handling search states t as follows:

when generating t: prune t if t ∈ Cde or h(t) = ∞
when expanding t: randomize the order of t’s successor states

if Helpful, apply H(t) actions only
when computing h(t):

if π[h](t) is a plan for t return π◦ path from s to t ◦π[h](t)
if h(t) = ∞ set Cde := Cde ∪ {t}

[Failure Trigger]: search space exhausted, no s′ can be found
[Failure Handling]: /* only Giveup in original EHC */
if s = I then

if s ∈ Cde ∨ h(s) = ∞∨¬Helpful then return “unsolvable”;
else return “don’t know”; endif;

else
case:

Giveup: {return “don’t know”;};
Restart: {s0 := I; π0 := 〈〉; break;};
Backjump: {s0 := last state t �= s along π where h(t) �= ∞,

or I if no such t exists;
π0 := prefix of π up to s0; break;};

endcase;
endif;

procedure Refinement-HC:
[Refinement Phase]:
if [Refinement Trigger] then [Refinement Handling]; endif;
if [Stagnation Trigger] then [Stagnation Handling]; endif;
[Breadth-First Search]:
Like in Episode-EHC, with depth limit k;
hmin := minimum h-value of search states t �= s;
[Failure Trigger]: /* no better state at any depth below s */
h(s) ≤ hmin and no search states cut off due to the depth limit
[Failure Handling]:
refine h on s, i. e., replace h with ρ[h];
if s = I then

if s ∈ Cde ∨ h(s) = ∞ then return “unsolvable”; endif;
else [like in Episode-EHC Failure Handling] endif;
[Refinement Trigger]: h(s) ≤ hmin /* no better state found */
[Refinement Handling]: /* increase h(s) beyond previous hmin */
while h(s) ≤ hmin do

if π[h](s) is a plan for s then return π ◦ π[h](s); endif;
refine h on s, i. e., replace h with ρ[h]

endwhile;
continue;
[Stagnation Trigger]: /* still no better state after refinement */
refinement trigger applies twice in a row on the same s

[Stagnation Handling]:
case:

StagContinue: {};
StagRestart: {s0 := I; π0 := 〈〉; break;};
StagBackjump: {s0 := s;

while s0 �= I do
s0 := the predecessor of s0 along π;
[Breadth-First Search

for state s′
0 s.t. h(s′

0) < h(s0)];
if such s′

0 was found then break; endif;
endwhile;
π0 := prefix of π up to s0;
break;};

endcase;

Figure 1: Episode-EHC, extending EHC with failure handling (left); modifications of Episode-EHC for Refinement-HC (right).
We assume a heuristic h based on relaxed solutions π[h], with helpful actions H; Refinement-HC also assumes a refinement
operation ρ. Helpful, Giveup, Restart, Backjump, StagContinue, StagRestart, StagBackjump, and k ∈ N are parameters.

too aggressive. The original EHC just gives up in this case
(FF switches to GBFS as a simple meta-heuristic). Episode-
EHC instead provides the option to start another, random-
ized, episode of EHC. Figure 1 provides pseudo-code for
both, Episode-EHC and Refinement-HC. Consider first the
left-hand side to understand the details of Episode-EHC.

The “[X]” notation in Figure 1 identifies macros (not sub-
procedures), moved outside the main loop for readability;
other cursive words, like Helpful, are configuration options.
Consider first the main loop of Episode-EHC. It wraps the
main loop of EHC into an outside loop over EHC episodes.
Each episode starts from a state s0 and corresponding plan
prefix π0 leading from I to s0, set initially to I and 〈〉, and
set later on by failure handling. The cross-episode dead-end
cache is new relative to the original formulation of EHC. We
include it to point out that, without helpful actions pruning,
such a cache suffices to ensure cross-episode progress and,
therewith, completeness (see Proposition 2 below).

The lookahead phase for s′ with h(s′) < h(s), [Breadth-
First Search] in Figure 1, is exactly the same as in EHC,
except that it employs the dead-end cache; randomizes the

expansion order during breadth-first search to achieve differ-
ent behavior across episodes; and terminates early in case a
relaxed plan turns out to be a real plan for some state. (The
latter is required for completeness, with relaxation refine-
ment, even under a depth limit k.)

Failure handling is triggered when the lookahead phase
exhausted its search space without finding the desired state
s′. If failure occurs on the initial state, then there is no point
in running another EHC episode, and we terminate indicat-
ing whether or not a proof of unsolvability was found. On
states other than the initial state, the failure handling en-
compasses three options, namely to give up (return “don’t
know”), to restart, or to backjump. Restart starts the new
episode at the initial state, while a backjump starts the new
episode at the most recent predecessor t of s where h(t) 	=
∞. Both are implemented through setting s0 and π0 accord-
ingly, before breaking out of the EHC-episode loop to give
back control to the outside loop, starting a new episode.

With helpful actions pruning, Episode-EHC is incomplete
simply because H may prune the solutions. Without helpful
actions pruning, matters are more interesting. The Giveup
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configuration – original EHC – is complete only for input
tasks where all dead-ends are recognized by h, i. e., h(t) =
∞ whenever t is a dead-end (Hoffmann 2003). However:

Proposition 2 Episode-EHC without helpful actions prun-
ing is complete when not using Giveup.
Proof: Without helpful actions pruning, every EHC episode
adds at least one new state into Cde. So after at most N
episodes, where N is the number of dead-end states, Cde
contains all dead-ends. Hence EHC episode N+1 will either
fail directly as I ∈ Cde, or will not fail and find a plan.

Refinement-HC introduces two major changes relative to
Episode-EHC: a lookahead horizon k ∈ N, and relaxation
refinement. It assumes that h comes with a refinement oper-
ation ρ, and caters for the case where ρ is applicable only on
states s where h(s) < ∞ and π[h](s) is not a real plan.

The pseudo-code, Figure 1 (right), reuses the previous
macros, with some changes. In breadth-first search, apart
from the search depth limit k, the only change consists in
remembering, for later use, the minimal heuristic value hmin

encountered below s. The failure trigger is now different, as
the lookahead bound means we no longer actually exhaust
the search space below s. We therefore trigger a failure only
if, in addition to there being no suitable state s′ within depth
k, the search (and its growing dead-end detection facilities)
proved that there can be no such state at any depth, namely
if the depth limit did not actually prune anything. In failure
handling, we first refine h to ensure that at least one refine-
ment step occurs in every episode; and we do not necessarily
stop on the initial state, as further episodes will yield further
refinements and hence further progress. The remainder of
the failure handling is identical to that in Episode-EHC.

Next, consider the new elements of Refinement-HC. The
main loop adds a refinement phase, consisting of refinement
and stagnation steps. The refinement trigger is h(s) ≤ hmin,
i. e., no better state is found within lookahead k. We are
hence located on a local minimum or plateau escaping which
by search is difficult (requires lookahead > k). We refine
the relaxation to remove that difficulty. The refinement han-
dling does so by iteratively refining h until h(s) > hmin

(terminating early if π[h](s) is a plan so no refinement is
possible, nor needed). Note here that hmin in the compari-
son h(s) > hmin is static, comparing the new refined h(s)
against the minimal value found below s with the old un-
refined h. This is because validating every intermediate h
version through a search would be too costly. Such a vali-
dation is instead done at the end of [Refinement Handling],
through the continue command which hands control back to
the same episode, and thus to the search below s.

Stagnation is what we call the event where that search
still does not find a better state: while the refined h has in-
creased h(s), it has increased the minimum h value below s
to a similar degree. One may choose to continue the alter-
nating search/refinement on s until eventually either search
is successful, or h is so refined as to cause termination (cf.
Theorem 1 below). We call this stagnation handling option
StagContinue; it forces the algorithm to escape s through
refinement, which can be ineffective in practice. So we pro-
vide two alternate options starting a new episode instead.

StagRestart is identical to Restart in failure handling. Simi-
larly for StagBackjump, except that the state backjumped to
is different: both Backjump and StagBackjump jump back to
the most recent predecessor where the reason for backjump-
ing has disappeared. In failure handling, the reason is being
a (necessarily) failed state; in stagnation handling, the rea-
son is unsuccessful search. Hence StagBackjump tests the
ancestors of s, in reverse order, by search.

Regarding completeness, obviously the Giveup configu-
ration is out of the question. Remarkably though, this is the
only incomplete configuration option:

Theorem 1 Given a heuristic h converging with ρ,
Refinement-HC is complete when not using Giveup.

Proof: Observe that every episode refines h at least once,
and that this sequence of refinements stops only if either (a)
a plan is found, or (b) I ∈ Cde ∨ h(I) = ∞.

Say the input task Π is unsolvable. Then (a) never hap-
pens, and termination on (b) is an unsolvability proof as de-
sired. Unless termination on (b) happens earlier, h will even-
tually converge, at which point (Definition 1 (i)) h(s) = ∞
for all unsolvable s, hence for all reachable ones. In both the
Restart and Backjump configurations, we go back to I, find
that h(I) = ∞, and terminate on (b).

Say now that Π is solvable. Then (b) never happens,
and (a) is the desired termination. Unless that termina-
tion happens earlier, h will eventually converge, at which
point h(s) = ∞ for all unsolvable s, and (Definition 1 (ii))
π[h](s) is a plan for all solvable s. In both the Restart and
Backjump configurations, we go back to a solvable state s,
and find that π[h](s) is a plan for s, so terminate on (a).

Recall that this theorem applies to an entire algorithm
family, namely all 12 configurations of Refinement-HC not
giving up in case of episode failure, times all values of k.
In particular, for k = 1 with Restart, the search itself is just
plain hill-climbing, restarting whenever no better successor
state exists – yet made complete by relaxation refinement.

Completeness on unsolvable tasks relies only on conver-
gence property (i). For completeness on solvable tasks, con-
vergence to h∗ would suffice to always find a better state
within any horizon; (ii) is a weaker property that suffices
thanks to early termination when π[h](s) is a plan for s.

Online-Refinement GBFS

We also experimented with some variants of greedy best-first
search (GBFS), the most popular search algorithm in satis-
ficing planning. Preempting our overall conclusion, online
relaxation refinement in GBFS is beneficial, but not as much
as in hill-climbing; further studies are needed to understand
its behavior in more detail. We therefore provide, in what
follows, only a brief summary of the methods we tried.

We assume that the reader is familiar with standard GBFS,
whose global open list is a priority queue preferring states
with small h values. For online relaxation refinement in
this setting, we maintain the set S0 of visited states s where
h(s) = h0, h0 being the minimum h value encountered so
far with the current h. We trigger refinement when search
has proved that S0 has no better depth-≤ k descendant. We
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Figure 2: Performance of Refinement-HC using Restart and StagContinue, for scaling k. From left to right: overall coverage,
geometric mean of the number of evaluations for commonly solved instances, geometric mean of the number of evaluated states
per second, and geometric mean of the number of refinement phases for problems where refinement was done at least once.

apply a single refinement step, learning a single new con-
junction only. We also experimented with other variants re-
fining more aggressively, e. g. until at least one s ∈ S0 does
have a better depth-≤ k descendant; but these variants were,
generally, inferior due to the computational overhead.

We remark that, to obtain completeness under helpful ac-
tions pruning, i. e., when limiting state expansions to helpful
actions only, restarting or node reopening is required. For
example, the only solution may be pruned by H(I) already,
so if I is not revisited then relaxation refinement will never
correct that mistake. In other words, the full power of online
relaxation refinement unfolds only if one allows to revisit
previous states in the light of these refinements.

Experiments

We implemented the described algorithms in Fast Down-
ward (FD) (Helmert 2006). The experiments were run on
machines with Intel Xeon E5-2660 processors with a clock
rate of 2.2 GHz. The time and memory limits were set to
30 minutes and 4 GB respectively. The experiments were
run on the domains from the satisficing tracks of all IPCs,
excluding those (namely Gripper, Miconic, Movie, Open-
stacks’06, and Openstacks’08) where EHC with a depth
bound of 2 using standard hFF solves all instances. This
results in a total of 1465 benchmark instances. All exper-
iments with HC variants use helpful actions pruning, all ex-
periments with GBFS use FD’s lazy dual-queue search with
preferred operators. Both hFF and hCFF extract the relaxed
plans using hadd (Bonet and Geffner 2001), with random tie-
breaking, which was overall the best configuration in prior
work (Fickert, Hoffmann, and Steinmetz 2016) and also in
our context. The results we show are averaged over three
random seeds. For the coverage values, an instance counts
as solved if it was solved with at least two random seeds.

Given the overall observations regarding GBFS stated ear-
lier, we concentrate mainly on Refinement-HC. We start by
analyzing the impact of its configuration parameters. We
then compare a subset of Refinement-HC configurations, as
well as selected GBFS variants, to baselines and the state of
the art. We conclude with a direct assessment of the “qual-
ity” of atomic conjunctions learned online vs. offline.

Refinement-HC Configurations

We first examine the depth bound parameter k, controlling
the trade-off between learning (small k) and search (large k).
We let k range between 1 and 6. We fix the other algorithm
parameters to a canonical configuration of Refinement-HC,
using Restart upon failure, and using StagContinue in stag-
nation handling. Consider Figure 2.

As expected, for smaller values of k the heuristic is more
accurate as many conjunctions are learned. With increasing
k, the accuracy of the heuristic decreases and more evalua-
tions are required to find a solution. However, the computa-
tional overhead for relaxation refinement decreases as well.
The sweet spot of this trade-off is at k = 3, with a peak
coverage of 1266 solved instances.

There are some outlier domains that don’t follow this pat-
tern, where instead coverage consistently increases or de-
creases as a function of increasing k. The most extreme
case where relaxation refinement is detrimental is the Bar-
man domain, where coverage increases from 5 to 40 with
increasing k. At the other extreme end, the domains that
stand out are Transport and Tetris where, with increasing k,
coverage drops from 70 to 41 respectively from 19 to 8.

We next examine Refinement-HC’s other configuration
parameters, for the two best-performing values of k, i. e.,
k ∈ {2, 3}. We omit the Giveup setting as Restart and Back-
jump are consistently better. Table 1 gives an overview.

The overall best configuration is the canonical one as al-
ready used in Figure 2, using Restart failure handling and
StagContinue stagnation handling, with k = 3. For the stag-
nation case, restarting proves to be an overreaction, both al-
ternate options performing significantly better.

The comparison between Restart and Backjump failure
handling is interesting in that, while Restart typically has
better overall coverage, the two methods are quite comple-
mentary on a per-domain basis. Table 2 illuminates this.

The superiority of Restart in terms of overall coverage is
mainly due to Airport and Pegsol. In terms of the number of
domains with superior performance – arguably a more reli-
able measure – the comparison is closer, with 7 respectively
11 domains where Backjump respectively Restart is better.

Intuitively, Backjump is preferrable in domains where bad
choices are easy to fix, whereas Restart is preferrable in do-
mains where mistakes are often made early on and are easier
to correct by starting from scratch. It is presumably possi-
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k Failure Stagnation Cov. Eval. Ref.

2

Restart
StagContinue 1261 579 63
StagRestart 1084 868 90

StagBackjump 1227 597 69

Backjump
StagContinue 1209 549 102
StagRestart 1091 846 116

StagBackjump 1209 541 101

3

Restart
StagContinue 1266 684 32
StagRestart 1156 877 36

StagBackjump 1254 689 33

Backjump
StagContinue 1212 659 59
StagRestart 1165 820 57

StagBackjump 1218 635 58

Table 1: Overview of the effects of Refinement-HC al-
gorithm parameters: overall coverage (“Cov.”), geometric
mean of number of evaluations over commonly solved in-
stances (“Eval.”), and the geometric mean of the number
of refinement phases for benchmark instances where refine-
ment was done at least once (“Ref.”).

Backjump Restart

Domain ΔCov. Domain ΔCov.

Barman +1 Airport +20
CityCar +10 Cavediving +7
Parking +6 ChildSnack +3
Storage +3 Freecell +1
Tetris +4 Nomystery +1
Transport +4 Pathways +7
Tidybot +1 Pegsol +33
Trucks +1 Pipes-NoTank + 1

Sokoban +2
Thoughtful +8
Visitall +1

Sum +30 Sum +84

Table 2: Coverage comparison of the Refinement-HC Back-
jump vs. Restart failure handling options. Domains where
Backjump has higher coverage shown on the left, domains
where Restart has higher coverage shown on the right. Other
parameters fixed to StagContinue and k = 3.

ble to adjust this behavior correctly in a per-domain training
phase; and we hypothesize that it is even possible to pre-
dict the adequate behavior during search, from search statis-
tics and/or features of the planning task at hand. Assuming
a perfect per-domain adjustment, overall coverage could be
further increased by 30, for a hypothetical total of 1296.

Baselines and State of the Art

We now turn to the comparison of our techniques with com-
peting planning algorithms. Table 3 shows coverage results.
We compare our best-performing configurations (HC “onl.”
and GBFS “onl.” in the table) to the most closely related
heuristic functions, to FF (Hoffmann and Nebel 2001) as
the canonical fix for EHC’s incompleteness, as well as to
the state of the art in satisficing planning. The latter is rep-
resented here by LAMA (Richter and Westphal 2010) and
Mercury (Domshlak, Hoffmann, and Katz 2015). As the

Search HC GBFS

FF

L
A

M
A

M
er

cu
ry

Heuristic hFF hCFF hFF hCFF

C-Learning – offl. onl. – offl. onl.
Airport 50 24 38 43 35 37 38 35 32 32
Barman 40 36 29 36 26 4 4 36 39 40
Blocks 35 35 35 35 35 35 35 35 35 35
Cavediving 20 0 0 7 7 7 7 7 7 7
ChildSnack 20 7 7 3 0 2 0 0 5 0
CityCar 20 0 0 10 6 7 16 1 5 5
Depots 22 18 22 22 20 21 22 19 20 21
DriverLog 20 11 17 20 20 20 20 20 20 20
Elevators 50 50 47 50 50 50 50 50 50 50
Floortile 40 6 12 40 10 13 40 8 8 8
Freecell 80 80 80 73 79 79 79 80 79 80
GED 20 20 18 20 20 20 20 20 20 20
Grid 5 5 5 5 5 5 5 5 5 5
Hiking 20 0 1 20 20 20 20 18 18 20
Logistics 63 60 63 60 63 63 63 60 63 63
Maintenanc 20 17 17 17 10 10 17 11 0 7
Mprime 35 35 35 35 35 35 35 35 35 35
Mystery 19 16 19 19 18 19 19 17 19 19
Nomystery 20 13 12 13 9 5 15 8 11 14
Openstacks 40 40 10 40 40 34 40 40 40 40
Parcprinter 50 49 49 50 35 43 50 38 49 50
Parking 40 20 19 27 36 29 34 19 40 40
Pathways 30 30 30 30 21 23 21 23 23 30
Pegsol 50 21 33 50 50 50 48 50 50 50
Pipes-NT 50 42 41 45 41 42 45 36 43 44
Pipes-T 50 37 40 43 38 40 43 38 42 42
PSR 50 0 11 50 50 50 50 50 50 50
Rovers 40 40 39 40 40 40 40 40 40 40
Satellite 36 36 36 36 36 35 36 36 36 36
Scanalyzer 50 50 50 50 46 50 46 50 50 50
Sokoban 50 0 0 5 46 42 27 48 48 42
Storage 30 8 11 27 21 21 22 20 19 19
Tetris 20 1 2 15 18 17 6 14 13 19
Thoughtful 20 19 19 19 9 12 13 15 16 13
Tidybot 20 15 17 16 17 17 18 17 17 15
TPP 30 28 28 30 30 30 30 28 30 30
Transport 70 31 32 60 47 44 54 31 61 70
Trucks 30 22 19 16 18 16 25 14 15 19
VisitAll 40 7 5 19 25 19 18 7 40 40
Woodwork 50 5 50 50 50 50 50 36 50 50
Zenotravel 20 20 20 20 20 20 20 20 20 20

Sum 1465 954 1018 1266 1202 1176 1241 1135 1263 1290

Table 3: Coverage. Comparison of our best configuration of
Refinement-HC (Restart, StagContinue, k = 3) and online-
learning GBFS to the state of the art.

most closely related heuristic functions, we run hFF, as well
as hCFF with conjunctions generated offline, using Keyder et
al.’s (2014) C-learning method with a growth bound of 1.5
and a timeout of 15 minutes (the most competitive param-
eter setting in our experiments). In the comparison for HC
using these heuristic functions, we run Episode-EHC using
Restart failure handling, the most closely related configura-
tion of HC without online relaxation refinement.

Consider first the comparison of HC algorithms, in the
left part of the table. Online relaxation refinement yields
a major boost here, improving overall coverage by +244
compared to offline hCFF, and by +312 compared to hFF.
It yields strictly better coverage than both competing meth-
ods in 18 domains, has equally good coverage as the best
competing method in 18 domains, and has worse coverage
than at least one competing method in only 5 domains. We
consider this a vivid demonstration that escaping local min-
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ima and plateaus through refining the relaxation, rather than
through search alone, can be beneficial.

This strong picture persists even in the comparison against
the GBFS algorithms, in the middle part of Table 3, though
not to quite such an extent. Online heuristic function re-
finement in EHC beats GBFS with hFF and offline hCFF,
improving overall coverage by +64 respectively +90; it
is superior to GBFS with hFF in 17 domains, equal in 16,
worse in 8; it is superior to GBFS with offline hCFFin 17
domains, equal in 18, worse in 6. Slightly weaker per-
formance improvements result from using online relaxation
refinement in GBFS itself. Observe that, while Airport,
Floortile, Parcprinter, and Thoughtful are the strongest do-
mains for offline hCFF refinement as per Keyder et al. (2012;
2014), i. e., for GBFS with vs. without such refinement, it is
outclassed in all these domains by online hCFF refinement.

Overall, online hCFF refinement is a clear win for satis-
ficing planning over both, the baseline hFF and the previous
offline hCFF refinement variants.

Consider finally the right part of Table 3, giving data for
FF, which switches to GBFS if EHC fails, as well as LAMA
and Mercury, which combine heuristic functions based on
different principles (hFF and landmarks, respectively a red-
black plan heuristic and landmarks).

Refinement-HC outperforms FF, with +131 in overall
coverage, and superior coverage in 22 domains, equal cov-
erage in 6 domains, smaller coverage in only 3 domains.

Unsurprisingly, the highly engineered planners LAMA
and Mercury are more difficult to beat. In overall cover-
age, Refinement-HC marginally beats LAMA +3, but loses
to Mercury −24. Nevertheless, a per-domain comparison
clearly shows the advantages of HC with online hCFF re-
finement. Compared to LAMA, our method is superior in
15 domains, equal in 17 domains, and inferior in 9 domains,
so this comparison is clearly in favor of us. Compared to
Mercury, our method is superior in 11 domains, equal in 20
domains, and inferior in 10 domains, so this comparison is
roughly on par. In 9 domains, our method outperforms both,
LAMA and Mercury. The coverage advantages are small
in Depots and the Pipesworld domains, but are substantial
in the other 6 domains: Airport +11, CityCar +5, Floortile
+32, Maintenance +17 respectively +10, Storage +8, and
Thoughtful +3 respectively +6.

The advantages in Maintenance and Thoughtful are due to
HC rather than our online-refinement methods, as the other
HC-based planners perform equally well in these domains.
The HC boost thanks to these methods is, however, likely to
make HC much more relevant again to state-of-the-art com-
petitive planner configuration/portfolios.

Online vs. Offline Conjunctions Quality

Intuitively, as online learning is performed at a set of espe-
cially relevant states, rather than just at the initial state, the
“quality” of the learned conjunctions should be better. This
cannot soundly be concluded from the above though, as on-
line vs. offline C-learning differ not only in which conjunc-
tions are learned, but also in when and how many. A cleaner
assessment is to compare conjunction sets C1 and C2 whose
size is equal, |C1| = |C2|, and that are fixed throughout

Figure 3: Comparing conjunctions learned online during
Refinement-HC (Con), vs. offline through refinement steps
on the initial state (Coff). We show the number of state eval-
uations in GBFS with hCFF (∞ means unsolved).

the search. We say that C1 has better quality than C2 if it
provides better search guidance with hCFF. As a canonical
proxy for the latter, we use the search space size of GBFS.

To realize this kind of assessment, we save the set of con-
junctions Con generated online during a Refinement-HC run
(of the configuration from Table 3). Subsequently, we ob-
tain a corresponding offline set Coff by generating the same
number of conjunctions through iterated refinement steps on
the initial state. Figure 3 shows a per-instance comparison
of the resulting GBFS search space sizes.

Despite a lot of variance, Con does tend to be in the ad-
vantage. Over instances solved commonly with both Con

and Coff, the geometric mean of the number of state eval-
uations is 738 for Con, and 1138 for Coff. Moreover, the
advantage of Con is manifested in almost all domains, the
only exceptions being Parcprinter and TPP.

Conclusion

Online relaxation refinement – revising the information ba-
sis of a heuristic function online during search, ultimately
to convergence – has previously been all but neglected.
We herein showed its pertinence for local search, remov-
ing undesirable search space surface phenomena on demand,
thereby obtaining completeness even for vanilla variants
of hill-climbing, and even when using incomplete helpful-
actions pruning mechanisms. We furthermore showed that,
instantiated with hCFF, the approach yields a veritable per-
formance boost for hill-climbing algorithms, bringing it on
par with the state of the art in satisficing planning, substan-
tially outperforming that state of the art in 6 IPC domains.

One important topic for future work is to be more intelli-
gent about which new atomic conjunction is added in a re-
finement step. As Keyder et al. (2014) observed earlier, ar-
bitrary code changes affecting that choice can have a large
impact on performance. To make the choice intelligently, a
promising possibility is to reward previous atomic conjunc-
tions according to their observed importance in search, and
to rank potential new conjunctions based on these rewards.
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Beyond this, the big question is whether and how on-
line relaxation refinement can be made successful for other
heuristic functions and for other purposes. While Seipp’s
(2012) results are discouraging for Cartesian abstractions,
we believe that there is hope yet, certainly for other types
of abstractions, and even for Cartesian abstractions as Seipp
explored only a small design space. In optimal planning in
general, a pertinent question is that of the interaction be-
tween relaxation refinement and cost partitioning.
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