
A Temporal Relaxed Planning Graph
Heuristic for Planning With Envelopes

Amanda Coles, Andrew Coles
Department of Informatics,
King’s College London, UK

email: {amanda,andrew}.coles@kcl.ac.uk

Abstract

When planning in temporal domains with required concur-
rency, envelopes arise where one or more actions need to
occur within the execution of another. Starting an envelope
action gives rise to an implicit relative deadline: all of the ac-
tions that need to occur within the envelope must complete
before it ends. Finding effective heuristic guidance in these
domains is challenging: the heuristic must not only consider
how to reach the goals, but identify when it is not possible to
achieve these implicit deadlines to avoid fruitless search. In
this paper, we present an adaptation of a Temporal Relaxed
Planning Graph heuristic, that accounts for dependencies be-
tween facts and actions in the relaxed planning graph; and the
envelopes that are open in the state being evaluated. Results
show that our new heuristic significantly improves the per-
formance of a temporal planner on benchmark domains with
required concurrency.

1 Introduction

Reasoning effectively about temporal constraints is essen-
tial in solving a wide range of realistic planning problems.
Over the last decade required concurrency has emerged as
one of the main challenges for effective temporal planning.
In problems with required concurrency, it is necessary to
start the execution of one or more actions during the ex-
ecution of another, termed an envelope action, in order to
solve the problem. This is a phenomenon that occurs in
many problems when modeling the temporal constraints that
arise. Sometimes these model the availability of a resource
for a finite time, for example an envelope action modeling
the shift of a worker, in which all activities involving that
worker must take place; and other times they model a tempo-
ral constraint, for example in the transportation of perishable
goods the goods can only be outside of chilled conditions for
a finite amount of time, so all actions that involve the goods
not being chilled must fit inside a finite envelope.

The problem of planning with envelopes (Fox, Long, and
Halsey 2004) was identified soon after the introduction of
the temporal variant of the planning domain definition lan-
guage PDDL2.1 (Fox and Long 2003) and subsequently ex-
panded on and posed as a major challenge for the commu-
nity by Cushing et al. (2007). There has been much inter-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

est in solving problems with required concurrency, result-
ing in a number planning approaches capable of reason-
ing with these problems: forward search approaches, such
as CRIKEY (Coles et al. 2009; 2008) and POPF (Coles et
al. 2010), as well as SAT-based (Rankooh and Ghassem-
Sani 2015) and local-search approaches (Gerevini, Saetti,
and Serina 2010). Despite recent progress, problems with
required concurrency remain much more challenging than
those without, due to the additional temporal reasoning that
is required (Rintanen 2007).

One major challenge in planning effectively with required
concurrency is that of heuristic guidance, specifically allow-
ing the planner to quickly recognise when the temporal con-
straints imposed by an open envelope can no longer be met,
due to the actions applied within it. Without such guidance
planners are blind to the fact that some states are dead-ends,
and can continue searching forwards from them.

The challenge of reasoning about deadlines and windows
of opportunity that are fixed with respect to absolute time,
as modeled using Timed Initial Literals (TILs) (Hoffmann
and Edelkamp 2005), has seen some attention – a number
of planners that can reason with these (Gerevini, Saetti, and
Serina 2006; Kavuluri and Senthil 2004) were developed for
the 2004 International Planning Competition. Later work
has considered heuristics for detecting temporal dead-ends
in this setting (Marzal, Sebastia, and Onaindia 2014; Coles
et al. 2008; 2010) as well as detecting recurrent TIL time
windows (Tierney et al. 2012).

Here we are interested in the less-explored problem of
providing effective heuristic guidance for planning with en-
velopes; that is, deadlines that arise not at a fixed time as a
property of the problem, but rather as a result of the planner
choosing to apply an envelope action: starting a worker’s
shift implies a relative deadline on the time by which all the
activities requiring that worker must be completed. Such do-
mains pose a particular challenge for commonly used delete
relaxation heuristics (such as (Hoffmann and Nebel 2001)),
as relaxing (ignoring) delete effects renders the heuristic
blind to the implied deadlines.

We propose techniques that extend a Temporal Relaxed
Planning Graph (TRPG) heuristic with information about
the relative deadlines in the state being evaluated, due to
open actions that have started but not yet finished. This
forbids the heuristic from relying on actions that necessar-

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

47

ily break these deadlines, and allows the detection of dead
ends in the case where the resulting relaxed problem is thus
unsolvable. We show that our new heuristic markedly im-
proves the performance of a state-of-the-art temporal plan-
ner, in terms of time taken to solve problems and number of
problems solved, across a range of benchmark domains that
exhibit required concurrency.

2 Problem Definition
In this paper we consider propositional temporal planning
problems expressed in PDDL2.1 (Fox and Long 2003). We
first summarise the language semantics, then highlight the
particular aspects we are concerned with in this paper, and
describe the search framework in which we operate.

2.1 PDDL 2.1 Semantics

PDDL2.1 can express both non-temporal and temporal plan-
ning problems, through the use of two categories of actions:
instantaneous, and durative.

Each instantaneous action A has a precondition pre(A)
that must be true for A to be applied. If A is applied its
effects are realised: eff +(A) and eff −(A) denote proposi-
tions added and deleted.

Each durative action A has three sets of preconditions:
pre�(A), pre↔(A), pre�(A). These represent the condi-
tions that must hold at its start, throughout its execution (in-
variants), and at its end, respectively. Effects can occur at
the start or end of A: eff +

� (A) (eff −� (A)) denote proposi-
tions added (resp. deleted) at the start. Similarly, eff +

� (A),
eff −� (A) record effects at the end. Finally, the action has
maximum and minimum duration constraints, max dur(A)
and min dur(A).

A plan can be thought of as a sequence of time-stamped
happenings: points at which one or more instantaneous ac-
tions occur; and durative actions either start or end. By
stepping through the happenings in chronological order, it
is possible to establish the times at which facts become true,
or false. We refer to each happening in the plan as a step,
and assign each step a unique index i.

For an instantaneous action A to be applied at time t,
pre(A) must be true at t. To ensure the truth values of
the facts in the precondition are not simultaneously changed,
and used to meet the precondition:
• A minimum amount of time denoted by the value ε must

elapse between the happening after which pre(A) became
true, and the point at which A is applied;

• A minimum amount of time, ε, must then pass before
pre(A) can be made false. The only exception to this is
that A may immediately violate its own preconditions.

These provisos enforce all necessary orderings between ac-
tions, but allow actions whose preconditions and effects do
not interfere to be executed simultaneously.

Following (Long and Fox 2003), a durative action A can
be split into two instantaneous snap-actions, A� and A�,
representing the start and end of the action respectively, and
a set of constraints (invariant and duration constraints). Ac-
tion A� has precondition pre�(A) and effects eff +

� (A) and
eff −� (A). A� is the analogous action for the end of A.

In terms of their preconditions and effects, these snap ac-
tions are subject to the same application rules as instanta-
neous actions. The invariant and duration constraints addi-
tionally require that:

• For an action starting at t and finishing at t′, the invariant
conditions pre↔A must hold in the interval (t, t′). This
is equivalent to a dummy invariant-checking action A↔
with pre(A↔) = pre↔A being applicable at all points
within this interval. As the interval is open at both ends,
pre↔A may refer to facts affected by actions occurring
at time t: A�, or any other action at that time, can cause
pre↔A to become true. Similarly, effects at time t′ are
permitted to violate pre↔A.

• The duration of the action, here (t′ − t), must obey the
duration constraints max dur(A) and min dur(A) of the
action. As a consequence of this, there must be a one-to-
one correspondence between the starts and ends of A: it is
not possible to start an action without later ending it; nor
is it possible to end an action without having started it.

The task of planning is to find a time-stamped series of
happenings that, when applied starting from the initial state,
reach a state that admits the goals of the problem; in which
no actions are executing; and for which all preconditions,
invariants and temporal constraints are satisfied.

2.2 Temporal Envelopes

In non-temporal planning, it suffices that each step is or-
dered at some time after its preconditions are achieved;
and some time before they are violated. The plan steps
[a0, a1, ..., an] can be given any sequence of timestamps
t0 < t1 < ... < tn. These could be incrementally higher
multiples of ε, as this suffices to meet the minimum separa-
tion that must occur due to the ordering constraints between
effects and preconditions. Or, they could be delayed arbitrar-
ily, as there is no maximum time separation between steps.

In temporal planning, the presence of action durations in-
troduces maximum time separation between start and end
points. In effect, starting an action A creates a local dead-
line that its end must occur no later than would be permitted
by max dur(A). If it is possible to solve the problem with-
out ever concurrently executing any two actions the goal can
be reached by simply alternating start and end snap-actions;
with each start placed after the preceding end, and each end
placed the relevant duration after the preceding start.

In problems with required concurrency (Cushing et al.
2007) this is not the case: due to the interactions between
preconditions and effects of actions, every solution requires
that actions are executed concurrently. Cushing et al. define
a number of cases in which this arises; in this paper we are
concerned with envelopes (Coles et al. 2009). Example en-
velopes are depicted in Figure 1. In the simplest case (a), an
action A forms a window of opportunity in which some fact
p is available: it is added by A� and deleted by A�. Thus,
the action B, requiring p as an invariant, must occur wholly
within the execution of A. In case (b), A� must precede B�
to add the fact p; and then, B� must precede A� in order
to add the fact q. The result, again, is strict concurrency be-
tween A and B, but this time to meet the end conditions of A

48

p

B
p

q

B

(a)

p ¬p p

q

(b)

A A

p

(c)

A

p
B

r^q
C

¬q

sr

q

Figure 1: Examples of envelopes

rather than to precede a negative effect. More complex ex-
amples can be constructed, such as case (c), where A deletes
q at the end, so must contain C�; but the preconditions of C�
are met by first applying B, which itself must follow A�.

Case (b) corresponds to a causal loop (Bit-Monnot,
Smith, and Do 2016), the other cases represent some of
many additional variants that our work captures. We capture
more cases, by selectively considering delete effects: if an
action A is started, we place actions after A� not only to use
its effects, but also to avoid conflicting with pre�(A). We
also place actions before A� in order to avoid its negative
effects. If this leads to snap-actions being scheduled within
A, we have an envelope: A� imposes a local deadline, de-
termined by max dur(A) by which these actions must oc-
cur, in order to precede A�. In contrast, Bit-Monnot et. al
capture some different cases by delaying (or removing) A�
where the end conditions of A (pre�(A)) are reached later
(resp. unreachable) in the relaxed reachability analysis.

Other prior work has considered recognising envelopes
according to specific patterns (Coles et al. 2009; Cushing
2012). Cushing postulates that these can be used to prune
search but highlights that automating the proofs of these is
a significant open challenge. The strength of our approach
is that many of these patterns are captured automatically via
the STN without the need for any such proofs.

2.3 Temporal State Progression

We adopt the state progression semantics of POPF (Coles
et al. 2010). Successive application of plan steps yields a
partial-order plan, with ordering constraints between steps
based on the facts they refer to. To facilitate this, each fact
p, in each state, is annotated with the following information:
• F+(p) (F−(p)) is the index of the plan step that most

recently added (deleted) p;
• FP+(p) is a set of pairs, each 〈i, d〉, used to record steps

with a precondition p. i denotes the index of a plan step,
and d ∈ {0, ε}. If d=0, then p can be deleted at or after
step i: this corresponds to the end of an invariant condi-
tion. If d=ε, then p can be deleted ε after i or later.
Application of actions to states produces ordering con-

straints based on the annotations and updates their values.
• Steps adding p are ordered ε after F−(p); those deleting p,

after F+(p). Hence, effects on a fact are totally ordered.
Preconditions are fixed within this ordering: a step with
precondition p is ordered after F+(p); and recording it in
FP+(p) ensures future deletors of p are ordered after it.

• If step j ends an action A that began at step i, the interval
[i, j] must respect the duration constraints of A.

A partial-order plan in this form maps to a Simple Tempo-
ral Network (STN) – a labeled directed graph 〈A, T 〉 where:

• The vertices A = [a0..an] are the steps of the plan;
• Each edge 〈aj , ai, c〉 ∈ T corresponds to either:

– An edge 〈aj , ai, c ∈ {0,−ε}〉 representing an ordering
constraint that j must be 0 or ε time units after i due to
the aforementioned partial ordering constraints.

– One of a pair of edges 〈aj , ai,−lb〉,〈ai, aj , ub〉, encod-
ing that the duration of an action that started at i and
finished at j must lie in the range [lb, ub].

Solving this STN with a shortest-path algorithm identi-
fies possible timestamps for the snap-actions. In the case
of a consistent plan, this corresponds to the earliest point at
which each step can be applied while respecting the ordering
constraints. In the case of an inconsistent plan, a negative-
length cycle is found – a snap-action must occur before itself
– in which case the state is discarded. The task of planning in
POPF is to find a sequence of steps that transforms the initial
state into a goal state such that all preconditions/invariants
are met; the STN is consistent; and there are no open ac-
tions: actions that have started but not yet finished.

In addition to the steps applied in the plan, future nodes
representing the end snap actions of actions that have started
but not yet finished, are added to the simple temporal net-
work. These nodes represent the commitment we have made
by starting an action that we must finish it; and must also re-
spect its duration constraint. If a future end snap-action will
delete p, then any snap-actions with a condition p are or-
dered before it. These ordering constraints would inevitably
be added to the plan when the end snap-action was applied,
but adding them early avoids search that is bound to fail –
if the STN is inconsistent, then it has been shown the future
end snap-action, which must necessarily occur in order to
complete the plan, can never be applied.

While the heuristic described in this work is de-
scribed within the context of POPF’s state progression se-
mantics, it is also compatible with other planning ap-
proaches. Decision-epoch planners, such as TFD (Eyerich,
Mattmüller, and Röger 2009) and Sapa (Do and Kambham-
pati 2003) search over states that have a timestamp, and a
queue of actions that have started but not yet finished. Start-
ing an action fixes it to be applied at the timestamp in the
state. In problems with required concurrency, however, this
can preclude solving problems. For instance, if an action A
provides a short envelope in which some other snap-action
B� must be applied, A� needs to be delayed to occur just
before B�, rather than occurring at the current timestamp.

49

Decision-epoch planning can solve some problems with
envelopes, specifically those where there is no requirement
for an action to be delayed to occur later than the current
timestamp, so our new heuristic could be used in this setting.
The use of an STN and partial-ordering constraints can be
seen as providing a mechanism to facilitate these timestamp
delays in the case where they are needed and other planners
that use STN based reasoning and TRPG heuristics, for ex-
ample (Coles et al. 2008; Gerevini, Saetti, and Serina 2010),
could also make use of our approach.

3 Relaxed Planning with Envelopes

Heuristics are used to guide search in planning by providing
goal-distance estimates and identifying dead ends. Com-
monly used is a TRPG heuristic: a Temporal variant of
the Relaxed Planning Graph heuristic (Hoffmann and Nebel
2001). This has been explored in prior work, for example
in Sapa (Do and Kambhampati 2003) and POPF (Coles et
al. 2010). In the description of our approach we will focus
on extending POPF due to its generality, existing support for
required concurrency and the increased temporal flexibility
for meeting deadlines that results from its partial order rep-
resentation. However, as discussed our heuristic could be
used within other temporal planning frameworks.

3.1 Temporal RPG Outline

The outline of POPF’s TRPG heuristic is given in Algo-
rithm 11. As in the non-temporal case, the RPG consists
of action and fact layers; but now, these are timestamped to
denote the times at which facts were deemed to have been
reached, and actions were deemed to be applicable. These
are initialised at line 1 using a helper function shown in Al-
gorithm 2. Facts in the state are queued to appear at the
minimum time of the step that added the fact, by referring to
the STN for S. If there are actions executing in S, and the
ends of these do not have preconditions, these are queued to
appear at the earliest point the action could end, again ac-
cording to the STN. (If a decision-epoch planner, or a total-
order planner such as CRIKEY3, is used rather than POPF,
an alternative helper function (Algorithm 3) fulfills a similar
role, but refers to the timestamp of the state and the times-
tamps of the queued action ends.)

The main graph expansion loop begins at line 4. It looks
at the timestamps of the pending action and fact layers, and
chooses the action or fact layer that occurs earliest.

For action layers: For all snap-actions, their add effects
are added to the fact layer at that time (lines 9, 12, 21). For
start snap actions, additionally, if the action’s invariant con-
ditions are satisfied (determined by calling Algorithm 4), the
dummy invariant action is queued in al to appear immedi-
ately (line 14). When a dummy invariant action itself ap-
pears, if the action’s end snap-action’s conditions are satis-
fied, the end is queued to appear, delayed by the minimum
plausible duration of the action (line 19). The delays chosen
here reflect the semantics of PDDL described in Section 2:

1This is a marginal adaptation of the original that does not re-
quire time (ε) to pass between a fact being added, and an invariant
consequently becoming true.

Algorithm 1: Temporal RPG Expansion

Data: S, a state being evaluated
Result: A relaxed planning graph
(fl , al) ← initialise layers(S);1

added ← {(f, ∅) | each fact f};2

tstart , tinv ← {(a, ∅) | each durative action a};3

while fl �= [] ∨ al �= [] do4

flt ← min(t,l)∈fl t; alt ← min(t,l)∈al t;5

if alt < flt then6

l ← al .pop front();7

for instantaneous a ∈ l do8

for f ∈ eff+(a) do add f to fl [alt];9

for start a� ∈ l do10

tstart [a] ← tstart [a] ∪ {alt};11

for f ∈ eff+(a�) do add f to fl [alt];12

t ′ ← now true(a↔, alt , added);13

if t′ �= ∞ then add a↔ to al [t′];14

for invariant a↔ ∈ l do15

tinv [a] ← tinv [a] ∪ {alt};16

t ′ ← now true(a�, alt , added);17

if t′ �= ∞ then18

add a� to al [t′ +min dur(a)];19

for end a� ∈ l do20

for f ∈ eff+(a�) do add f to fl [alt];21

else22

l ← fl .pop front();23

for fact f ∈ l do24

if added [f] �= ∅ then continue;25

added [f] ← added [f] ∪ {flt};26

for {instantaneous a | f ∈ pre(a)} do27

t ′ ← now true(a,flt , added);28

if t′ �= ∞ then add a to al [t′ + ε];29

for {a� | f ∈ pre(a�)} do30

t ′ ← now true(a�,flt , added);31

if t′ �= ∞ then add a� to al [t′ + ε];32

for {a↔ | f ∈ pre(a↔)} do33

t ′ ← now true(a↔,flt , added);34

if t′ �= ∞∧ tstart(a) �= ∅ then add a↔35

to al [max(t′,min(tstart(a)))];
for {a� | f ∈ pre(a�)} do36

t ′ ← now true(a�,flt , added);37

if t′ �= ∞ then38

if tinv(a) �= ∅ then39

t′′ ← max(t′ +40

ε,min(tinv(a))+min dur(a));
add a� to al [t′′];41

if a is executing in S then42

t′′ ← min time of a� in STN;43

add a� to al [max(t′ + ε, t′′)];44

50

Algorithm 2: Initialise Layers (POPF)
Data: S, a state being evaluated
Result: Priority queues of fact and action layers, (fl , al)
fl , al ← [];1

for f ∈ S do2

t ← min time of step FP+(p) in STN for S;3

Add f to fl [t];4

for executing action a ∈ S do5

if a� has no preconditions then6

t ← min time of a� in STN for S;7

Add a� to al [t];8

for instantaneous or start action a with no9

preconditions do Add a to al [0];
return (fl , al)10

Algorithm 3: Initialise Layers (Decision Epoch)
Data: S, a state being evaluated
Result: Priority queues of fact and action layers, (fl , al)
fl , al ← [];1

t ← timestamp in state S;2

for f ∈ S do Add f to fl [t];3

for executing action a ∈ S do4

if a� has no preconditions then5

t′ ← end time of a according to S;6

Add a� to al [t′];7

for instantaneous or start action a with no8

preconditions do Add a to al [t];
return (fl , al)9

the invariants can begin immediately after the start, with no
need for an ε gap; and the action can end min dur(a) later.

For fact layers: If a fact appearing has caused the pre-
conditions of an instantaneous or start action to become true
(lines 29, 32), the action is queued to appear ε after the fact
layer. For dummy invariant-checking actions, there is the
additional consideration that the start of the action must al-
ready have appeared (line 35); if this is the case, the action
is queued to appear either at the earliest time the start ap-
peared, or the time of the fact layer, whichever is latest – no
ε gap is needed for invariants. An end snap-action a�, whose
preconditions are satisfied can be added in one of two cases:

• The invariant action has appeared. In this case, the end
is queued at either min dur(a) after the earliest time the
invariant appeared, or ε after the fact layer, whichever is
latest. This ensures the separation between these points
respects the minimum duration, and in the case where the
end snap-action has preconditions, these are satisfied.

• The action is executing in the state S being evaluated. In
this case, there is no need to start it again the TRPG be-
fore it could end; and the invariant must already hold in
S. Thus, it suffices to queue the end-snap action at a suf-
ficiently late time: either the minimum time of its future
node in the STN for S (see Section 2.3), or ε after the fact
layer, whichever is latest.

Algorithm 4: Prior version of now true

Data: a – a snap action; t – a timestamp; added – the
time at which each fact appeared in the RPG

Result: The time at which pre(a) was satisfied, or ∞
for f ∈ pre(a) do if added [f] = ∅ then return ∞;1

return t;2

Once the TRPG has been built, if the goals and the ends
of executing actions have been reached, a relaxed plan can
be extracted almost as in the non-temporal case: working
backwards through the fact layers, starting with the goals at
the layers in which they appear; choosing an action from
the preceding action layer that adds the fact; and adding its
preconditions as subgoals to be achieved at earlier layers.
The only minor edits are that for each action executing in
S, its end (and end preconditions) must be added; and that
if a� is added to support a fact, and a is not executing in
S, a↔ and a� (and their respective preconditions) must also
be added. In the extension to the TRPG which we will now
describe, we do not change solution extraction further.

3.2 Envelope Layer Labels

The layers in the TRPG described above are indexed by
timestamp – an admissible an estimate of the time a given
fact or action could appear. As this is a delete-relaxation
heuristic, negative effects are ignored, and it is assumed that
if a fact is in S or is added, it persists throughout the TRPG.

In the case of Timed Initial Literals (Hoffmann and
Edelkamp 2005) that impose deadlines (a fact is true ini-
tially, never modified and irreversibly deleted at some time)
these timestamps can be used to prune actions from the
TRPG (Coles et al. 2008; Tierney et al. 2012). Simply, if
a fact f is deleted at time t, snap-actions referring to f that
have not appeared before t − ε can never appear; and steps
a↔ requiring f , cannot appear after t−min dur(a).

In the general case, such an approach cannot be taken to
the delete effects attached to the ends of actions that are ex-
ecuting in S. If a� deletes f , and its minimum timestamp in
the STN is t, then this is only its minimum timestamp – not
its maximum – so f is not obliged to disappear at this time.
This maximum is often unbounded, as the start of the action,
and hence its end, could be delayed. Moreover, if f is added
by another action the TRPG, then this consideration is moot:
this other achiever could be used to support preconditions on
f , even if f was deleted by a�.

In the case of envelopes, we can do better. With reference
to Figure 1(a), suppose we are in the state where A� has
been applied. If B� is then applied, which uses p, it would
need to be ordered after A�; and before the future end node
A�. This imposes a relative deadline: the snap-actions for B
must occur within the maximum time between A� and A�.
Delaying A� can increase the absolute time at which p is
deleted, but cannot obviate this relative constraint; it would
merely increase the timestamps of A�,B� and B�, too.

To capitalise on this, we modify the TRPG so that it tracks
these relative dependencies. Instead of being indexed by
timestamps, layers are indexed by labels:

51

Algorithm 5: Label Layer for Step
Data: S, a state being evaluated; i, a step index
Result: A layer label for step i
t ← min time of step i in STN for S;1

ft ← ∅; ae ← ∅;2

for each action a executing in S do3

d ← max time from step i to end of a in the STN;4

for f ∈ eff −(a�) do5

if f ∈ ft then ft [f] ← min(d, ft [f]);6

else ft [f] ← d;7

if a� ∈ ae then ae[a�] ← max(d, ae[a�]);8

else ae[a�] ← d;9

return 〈t , ft , al〉10

Definition 3.1 — Layer label

A layer label is a tuple 〈t, ft , ae〉 where:

• t is a timestamp (as before);
• ft is a map from facts, to how long is is before that fact

will be deleted. ft [f] = ∞ if no such deadline applies.
• ae is a map from the ends of open actions, to how long

it is before they must have occurred. ae[a�] = ∞ if no
such deadline applies.

These labels are updated and maintained as the TRPG is
expanded. The effects of an action in layer alt appear in fact
layer alt ; but now alt is a layer label, rather than a times-
tamp, allowing effects to inherit deadlines from the actions
that added them. The following modifications support this:

Initialising the TRPG: As noted earlier, the first step is
to use Algorithm 2 to queue the facts in S and precondition-
free ends of actions. This is modified so that at lines 3 and 7,
instead of taking a timestamp t of some step i from the STN
for S, Algorithm 5 is used to build the layer label for step i.
In addition to the timestamp, this looks for relative deadlines
imposed by actions executing in S. For a step i inside the
envelope of an action a, the maximum time d between i and
the end of a (line 4) is finite. Thus, the effect of lines 5 to 7 is
to record relative deadlines due to negative end effects of a.
In the case where i is ordered within multiple envelopes on
a single fact f – due to multiple executing actions deleting
f at the end – the tightest relative deadline is taken.

Lines 8 to 9 use the maximum time d for another purpose.
Starting an action implies a deadline on applying its end,
hence achieving its end preconditions. For example, in Fig-
ure 1(b), starting A implies a deadline on achieving its end
precondition q. If another action is ordered after A� then
there is also a (shorter) deadline on applying A� from this
step. For example, if step i is B� (which is ordered after A�
to use its effect p) the relative deadline d for reaching A�
from step i will be (max dur(A)− ε).2

It is worth noting here that the relative deadlines due to
envelopes are inferred automatically from the STN when-

2Line 8 is only relevant to states where two or more instances
of the same action are executing concurrently. If this occurs, we
optimistically take the maximum time left to either of these.

Algorithm 6: Extended version of now true

Data: a – a snap action; ll – a layer label; added – layer
label(s) at which each fact appeared in the RPG

Result: Layer label when pre is satisfied or 〈∞, ∅, ∅〉
〈t , ft , ae〉 ← ll ;1

for f ∈ pre(a) do2

if added [f] = ∅ then return 〈∞, ∅, ∅〉;3

ae ′ ← {(a�,maxll′∈added[f] ll ′.ae[a�]) | all a�};4

ft ′ ← {(f ′,maxll′∈added[f] ll ′.ft [f ′]) | all f ′};5

ae ← {(a�,min(ae[a�], ae ′[a�]) | all a�};6

ft ← {(f ′,min(ft [f ′], ft ′[f ′]) | all f ′};7

for f ∈ pre(a) do8

if an action adds f in the RPG then ft [f] ← ∞;9

if a is an invariant action then10

if ft [f] < min dur(a) then return 〈∞, ∅, ∅〉;11

else if ft [f] < ε then return 〈∞, ∅, ∅〉;12

return 〈t , ft , ae〉13

ever they arise. There is no need for a fragile analysis step
to identify specific design patterns that imply potential en-
velopes: we are not limited to the cases shown in Figure 1.

Ordering layers: Previously, the priority queues of fact
and action layers were ordered by timestamp. They are now
ordered by label: in ascending order of timestamp; breaking
ties using an arbitrary but fixed (lexicographic) ordering ac-
cording to ft and ae. This is used to order the queues, and
in Algorithm 1 (line 6) to determine the next layer to visit.

Keeping multiple added entries: Line 25 is updated to
keep any achiever of f that is not Pareto-dominated by an
existing member of added [f]. That is, there is no existing
member with a smaller or equal timestamp, and longer or
equal time left for each relative deadline.

An updated now true: Previously, when queuing an ac-
tion, it sufficed that its preconditions had appeared. Now,
we calculate its layer label according to Algorithm 6. For
each precondition f , we keep the most optimistic time left
for each relative deadline across all adders of f (lines 4–5).
The rationale for this is that during RPG expansion, we do
not commit to which achiever must be used for f , as this is a
disjunctive choice; but, as some achiever would be needed, a
relaxation across all options is used. To combine these into a
label for the precondition as a whole (lines 6–7), it takes the
pessimistic combination of these – the minimum time left –
as we certainly need one adder for each fact (this follows the
propagation of maximum separation constraints in Dechter,
Meiri, and Pearl (1991)). As the deadlines in ft arise due to
delete effects at the end of open actions we can remove them
as soon as an alternative adder of f is found, line 9 clears the
relative deadline on f in this case.

Having determined the label applied to the preconditions
of a, the relative deadlines are checked to determine whether
a can be added to the RPG. For invariant-checking actions
using f , the relative deadline on f must be at least the mini-
mum duration of a: f cannot be deleted while a is executing.
For other actions, the time left must be at least ε: f cannot
be deleted until strictly after the snap action. If the deadlines

52

cannot be met, a layer with timestamp ∞ is returned, indi-
cating a cannot be applied here. This may prevent a from
ever appearing, allowing the heuristic to detect dead ends if
a is required for the relaxed plan, but cannot be applied due
to relative deadlines. If the deadlines can be met, the appro-
priate layer label has been found and a is added to the RPG
with an incremented version of this layer label.

Operations on layer labels: In Algorithm 1, at lines 29,
32, 40, and 44, actions are delayed to a future layer, by in-
crementing a timestamp t by some amount d. We can define
adding an amount of time d to a layer label, by allowing d
time units to elapse, and subtracting d from the time remain-
ing for each relative deadline, that is:

〈t, ft , ae〉+ d = 〈t+ d,
{(f, r − d) | (f, r) ∈ ft},
{(a�, r − d) | (a�, r) ∈ ae}〉

Lines 35 and 40 take the min (best case) and max (worst
case) of two or more layer labels. min is defined following
lines 4 and 5 of Algorithm 6: keeping the longest remaining
time for each fact and action deadline, seen across all labels;
and the minimum timestamp. max follows lines 6 and 7,
keeping the least remaining time, and maximum timestamp.

Ending executing actions: At line 42, Algorithm 1 in-
serts the ends of actions that are executing in S. The condi-
tion here is amended to read simply:

if a is executing in S ∧ t′.ae[a�] ≥ ε then

That is, now pre(a�) is satisfied, there must be at least ε left
before a� must have occurred, according to the layer label
for its preconditions. If this is the case, Algorithm 5 is used
at line 43 to find the layer label for a�, and it is then queued.
If not, pre(a�) presently relies on a causal chain of actions
that must begin after the start of a�, but exceeds its duration.
Again if a� does not appear now it may be applicable at a
later layer when some other way to achieve its preconditions
(shorter, or not ordered after a�) is found. Otherwise, if a�
never appears, the heuristic has found a dead end: we cannot
achieve the preconditions of a� in time.

4 Evaluation

In this section we evaluate our new heuristic within the POPF
framework, compared to the prior TRPG implementation as
a baseline, in both cases using WA* search with W=5. For
a detailed comparison of the performance of POPF to other
planners we refer the reader to the results of the temporal
track of the IPC 2011 planning competition (Linares López,
Celorrio, and Olaya 2015). All tests are run on 3.5GHz Core
i5 machines, restricted to 30 minutes of CPU time and 4GB
of memory, though all tests that failed did so because of run-
ning out of memory rather than time.

We consider all benchmark domains from the literature
and International Planning Competitions (IPCs) that make
use of envelopes. Despite being useful for modeling var-
ious facets of planning problems, there are comparatively
few such domains – at least when compared to propositional
domains – due to the small number of planners that support
required concurrency, and are thus able to solve them.

• Crewplanning (IPC 2008): The activities of the crew on a
space station must all fit within the available days (mod-
eled using envelopes). Some activities (e.g. crew exer-
cise, sleep, eating) must take place every day; the results
of science activities must be reported on certain days.

• Driverlog Shift (Coles et al. 2009): Drivers work fixed
length shifts (modeled using envelopes), all activity in-
volving a driver must take place during the driver’s shift.

• Cafe (Coles et al. 2009): Each food order must be served
within a fixed time of starting to prepare the order (to
prevent food going cold). There are finite resources
(chefs/equipment) in the kitchen for food preparation.

• Match (IPC 2011): this is the classic match domain in
which a fuse must be mended in a dark cellar. The ac-
tion ‘light-match’ is an envelope that provides the light
required to do this during its execution.

• Temporal Machine Shop, TMS (IPC 2011): various parts
must be made, combined and fired in a kiln at each stage.
Firing the kiln is an envelope action, although there is no
contention for using it as the kiln has infinite capacity.

• Turn and Open (IPC 2011): A variant of Gripper where
the robot must turn a handle (an envelope action) to push
a door open (inside the envelope) to walk between rooms.

• Pipes No Tankage Deadlines Compiled (IPC 2004): this
is a compilation that uses envelopes instead of TILs to
represent deadlines on delivery of oil via pipelines.

• Satellite Complex Time Windows Compiled (IPC 2004):
this is a compilation where envelopes represent windows
of opportunity for satellites to send image data to Earth.

The results, shown in Figure 2 show a noticeable over-
all performance improvement using the new heuristic. Fig-
ure 2a compares the time taken with the prior TRPG heuris-
tic (x-axis) and with the new heuristic (y-axis). Points be-
low the line y=x are where the planner solves problems
more quickly using the new heuristic. In general the planner
can solve problems much faster, but even more notably, the
points on the right hand side (x=1800) represent problems
that were solved with the new heuristic but not without. In-
deed, using the new heuristic allows the planner to solve an
additional 26 problems, across a range of domains. For ref-
erence, in terms of solution quality, the planners produced
plans of equal makespan in all problems, except for two (in
Turn and Open), where the planner found a shorter solution
with the new heuristic. We are not, therefore paying a price
in terms of quality for solving problems more quickly. Note,
though, the makespan of the solution is determined to a large
extent by the length of the longest envelope, which is a pre-
defined feature of the problem, so it is difficult to meaning-
fully optimise makespan in many of these problems.

A closer look at the results on a per-domain basis leads us
to some interesting insights. Broadly the evaluation domains
are split into three categories: (1) those with envelopes that
model some contended resource available only for a period
of time, beginning when the planner chooses to start the en-
velope; (2) those with envelopes that model the availability
of some resource, but there is no contention (it can be used
in parallel, or all actions that could be applied trivially fit

53

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

E
n

v
e

lo
p

e
 T

R
P

G
 H

e
u

ri
s
ti
c
,

T
im

e
 (

s
)

Existing TRPG Heuristic, Time (s)

Crewplanning
Driverlog Shift

Cafe
Match

TMS
Turn and Open

Pipes Deadlines Compiled
Satellite Time Windows

(a) Time Taken to Solve Problems

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

E
n

v
e

lo
p

e
 T

R
P

G
 H

e
u

ri
s
ti
c
,

N
o

d
e

s
 E

x
p

a
n

d
e

d

Existing TRPG Heuristic, Nodes Expanded

Crewplanning
Driverlog Shift

Cafe
Match

TMS
Turn and Open

Pipes Deadlines Compiled
Satellite Time Windows

(b) Nodes Expanded

Figure 2: Performance With and Without the New Heuristic

within it); (3) those with envelopes performing a compila-
tion of temporal constraints (e.g. deadlines) that make facts
available at fixed times (the TIL compilation domains).

Category (1) which includes the first four domains in the
list above, are those in which we would expect the approach
to most improve performance. Indeed, we see this reflected
in the results, with the new heuristic allowing more prob-
lems to be solved in 3 out of the 4 domains. In the final
domain, Match, it is interesting to note that the planner is
actually slightly slower using the new heuristic. This is not
due to a lack of informed guidance, indeed, as can be ob-
served in Figure 2b the planner is actually expanding fewer
nodes to find a solution. What we are observing here are the
slight overheads in computing the more informed heuristic:
although the heuristic detects that more ‘light match’ actions
are required to mend all the fuses, leading to fewer nodes
being evaluated, the increased per-state heuristic cost means
this does not quite pay off in terms of overall runtime.

This observation leads us to our second category of do-
mains, including TMS and Turn and Open. Both of these
involve envelopes, but the available resources are not con-
tended. In the contended domains, such as Driverlog Shift,
all the activities of a given driver must be completed during
their shift, and there is limited parallelism – a driver can-
not drive two trucks at once. Or, in Cafe, the order must be
completed within the specified delivery window, again with
limited parallelism within the envelope. In TMS though, the
kiln once firing can bake an arbitrary number of items in par-
allel so there is no contention in the envelope that limits the
number of activities that can use the available resource in
parallel. In Turn and Open, the required concurrency is sim-
ple and uncontested: the robot must turn the door handle and
within that open the door. There is trivially sufficient time
for this to happen in the envelope, and there are no other ac-
tions requiring that door handle to be turned that would be
beneficial to also schedule within the envelope.

In these two domains we therefore see no improvement
from the new heuristic because there are no issues with ac-
tions being unable to fit inside envelopes; the number of
nodes expanded remains the same. We can, however, see
that there are minimal overheads in using the new heuristic

in these domains as the time taken to solve problems with
and without it, shown in Figure 2a, are very similar. Indeed
across all domains we never saw an instance where the prob-
lem was solved with the old heuristic, but is no longer solved
with the new one, indicating that the overheads do not cause
us to fail to solve problems when we otherwise would, even
if the heuristic does not offer better guidance.

Our final group of domains are those in which Timed Ini-
tial Literals (TILs) have been compiled away and replaced
with envelopes. TILs are facts that are added or deleted at
a specific time and are specified in the planning problem.
Such facts can instead be represented by envelopes which,
for example, add the fact at the start, and delete it at the
end. A short dummy envelope action can be used at the
start of the plan, to ensure that all these envelopes start at
the same time, and before any other actions. To model the
fixed time windows in Satellite for sending images, further
spacer actions must be added to ‘pad’ the time before the
window opens. This compilation in general leads to chal-
lenging problems as it increases the number of actions in the
domain, as well as the solution length; however, these exist-
ing benchmarks do show us an interesting use of envelopes
to model deadlines, albeit those that are fixed in time, rather
than the movable envelopes our heuristic was designed for.

Despite the challenging nature of these problems, our new
heuristic allows the planner to solve an additional 7 prob-
lems in Pipes No Tankage Deadlines, almost twice as many
as are solved with the old heuristic. While the extra actions
introduced by the compilation clearly make the problem
more difficult for the planner, the new heuristic is better at
detecting when the planner can no longer meet the deadline
before the envelope is closed: this leads to more states being
recognised as dead-ends, giving solutions in less time and
ultimately solving more problems. The Satellite domain is
particularly challenging for temporally expressive planners:
having open actions (for the envelopes) means that memoi-
sation has to be very conservative (Coles and Coles. 2016)
and there are many actions in Satellite that offer the opportu-
nity to extend a plan without making progress (switch on/off,
calibrate (repeatedly) and turn-to). In this domain the heuris-
tic is able to recognise envelopes with deadlines and is able

54

to make some improvement solving mutually solved prob-
lems faster, and solving a further two problems.

Acknowledgments

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement No. 730086 (ERGO); and from
EPSRC grant EP/P008410/1 (AI Planning with Continuous
Non-Linear Change).

References

Bit-Monnot, A.; Smith, D. E.; and Do, M. 2016. Delete-
free reachability analysis for temporal and hierarchical plan-
ning. In Proceedings of the HSDIP Workshop at the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Coles, A. J., and Coles., A. I. 2016. Have I Been Here Be-
fore? State Memoisation in Temporal Planning. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling (ICAPS).
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Plan-
ning with problems requiring temporal coordination. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence 173.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D.
2007. When is temporal planning really temporal planning?
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI).
Cushing, W. A. 2012. When is Temporal Planning Really
Temporal? Ph.D. Dissertation, Arizona State University (p.
288).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49:61–95.
Do, M. B., and Kambhampati, S. 2003. Sapa: Multi-
objective Heuristic Metric Temporal Planner. Journal of Ar-
tificial Intelligence Research 20.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Fox, M., and Long, D. 2003. PDDL2.1: An extension of
PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20.
Fox, M.; Long, D.; and Halsey, K. 2004. An investigation
into the expressive power of PDDL2.1. In Proceedings of the
European Conference on Artificial Intelligence (ECAI).
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An Approach
to Temporal Planning and Scheduling in Domains with Pre-
dictable Exogenous Events. Journal of Artificial Intelligence
Research 25.

Gerevini, A. E.; Saetti, A.; and Serina, I. 2010. Temporal
planning with problems requiring concurrency through ac-
tion graphs and local search. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Hoffmann, J., and Edelkamp, S. 2005. The Deterministic
Part of IPC-4: An Overview. Journal of Artificial Intelli-
gence Research 24.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14.
Kavuluri, B., and Senthil, U. 2004. Timed Initial Literals
Using Sapa. In IPC 4 Booklet at the International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015.
The deterministic part of the seventh international planning
competition. Artificial Intelligence 223.
Long, D., and Fox, M. 2003. Exploiting a Graphplan Frame-
work in Temporal Planning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Marzal, E.; Sebastia, L.; and Onaindia, E. 2014. On the
use of temporal landmarks for planning with deadlines. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS).
Rankooh, M. F., and Ghassem-Sani, G. 2015. ITSAT: An
Efficient SAT-Based Temporal Planner. Journal of Artificial
Intelligence Research 53.
Rintanen, J. 2007. Complexity of Concurrent Temporal
Planning. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS).
Tierney, K.; Coles, A. J.; Coles, A. I.; Kroer, C.; Britt, A.;
and Jensen., R. M. 2012. Automated planning for liner
shipping fleet repositioning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).

55

