
Multi-Objective Optimization in a Job Shop with
Energy Costs through Hybrid Evolutionary Techniques

Miguel A. González
Department of Computing

University of Oviedo
Campus de Gijón. 33204 Gijón, Spain

mig@uniovi.es

Angelo Oddi
ISTC-CNR

Via San Martino della Battaglia 44
00185 Rome, Italy

angelo.oddi@istc.cnr.it

Riccardo Rasconi
ISTC-CNR

Via San Martino della Battaglia 44
00185 Rome, Italy

riccardo.rasconi@istc.cnr.it

Abstract

Energy costs are an increasingly important issue in real-world
scheduling, for both economic and environmental reasons.
This paper deals with a variant of the well-known job shop
scheduling problem, where we consider a bi-objective opti-
mization of both the weighted tardiness and the energy costs.
To this end, we design a hybrid metaheuristic that combines
a genetic algorithm with a novel local search method and a
linear programming approach. We also propose an efficient
procedure for improving the energy cost of a given sched-
ule. In the experimental study we analyse our proposal and
compare it with the state of the art and also with a constraint
programming approach, obtaining competitive results.

1 Introduction

The Job Shop Scheduling Problem (JSP) has been a research
topic over the last decades due to the fact that it is a simple
model of many real production processes.

In particular, the importance of due date related perfor-
mance criteria has been widely recognized. Meeting due
dates is identified as the most important scheduling objec-
tive in competitive markets (Wisner and Siferd 1995) (Con-
ner 2009). The total weighted tardiness (TWT) is a due date
related objective that is particularly interesting because it
can assign different priorities to different operations. Some
approaches for the JSP with TWT minimization are the
hybrid genetic algorithms proposed in (Essafi, Mati, and
Dauzère-Pérès 2008) and (González et al. 2012). Also, in
(Kuhpfahl and Bierwirth 2016) some sophisticated and time-
consuming neighborhood structures are proposed.

The increasing price of energy, as well as the emission re-
duction needs, are forcing manufacturing enterprises to put
more and more efforts towards the reduction of consumption
and the study of energy-saving opportunities and best prac-
tices. Existing approaches include the evolutionary algo-
rithms proposed in (Liu et al. 2014) and (Zhang and Chiong
2016), which try to minimize both the weighted tardiness
and the energy consumption in a job shop, or the genetic-
simulated annealing method of (Dai et al. 2013), that solves
a flexible flow shop scheduling problem with energy costs.

Clearly, when the improvement in energy consumption
must not be obtained at the cost of losing performance qual-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ity in the solutions, we face a bi-objective scheduling prob-
lem. There is a growing interest in multi-objective optimiza-
tion for scheduling and, given its complexity, in the use of
metaheuristic techniques to solve them (Dabia et al. 2013).

In this paper we propose an evolutionary algorithm to
minimize both the TWT and the energy consumption in a
job shop. Our proposal hybridizes several techniques:

• A version of the NSGA-II dominance-based evolutionary
algorithm with a mechanism to penalize repeated individ-
uals in the population.

• A multi-objective local search based on hill-climbing.

• A low-polynomial energy post-optimization procedure
which attempts to reduce the energy cost of a solution.

• An optimal linear programming approach to further re-
duce the energy cost of a solution.

The effectiveness of our method is analyzed in the exper-
imental study, and its results are compared with those of
the state of the art of the problem considered, which is the
NSGA-II proposed in (Liu et al. 2014). We have to remark
that, even though our proposal is also based on a NSGA-II
algorithm, its crossover operator and replacement strategy
are different, and moreover it is hybridized with additional
components that lead to a much better performance, as we
will see in the experimental study. In this paper we also pro-
pose a constraint programming approach and compare its
results with those obtained by our evolutionary algorithm.

The remainder of the paper is organized as follows. In
Section 2 we formulate the problem. In Section 3 we define
our evolutionary algorithm whereas in Section 4 we describe
the constraint programming approach. In Section 5 we report
the results of the experimental study, and finally Section 6
summarizes the main conclusions of this paper.

2 Problem formulation

In the job shop scheduling problem, a set of N jobs, J =
{J1, . . . , JN}, are to be processed on a set of M machines
or resources, R = {R1, . . . , RM}. Each job Ji consists of a
sequence of ni operations (θi1, . . . , θini

), where each opera-
tion requires the uninterrupted use of a given machine during
all its processing time. The objective is to minimize some
objective functions subject to the following constraints: (i)
the sequence of machines for each job is prescribed, and (ii)

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

140

each machine can process at most one operation at a time.
Jobs may also have a due date, that is, a time before which
all its operations should be completed, and a weight, which
represents its relevance. In order to simplify expressions, in-
stead of using θij , in the following we are denoting opera-
tions by a single letter whenever possible. We denote by:
• Ω the set of operations
• di the due-date of job Ji

• wi the weight of job Ji

• P idle
k the idle power level of machine Rk

• pu the processing time of operation u

• su the starting time of operation u that needs to be deter-
mined
The JSP has two binary constraints: precedence and ca-

pacity. Precedence constraints, defined by the sequential
routings of the operations within a job, translate into lin-
ear inequalities of the type: su + pu ≤ sv , where v is the
next operation to u in the job sequence. Capacity constraints
that restrict the use of each machine to only one operation
at a time translate into disjunctive constraints of the form:
(su + pu ≤ sv) ∨ (sv + pv ≤ su), where u and v are opera-
tions requiring the same machine.

The objective here is to obtain a feasible schedule, i.e.
a starting time for each one of the operations such that all
constraints are satisfied. In the following, given a feasible
schedule, PJv and SJv denote respectively the predecessor
and successor of v in the job sequence, and PMv and SMv

the predecessor and successor of v in its machine sequence.
We are minimizing two objective functions: the total

weighted tardiness and the energy consumption. The TWT
is defined as follows ∑

i=1,...,N

wiTi (1)

Ti is the tardiness of the job i, given by Ti = max{Ci −
di, 0}, where Ci is the completion time of job i.

The energy consumption model is taken from (Liu et al.
2014), where it is supposed that the machines cannot be
turned off when idle. In that case it is proven that the objec-
tive to reduce the total electricity consumption of a job shop
can be converted to reduce the total non-processing energy
(NPE), i.e. the amount of time a machine is on and not exe-
cuting a job. Notice that each machine must process a fixed
set of operations, all of them having fixed durations, and so
for any schedule the processing energy must be equal.

Hence, the objective function can be set as the sum of all
the NPE consumed by all the machines in a job shop to carry
out a given job schedule. Then, the total NPE is defined as

∑

k=1,...,M

[P idle
k × (sωk

+ pωk
− sαk

−
∑

u∈Mk

pu)] (2)

where αk and ωk are the first and last operations respectively
on machine Rk in the considered schedule, and Mk is the set
of operations that must be executed in machine Rk.

The TWT is a regular performance measure (Baker 1974),
which means that its value can be increased only by increas-
ing at least one of the completion times in the schedule. To

minimize a regular measure, it is sufficient to consider “left-
shift schedules”; i.e. schedules built from a partial ordering
of the operations, so that each operation starts as soon as
possible after all the preceding operations in the partial or-
dering. On the contrary, the NPE is a non-regular perfor-
mance measure because it can be increased if we are able to
decrease the starting time of the first operation of a machine
while maintaining all other operations intact.

3 The multi-objective evolutionary algorithm

In general, for a minimization problem with fi, i = 1, . . . , n
objective functions, a solution S is said to be dominated by
another solution S′, denoted S′ � S, if and only if for each
objective function fi, fi(S′) ≤ fi(S) and there exists at
least one i such that fi(S′) < fi(S). Our goal will then be
to find non-dominated solutions to our problem with respect
to TWT and NPE. To achieve this, we propose a dominance-
based hybrid method, combining a multi-objective evolu-
tionary algorithm with a multi-objective hill climbing local
search and a linear programming approach.

Some papers have already considered minimizing non-
regular objectives in a job shop. As an example, in (Brandi-
marte and Maiocco 1999) the authors tackle a single-
objective case and propose to decompose the overall prob-
lem into sequencing and timing subproblems. We follow a
similar approach, in the sense that we represent the solu-
tions as permutations in the genetic algorithm and in the lo-
cal search in order to solve the sequencing subproblem. To
solve the timing subproblem we introduce a low-polynomial
energy post-optimization procedure when evaluating each
solution, and also a more computationally expensive optimal
linear programming approach to further improve the NPE of
the final set of non-dominated solutions.

3.1 Genetic algorithm

Our proposal is based on the well-known NSGA-II template
for a dominance-based evolutionary algorithm (Deb et al.
2002). An initial population Pop0 of size popSize is ran-
domly created and evaluated and then the algorithm iterates
over numGen generations, keeping a set of non-dominated
solutions. At each generation i a new population Off(Popi)
is built from the current one Popi by applying selection,
crossover and mutation, and finally a replacement strategy
is applied to obtain the next generation Popi+1.

Representation and evaluation of chromosomes Solu-
tions are codified into chromosomes using permutations
with repetition, as introduced in (Bierwirth 1995) for
the JSP. This is a permutation of the set of operations,
each being represented by its job number, which repre-
sents a linear ordering compatible with precedence con-
straints. For example, if we have a problem instance with
3 jobs: J1 = {θ11, θ12}, J2 = {θ21, θ22, θ23, θ24},
J3 = {θ31, θ32, θ33}, then the ordering of operations π =
{θ21, θ11, θ22, θ31, θ23, θ32, θ33, θ24, θ12} is represented by
the chromosome v = (2 1 2 3 2 3 3 2 1).

A given chromosome is evaluated by generating an asso-
ciated schedule and then computing its TWT and NPE. To
this end, we use an insertion strategy following the sequence

141

given by the chromosome. Each operation is scheduled at
the earliest possible starting time such that all constraint are
met, without moving previously scheduled operations.

Energy post-optimization procedure The procedure de-
scribed for evaluating a chromosome would be able to pro-
duce a Pareto optimal schedule if the objective functions
were regular. However, the NPE is a non-regular objective
function, and therefore scheduling each operation as soon
as possible may not be the best option. Notice that we can
reduce the NPE of a machine Rk by delaying the starting
time of its first operation (sαk

) without increasing the start-
ing time of its last operation (sωk

). Of course, it can also be
reduced by decreasing sωk

without increasing sαk
, but this

approach is not possible in our method, since operations are
initially scheduled as soon as possible.

We propose to use an additional energy post-optimization
procedure that, given a schedule, it maintains the operation
ordering and tries to reduce its NPE while not increasing its
TWT. Basically, the idea is to delay all the operations of each
machine as much as possible, with the exception of the last
one, increasing the tardiness of none of the jobs. Of course,
we always take into account the precedence constraints be-
tween the operations of a job. The procedure is detailed in
Algorithm 1. Notice that, by not increasing the starting times
of the last operation of each machine, we ensure that the re-
sulting NPE after applying the procedure is lower than or
equal to the original one. Furthermore, the TWT of the re-
sulting solution is not increased either, as the completion
time of the last operation of a job may only be delayed if
it is lower than the due date, and in this case it is at most
delayed up to this due date.

This procedure is executed inside the solution evaluation
method, just after the schedule is built. Therefore, it is ap-
plied to evaluate every chromosome generated in the genetic
algorithm and every neighbor considered in the local search.

When adding this procedure to the scheduler, the running
time of the evolutionary algorithm increases between 10%
and 25%, but at the same time the results significantly im-
prove, as we will see in Section 5.

Genetic operators The selection phase selects the chro-
mosomes that will undergo crossover and mutation, and is
based on a tournament strategy. We select tSize chromo-
somes at random and choose the best one to be the first
parent, according to non-domination rank and crowding dis-
tance (see next section). Then we select a second parent in
the same way, and the crossover operator is applied with
probability crProb to obtain two offspring solutions.

For chromosome mating we have considered the Job Or-
der Crossover (JOX) (Bierwirth 1995). Given two parents,
JOX selects a random subset of jobs and copies their genes
to the offspring in the same positions as they are in the first
parent, then the remaining genes are taken from the second
parent so as to maintain their relative ordering. A second off-
spring is generated reversing the role of the parents. Then,
each offspring is mutated with probability mutProb using
the swap mutation operator, which swaps two positions of
the chromosome chosen at random.

Algorithm 1 The energy post-optimization procedure
Require: A problem instance I and a feasible schedule (i.e.

an ordering O and a set of starting times s)
k ← |Ω|
while k ≥ 1 do

a = O[k];
if a is the last operation processed in a machine then

s′a = sa;
else

if a is the last operation of its job then
j ← job of operation a;
s′a = min{max{dj , sa + pa}, s′SMa

} − pa;
else
s′a = min{s′SJa

, s′SMa
} − pa;

end if
end if
k ← k − 1;

end while
return A new set of starting times s′ for the ordering O

Replacement strategy The replacement strategy estab-
lishes how population Popi and population Off(Popi) that
results from applying selection, crossover and mutation to
Popi are combined to generate the new population Popi+1.
Here we adopt a strategy based on the non-dominated sort-
ing approach with diversity preservation from (Deb et al.
2002). Initially, for each individual j in the pool Popi ∪
Off(Popi) a non-domination rank (rank(j)) and a crowd-
ing distance (dist(j)) are calculated. The former sorts the
pool into different non-domination levels while the lat-
ter estimates the density of solutions in the area of the
non-domination level where the individual lies. Population
Popi+1 is then formed by the best popSize individuals from
the pool Popi ∪Off(Popi) according to the lexicographical
order defined by (rank, dist). That is, solutions belonging
to a lower (better) non-domination rank are preferred and,
between two solutions in the same non-dominance level, we
prefer the solution located in the less crowded region.

We have added an additional step in order to improve
the diversity. Specifically, we propose to start by removing
from the pool of individuals Popi ∪Off(Popi) those which
are repeated, in the sense that there exists in the pool at
least another individual having identical values for all ob-
jective functions. Only after this elimination is the above
strategy based on (rank, dist) applied. If such elimination
causes the pool to contain less than popSize individuals, all
the non-repeated individuals pass onto the next generation
Popi+1, which is then completed with some of the repeated
individuals by recursively using the same strategy.

3.2 Local search

Local search is often used in combination with other meta-
heuristics in such a way that the local search provides
exploitation while the other metaheuristic provides explo-
ration. The main difficulty when designing multi-objective
memetic algorithms is the implementation of the local
search, which essentially is a single-objective optimization

142

technique. According to (Liefooghe et al. 2012), the number
of multi-objective local search algorithms proposed so far is
still reduced. There are some Pareto-based local searchers in
the literature, as for example PAES (Pareto Archived Evolu-
tion Strategy) proposed in (Knowles and Corne 2000) or the
Pareto Local Search proposed in (Paquete, Schiavinotto, and
Stützle 2007). One inconvenience of these local searchers is
that they are too computationally costly to be combined with
a genetic algorithm. We propose a less time-consuming lo-
cal search procedure that provides a single output solution,
what is called “one-point iteration” in (Lara et al. 2010).

Another issue when applying local search to a multi-
objective setting is how to establish a selection criterion for
the best neighbor, since the dominance relation � defines
a partial order. For instance, in (Ishibuchi et al. 2009) and
(Jaszkiewicz 2003) the authors propose to scalarise the ob-
jective function vector to guide the search. Other authors
propose instead to define acceptance criteria based on dom-
inance, as for example in (Knowles and Corne 2000).

In this paper we propose a fast and efficient local search
based on hill climbing in which the selection of the neighbor
is based on dominance but, at the same time, it considers the
solutions in the current non-dominated set of solutions of
the genetic algorithm. Hence, a number of neighbors may
be chosen, even if they do not dominate the current solution,
as long as they are actually interesting. Our approach starts
with a solution provided by the genetic algorithm, and gener-
ates neighbors of the solution one by one. Each one is eval-
uated with the scheduler and the energy post-optimization
procedure described in Section 3.1, until we find one neigh-
bor that fulfills one of the following conditions:

1. The neighbor dominates the current solution.

2. The neighbor would enter in the current set of non-
dominated solutions of the genetic algorithm (i.e. no so-
lution of the population dominates the neighbor and also
no solution has the exact same fitness values as the neigh-
bor), while the current solution would not enter.

As soon as one such neighbor is found, the procedure
swaps the current solution for the newly found solution and
repeats the process. On the other hand, if no such neighbor
exists the procedure ends, returning the current solution.

Notice that the second condition is very useful, allowing
us to select very interesting neighbors that may not dominate
the current solution. However, if the current solution would
already enter in the non-dominated set of solutions of the
genetic algorithm, we opt to choose dominating neighbors
only, in order to not lose the obtained solution.

The local search is detailed in Algorithm 2. It is actually
not very time consuming, so it may be applied to all ini-
tial chromosomes and to all generated offsprings of the ge-
netic algorithm. Notice that this would not be reasonable for
other alternatives such as the Pareto Local Search (Paquete,
Schiavinotto, and Stützle 2007), given their greater compu-
tational load. After the local search is applied, the chromo-
some is rebuilt from the improved schedule obtained, so its
characteristics can be transferred to subsequent offsprings.
This effect is known as Lamarckian evolution.

Algorithm 2 Multi-objective hill climbing local search
Require: A problem instance I and a feasible schedule S
S′ ← S; continue ← True;
while continue = True do
NeighborSelected ← False;
N(S′) ← neighborhood of S′;
k ← 1;
while NeighborSelected = False and k ≤ |N(S′)|
do
S′′ ← N(S′)[k];
Evaluate S′′;
if S′′ dominates S′, or S′′ would enter in the current
set of non-dominated solutions of the genetic algo-
rithm and S′ would not then

NeighborSelected ← True;
end if
k ← k + 1;

end while
if NeighborSelected = False then
continue ← False

else
S′ ← S′′

end if
end while
return The (hopefully) improved solution S′ for I;

Neighborhood structure Several neighborhoods have
been proposed in the literature for the JSP, and most of them
rely on the concepts of critical path and critical block. These
concepts are based on the disjunctive graph representation of
the problem. Here we use a similar representation as other
papers in the literature (see (Essafi, Mati, and Dauzère-Pérès
2008; González et al. 2012; Kuhpfahl and Bierwirth 2016)).
A critical path is defined as a largest cost path from the start
node to an end node (when minimizing TWT the graph has
one end node for each job). The length of each path deter-
mines the contribution of that particular job to the solution
cost. A critical block is a maximal subsequence of consecu-
tive operations in a critical path requiring the same machine,
whereas a critical arc is an arc inside a critical block.

Here we adopt the neighborhood structure initially pro-
posed in (Van Laarhoven, Aarts, and Lenstra 1992), based
on reversing a single critical arc. It has some nice properties,
in particular, it always generates feasible neighbors, avoid-
ing the need of repairing procedures. In TWT minimization
the cost of a solution can be given by up to N critical paths,
one for each job that ends after its due date. In order to limit
the computational burden of the local search we opted to
reduce the number of neighbors, considering only the criti-
cal path of the job that contributes the most to the TWT of
the schedule. A similar idea was proposed in (González et
al. 2012). Although this structure is designed to minimize
the TWT, we have empirically seen that most neighbors that
improve the TWT also improve the NPE as well.

143

3.3 The linear programming approach

The solution returned by the energy optimization procedure
described in Section 3.1 could be further improved in the fol-
lowing way: if we keep the processing ordering of the oper-
ations on the machines, delaying the starting time of the last
operation of some machine may allow the first operation of
another machine to be delayed as well, giving rise to a reduc-
tion in the overall energy consumption. Of course, checking
for all these possibilities is computationally expensive and
so such procedure could not be applied after each chromo-
some evaluation. However, it can be applied, for example,
to the solutions in the Pareto set approximation returned by
the memetic algorithm. To this end, given the problem defi-
nition of Section 2 and an input solution S, we consider the
following relaxed Linear Programming (LP) problem.

min
∑

k=1,..,M

[P idle
k × (sωk + pωk − sαk −

∑

u∈Mk

pu)]

s.t. : sv + pv ≤ sSJv v ∈ Ω \ {θ1n1 , . ., θNnN } (3a)
sv + pv ≤ sSMv

v ∈ Mk \ {ωk}, k = 1, . .,M (3b)
0 ≤ sθi1 i = 1, . ., N (3c)
sθini

+ pθini
≤ max{Ci, di} i = 1, . ., N (3d)

Decision variables are the starting times of the operations
sv with v ∈ Ω. Constraints (3a) represent the linear order-
ings imposed on the set of operations Ω by the jobs J , note
that they hold for each operation v ∈ Ω except when v is
the last operation of a job Ji. The processing orderings on
the machines in S are represented by constraints (3b). Con-
straints (3c) impose to the first operation θi1 of each job Ji
to start after the reference value 0. Finally, constraints (3d),
imposed on the end times of the last operations θini of each
job Ji, guarantee that the final value of the TWT objective
is less than or equal to that of the input solution S. As it is
easy to verify, all the imposed temporal constraints are of
the kind x − y ≤ c. Hence, in accordance with (Papadim-
itriou and Steiglitz 1982; Sakkout and Wallace 2000) the co-
efficient matrix of the above LP is totally unimodular (TU),
and therefore all the optimal solutions of the LP problem
remain discrete values and they provide the optimal NPE
given the processing ordering established by the input solu-
tion S. Similar considerations are proposed in (Brandimarte
and Maiocco 1999), where the optimal timing problem for
non-regular single objectives in a job-shop are reduced to a
minimum cost flow problem. We propose to apply this linear
programming approach in all solutions of the Pareto front
obtained in the last generation of the memetic algorithm, in
order to further improve its final results.

4 A Constraint Programming approach

Constraint Programming (CP) is a declarative programming
paradigm (Apt 2003) suitable for solving constraint satis-
faction and optimization problems. A constraint program is
defined as a set of decision variables, each ranging on a dis-
crete domain of values, and a set of constraints that limit
the possible combination of variable-value assignments. Af-
ter a model of the problem is created, the solver interleaves
two main steps: constraint propagation, where inconsistent
values are removed from variables domains, and search.

Constraint Programming is particularly suited for solv-
ing scheduling problems where the decision variables cor-
respond to the problem operations. In particular, each oper-
ation variable u is characterized at least by two features: su
representing its start time, and pu representing its duration.
For scheduling problems, a number of different global con-
straints have been developed, the most important being the
unary-resource constraint (Vilı́m, Barták, and Cepek
2004) for modelling simple machines, the cumulative
resource constraint (Le Pape, Baptiste, and Nuijten 2001)
for modelling cumulative resources (e.g., a pool of work-
ers), and the reservoir (Laborie 2003) for modelling
consumable resources (e.g., a fuel tank). In particular, given
unary-resource(A), the constraint holds if and only
if all the operations in the set A never overlap at any time
point. A number of propagation algorithms are embedded in
the unary-resource constraint for removing probably
inconsistent assignments of operation start-time variables.

Our CP model takes into account the non-regularity of
the NPE objective function by introducing a set additional
decision variables representing the switch ON/OFF events
in the set of machines Mk. Given the problem defined in
Section 2, we consider the following model.

min
∑

k=1,...,M

[P idle
k × (sωk + pωk − sαk −

∑

u∈Mk

pu)]

s.t. : sv + pv ≤ sSJv v ∈ Ω (4a)
span(OnOffk, Mk) k = 1, 2, . .,M (4b)
unary-constraint(Mk) k = 1, . .,M (4c)

Decision variables are the starting times of the operations
sv ∈ Ω extended with the start times sOnOffk of the opera-
tions OnOffk, representing the first instant when machine k
is turned on, such that, it remains in this state for its entire
duration pOnOffk . We assume that each decision variable sa
ranges in the interval [0, H − pa].

The objective function to minimize represents the NPE
value (the TWT objective function could be expressed
analogously). Constraints (4a) represent the linear order-
ings imposed on the set of operations Ω by the set of
jobs J . Note that if ωi is the last operation of a job Ji,
then its successor is the horizon point SJωi = H , i =
1, 2, . ., N . Constraints (4b) impose to the set Mk of op-
erations requiring machine k to be contained in the span-
ning operations OnOffk, k = 1, 2, . . . ,M . More specifi-
cally, for each operation u ∈ Mk, the following constraints
sOnOffk ≤ su and su + pu ≤ sOnOffk + pOnOffk hold. Fi-
nally, (4c) represents the non-overlapping constraints im-
posed by the machines Mk through the global constraints
unary-constraint(Mk). We have to remark that the
sOnOffk decision variables are not really necessary, and the
model definition remains perfectly feasible and solvable
without them. However, in a preliminary study we have ob-
served that their addition is beneficial and helps the solver.

A well-studied multi-objective optimization method to
generate the whole Pareto front is the ε-constraint method
(Miettinen 2012). It works by choosing one objective func-
tion as the only objective and properly constraining the re-
maining objective functions during the optimization process.

144

Algorithm 3 Bi-criterion ε-constraint method

Require: The objective f , the bounds f (2)
min and f

(2)
max, and

the decrement value δ
P ← ∅;
ε ← f

(2)
max;

while ε ≥ f
(2)
min do

S ← CP(f , ε);
if (S
= nil) ∧ (
 ∃S′ ∈ P : S

′ ≺ S) then

P ← (P ∪ {S}) \ {S′ ∈ P : S ≺ S
′};

end if
ε ← ε− δ;

end while
return P

Through a systematic variation of the constraint bounds, dif-
ferent elements of the Pareto front can be obtained.

Algorithm 3 presents the ε-constraint method for the case
of a bi-criterion objective function f = (f (1), f (2)). The al-
gorithm takes the following inputs: (i) the objective f , (ii)
the bounds f

(2)
min and f

(2)
max on the second component of

the objective, and (iii) the decrement value δ. As previously
mentioned, the method iteratively leverages a procedure pro-
vided in input to solve constrained single-objective prob-
lems (the CP() procedure corresponding to the constraint
programming model previously described). The algorithm
proceeds as follows: after initializing the constraint bound ε

to the f
(2)
max value, a new solution S is computed by calling

CP() at each step of the while solving cycle. If S is not dom-
inated by any of the existing solutions in the current Pareto
set P , then S is inserted in P , and all the solutions possibly
dominated by S are removed from P . The rationale behind
this method is to iteratively tighten the constraint bound by
a pre-defined constant δ at each step of the solving cycle.

5 Experimental results

In this section we provide an empirical evaluation of the
proposed algorithms. Experiments were made on instances
available in the literature (Liu et al. 2014). Specifically we
considered one instance that was generated based on the
well-known FT10 instance of the JSP, of size 10×10, adding
due dates, job weights and the idle power consumption of
each machine. The due date of each job Ji was assigned us-
ing the expression di = k ×∑ni

j=1 pij , where k is a param-
eter that controls the tightness of the due dates, being 1.5,
1.6, 1.7 and 1.8 in our work. Therefore, there are 4 instances
in all (see (Liu et al. 2014) for more details).

The memetic algorithm is implemented in C++ using
a single thread, while the Linear Programming (LP) step
and the Constraint Programming (CP) approach are imple-
mented using IBM CPLEX Optimization Studio 12.6. Our
experiments were carried out on a Intel Core i5-2450M CPU
at 2.5 GHz with 4 GB of RAM, running on Windows 10 Pro.

We have conducted a preliminary parametric analysis to
set some of the parameters of our approach. Table 1 shows a
summary of the tested values, indicating in bold the configu-
ration that achieved the best average results. To do a compar-

Table 1: Values tested in the parameter tuning. Bold values
indicate the best configuration found.

Parameter Values tested
popSize 500, 1000, 2000

tSize 2, 4, 8, 16
crProb 0.6, 0.8, 1.0

mutProb 0, 0.1, 0.2, 0.3

ison as fair as possible, we modified numGen accordingly
so that the running time is reasonable and similar for all con-
figurations tested: about 4 minutes per run. Using this con-
figuration, and setting numGen = 2000, the convergence
pattern is appropriate and the time spent in each part of the
algorithm is roughly 73% for the local search, 27% for the
genetic algorithm, and less than 1% for the linear program-
ming step. Even if the time spent by the LP step is less than 1
second, it would be too computationally expensive to apply
it in every generation of the algorithm.

Figures 1, 2, 3 and 4 show the Pareto fronts obtained with
our methods and compared with those obtained in (Liu et al.
2014), for k = 1.5, 1.6, 1.7 and 1.8. Our memetic algorithm
enhanced with the energy Post-Optimization procedure and
the final Linear Programming step is labelled Memetic +
PO + LP in all figures.

The proposal of (Liu et al. 2014) (labelled LIU) is a stan-
dard NSGA-II algorithm using OOX crossover operator and
swap mutation. The crossover probability is set at 1.0 and
the mutation probability at 0.6. The population size varies
between 800 and 1000 depending on the instance, and the
total number of generations vary between 25000 and 40000.
As the authors do not report the computational time, we have
implemented a version of their method and concluded that
their running time is considerably larger than that of our ap-
proach: about 15 minutes per run. To have a reference value
for weighted tardiness, in (Liu et al. 2014) the authors also
report results with the LEKIN software, using the Shifting
Bottleneck and Local Search heuristics. These are used to
perform a single-objective optimization of the weighted tar-
diness, and so the result in this case is a single solution in-
stead of a Pareto front. It is labelled LEKIN in all figures.

About the CP approach, we generate an approximation of
the Pareto set by using the ε-constraint algorithm (see Algo-
rithm 3) by running twice the procedure: in the first run we
optimize the NPE while in the second run we optimize the
TWT. For each run we set a total of 10 solving cycles and a
total bound of 1000 seconds on the CPU time, as this value
is close to the 15 minutes above estimated for the LIU al-
gorithm. At each cycle we leverage on the random nature of
the CP Optimizer algorithm - a Large Neighborhood Search
strategy - and run 10 times the solver, each with a CPU time
bound of 10 seconds. About the intervals [f

(2)
min, f

(2)
max] on

the objective functions, we used as basis the values from
(Liu et al. 2014). In particular, when we optimize the TWT
objective, the interval of NPE values is [60, 200] for each
value of k. Whereas, when we optimize NPE, according
to the values of k = 1.5, 1.6, 1.7, and 1.8, the interval of
TWT values are [1500, 3500], [1000, 3000], [500, 2500], and

145

�

�

�

�

�

�

� � � � � � � �

�
�

�

� � �

� �

� � � �

Figure 1: Pareto fronts obtained with k = 1.5

�

�

�

�

�

�

� � � � � � � �

�
�

�

� � �

� �

� � � �

Figure 2: Pareto fronts obtained with k = 1.6

[0, 2000] respectively. Afterwards, we merge the two ap-
proximations of the Pareto sets into a single one. Finally, we
apply the Linear Programming step described in Section 3.3
to the set of solutions obtained with the CP algorithm. It is
worth noting that we tested additional ways to generate the
Pareto set within the same total CPU time: a run with a sin-
gle objective and/or a single run at each solving step of the
ε-constraint algorithm. In all cases, the chosen method (la-
belled CP + LP in all figures) gave the best performance.

All plots demonstrate that the CP-based algorithm clearly
outperforms LIU , whereas the hybrid evolutionary algo-
rithm further improves over the CP performance. Hence,
even if the ε-constraint algorithm is a basic strategy to gen-
erate a Pareto set, the set of results generated with a state-
of-the-art CP solver is clearly a further confirmation of the
effectiveness of the proposed evolutionary approach.

The hypervolume values (Zitzler and Thiele 1998) of
all the Pareto fronts shown in Figures 1, 2, 3 and 4 are
summarized in Table 2, computed with the reference point
equal to (200, 5000) for all instances and all k values. In
addition, Table 2 reports the hypervolume values obtained
by some variants of our evolutionary algorithm, stripping
it of some of its characteristics: Genetic (only the plain
genetic algorithm), Memetic (genetic algorithm with lo-
cal search), Genetic + PO and Memetic + PO (adding

�

�

�

�

�

�

�

� � � � � � � �

�
�

�

� � �

� �

� � � �

Figure 3: Pareto fronts obtained with k = 1.7

�

�

�

�

�

�

�

� � � � � � � �

�
�

�

� � �

� �

� � � �

Figure 4: Pareto fronts obtained with k = 1.8

the energy post-optimization procedure to the scheduler),
Genetic+PO+LP (further adding the linear programming
step to Genetic+PO), and finally CP (running the CP ap-
proach without the linear programming step). We adjusted
the stopping condition of our hybrid evolutionary methods
so that running times are similar, in order to achieve a com-
parison as fair as possible. For instance, for Memetic we set
numGen = 2500, for Genetic we set numGen = 8000
and for Genetic + PO and Genetic + PO + LP we set
numGen = 7200.

The hypervolume values confirm the superiority of our
evolutionary algorithm over the results obtained in (Liu et
al. 2014). In addition, we would like to stress how the
post-optimization procedure introduced in this paper repre-
sents a further and remarkable performance boost (compare
Genetic with Genetic+PO, or Memetic with Memetic+
PO). In fact, it should be underscored at this point that the
results obtained with the post-optimization step are indeed
extremely close to those obtained by applying the optimal
Linear Programming approach (the hypervolume values are
very close in all cases), thus proving the effectiveness of the
post-optimization (PO) procedure. However, despite the to-
tal hypervolume improvement is very small, the Linear Pro-
gramming procedure was able to improve a significant num-
ber of solutions in all cases. For example, if we compare

146

MACHINE 1

MACHINE 2

MACHINE 3

MACHINE 4

MACHINE 5

MACHINE 6

MACHINE 7

MACHINE 8

MACHINE 9

MACHINE 10

(a) Before post-optimization (TWT = 3347, NPE = 91.98 KWh)

MACHINE 1

MACHINE 2

MACHINE 3

MACHINE 4

MACHINE 5

MACHINE 6

MACHINE 7

MACHINE 8

MACHINE 9

MACHINE 10

(b) After post-optimization (TWT = 3347, NPE = 31.35 KWh)

Figure 5: Improvement of the NPE value as a consequence of the application of the post-optimization procedure (Algorithm 1).

Table 2: Hypervolumes computed for all procedures.

k=1.5 k=1.6 k=1.7 k=1.8
Genetic 0.6272 0.6801 0.7237 0.7842

Genetic + PO 0.6377 0.7266 0.7556 0.7842
Genetic + PO + LP 0.6380 0.7272 0.7564 0.7868

Memetic 0.6238 0.6964 0.7620 0.7941
Memetic + PO 0.6654 0.7364 0.7635 0.8203

Memetic + PO + LP 0.6656 0.7366 0.7637 0.8206

CP 0.5732 0.6053 0.7173 0.7212
CP + LP 0.5803 0.6067 0.7180 0.7214

Liu 0.3862 0.4553 0.5264 0.6038

Memetic+PO+LP with Memetic+PO, it improved 23
solutions on 76 in the k = 1.5 case, 31 solutions on 74 in the
k = 1.6 case, 31 solutions on 68 in the k = 1.7 case, and 35
solutions on 73 with k = 1.8. Therefore, even if the Linear
Programming step does not appear to be extremely impor-
tant, it also contributes to provide further improvements.

The hybridization with local search clearly improves the
performance: Memetic is better than Genetic in most
cases, whereas Memetic+PO and Memetic+PO+LP
are always better than its counterparts Genetic + PO and
Genetic + PO + LP . We can also observe that our sim-
ple Genetic algorithm (even without local search, PO and
LP) is much better than Liu. The main reason is the pro-
cedure for eliminating repeated individuals to create each
generation, which dramatically improves the diversity of the
population. Our crossover operator (JOX) also represents an
slight improvement with respect to the OOX used in Liu.

Finally, Figure 5 shows two solutions, respectively before
and after the application of the post-optimization algorithm
presented in Section 3.1, in the k = 1.5 case (the behavior is
similar with other values of k). The TWT is the same, while
the NPE value is significantly improved by introducing de-
lays on the start times of some operations (the most evident
delays are those related to machines R5, R6, and R10).

6 Conclusions

We have considered the problem of minimizing both the to-
tal weighted tardiness and the energy consumption in a job
shop. To this end, we have proposed a multi-objective ap-
proach that hybridizes a NSGA-II based evolutionary algo-
rithm with a multi-objective local search. To optimize the
energy consumption we have designed two methods: a fast,
low-polynomial procedure to be included in the chromo-
some evaluation algorithm, and a linear programming ap-
proach which is more costly and applied only to the final set
of non-dominated solutions, to further improve them. In the
experimental study we have proven the efficiency of the pro-
posed energy-optimization procedures and we have seen that
our approach improves the results of the state of the art, and
also those obtained by a constraint programming approach.

In our opinion, the remarkable performance of our algo-
rithm is due to the combination of the diversification pro-
vided by the NSGA-II combined with the intensification
provided by the local search. The fast local search and the
reduction of the neighborhood allowed us to apply it to ev-
ery solution in a reasonable computational time. Addition-
ally, the proposed energy optimization methods significantly
improved the quality of the solutions.

For future work we will try different multi-objective al-
gorithms, as for example MOEA-D or PAES. Additionally,
we plan to design a benchmark with more instances. An-
other very interesting possibility is to consider more realistic
energy consumption models; for example models that con-
sider shifting energy costs (Grimes et al. 2014), models that
allow varying the energy consumed by varying the process-
ing mode of operations (Zhang and Chiong 2016), or mod-
els where the machines can be Turn off/Turn on (Mouzon,
Yildirim, and Twomey 2007).

Acknowledgements

We thank Ying Liu for providing us with the detailed results
of his work. This research has been supported by the Span-
ish Government under research project TIN2016-79190-R.
ISTC-CNR authors were supported by the ESA Contract No.
4000112300/14/D/MRP “Mars Express Data Planning Tool
MEXAR2 Maintenance”.

147

References
Apt, K. 2003. Principles of Constraint Programming. New
York, NY, USA: Cambridge University Press.
Baker, K. 1974. Introduction to Sequencing and Scheduling.
Wiley.
Bierwirth, C. 1995. A generalized permutation approach to
jobshop scheduling with genetic algorithms. OR Spectrum
17:87–92.
Brandimarte, P., and Maiocco, M. 1999. Job shop schedul-
ing with a non-regular objective: a comparison of neigh-
bourhood structures based on a sequencing/timing decom-
position. International Journal of Production Research
37(8):1697–1715.
Conner, G. 2009. 10 questions. Manufacturing Engineering
Magazine 93–99.
Dabia, S.; Talbi, E.-G.; van Woensel, T.; and De Kok, T.
2013. Approximating multi-objective scheduling problems.
Computers & Operations Research 40:1165–1175.
Dai, M.; Tang, D.; Giret, A.; Salido, M. A.; and Li, W. 2013.
Energy-efficient scheduling for a flexible flow shop using an
improved genetic-simulated annealing algorithm. Robotics
and Computer-Integrated Manufacturing 29:418–429.
Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. 2002.
A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation 6(2):182–
197.
Essafi, I.; Mati, Y.; and Dauzère-Pérès, S. 2008. A genetic
local search algorithm for minimizing total weighted tardi-
ness in the job-shop scheduling problem. Computers & Op-
erations Research 35:2599–2616.
González, M. A.; González-Rodrı́guez, I.; Vela, C.; and
Varela, R. 2012. An efficient hybrid evolutionary algorithm
for scheduling with setup times and weighted tardiness min-
imization. Soft Computing 16:2097–2113.
Grimes, D.; Ifrim, G.; O’Sullivan, B.; and Simonis, H. 2014.
Analyzing the impact of electricity price forecasting on en-
ergy cost-aware scheduling. Sustainable Computing: Infor-
matics and Systems 4(4):276–291.
Ishibuchi, H.; Hitotsuyanagi, Y.; Tsukamoto, N.; and No-
jima, Y. 2009. Use of biased neighborhood structures in
multiobjective memetic algorithms. Soft Computing 13(8–
9):795–810.
Jaszkiewicz, A. 2003. Do multiple-objective metaheuristics
deliver on their promises? A computational experiment on
the set-covering problem. IEEE Transactions on Evolution-
ary Computation 7(2):133–143.
Knowles, J. D., and Corne, D. W. 2000. Approximating
the nondominated front using the Pareto archived evolution
strategy. Evolutionary Computation 8(2):149–172.
Kuhpfahl, J., and Bierwirth, C. 2016. A study on local
search neighborhoods for the job shop scheduling problem
with total weighted tardiness objective. Computers & Oper-
ations Research 66:44–57.
Laborie, P. 2003. Algorithms for propagating resource con-
straints in AI planning and scheduling: Existing approaches
and new results. Artif. Intell. 143(2):151–188.

Lara, A.; Sánchez, G.; Coello Coello, C. A.; and Schütze,
O. 2010. HCS: A new local search strategy for memetic
multiobjective evolutionary algorithms. IEEE Transactions
on Evolutionary Computation 14(1):112–132.
Le Pape, C.; Baptiste, P.; and Nuijten, W. 2001. Constraint-
Based Scheduling: Applying Constraint Programming to
Scheduling Problems. New York, NY, USA: Springer Sci-
ence+Business Media.
Liefooghe, A.; Humeau, J.; Mesmoudi, S.; Jourdan, L.; and
Talbi, E.-G. 2012. On dominance-based multiobjective lo-
cal search: design, implementation and experimental analy-
sis on scheduling and traveling salesman problems. Journal
of Heuristics 18(2):317–352.
Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S.; and Gindy, N.
2014. An investigation into minimising total energy con-
sumption and total weighted tardiness in job shops. Journal
of Cleaner Production 65:87–96.
Miettinen, K. 2012. Nonlinear Multiobjective Optimization.
International Series in Operations Research & Management
Science. Springer US.
Mouzon, G.; Yildirim, M. B.; and Twomey, J. 2007. Oper-
ational methods for minimization of energy consumption of
manufacturing equipment. International Journal of Produc-
tion Research 45(18–19):4247–4271.
Papadimitriou, C., and Steiglitz, K. 1982. Combinatorial
Optimization: Algorithms and Complexity. Dover Books on
Computer Science. Dover Publications.
Paquete, L.; Schiavinotto, T.; and Stützle, T. 2007. On local
optima in multiobjective combinatorial optimization prob-
lems. Annals of Operations Research 156:83–97.
Sakkout, H., and Wallace, M. 2000. Probe backtrack search
for minimal perturbation in dynamic scheduling. Con-
straints 5(4):359–388.
Van Laarhoven, P.; Aarts, E.; and Lenstra, K. 1992. Job shop
scheduling by simulated annealing. Operations Research
40:113–125.
Vilı́m, P.; Barták, R.; and Cepek, O. 2004. Unary resource
constraint with optional activities. In Principles and Prac-
tice of Constraint Programming - CP 2004, 10th Interna-
tional Conference, CP 2004, Toronto, Canada, September
27 - October 1, 2004, Proceedings, 62–76.
Wisner, J., and Siferd, S. 1995. A survey of us manufactur-
ing practices in make-to-order machine shops. Production
and Inventory Management Journal 1:1–7.
Zhang, R., and Chiong, R. 2016. Solving the energy-
efficient job shop scheduling problem: a multi-objective ge-
netic algorithm with enhanced local search for minimizing
the total weighted tardiness and total energy consumption.
Journal of Cleaner Production 112:3361–3375.
Zitzler, E., and Thiele, L. 1998. Multiobjective optimization
using evolutionary algorithms — a comparative case study.
In Parallel Problem Solving from Nature — PPSN V Pro-
ceedings. Springer Berlin Heidelberg. 292–301.

148

