
Automatic Extraction of Axioms for Planning

Shuwa Miura, Alex Fukunaga
Department of General Systems Studies
Graduate School of Arts and Sciences

The University of Tokyo
miura-shuwa@g.ecc.u-tokyo.ac.jp, fukunaga@idea.c.u-tokyo.ac.jp

Abstract

Axioms can be used to model derived predicates in domain-
independent planning models. Formulating models which use
axioms can sometimes result in problems with much smaller
search spaces than the original model. We propose a method
for automatically extracting a particular class of axioms from
standard STRIPS PDDL models. More specifically, we iden-
tify operators whose effects become irrelevant given some
other operator, and generate axioms that capture this relation-
ship. We show that this algorithm can be used to successfully
extract axioms from standard IPC benchmark instances, and
show that the extracted axioms can be used to significantly
improve the performance of satisficing planners.

1 Introduction

In the most commonly studied classical planning models,
all changes to the world are direct effects of operators. How-
ever, it is possible to model some effects as indirect effects
which can be inferred from a set of basic state variables.
Such derived predicates can be expressed in modeling lan-
guages such as PDDL and formalisms such as SAS+ as ax-
ioms, logical rules which define how the derived predicates
follow from basic variables. Planners have supported vari-
ous forms of derived predicates since relatively early sys-
tems (Manna and Waldinger 1987; Barrett et al. 1995), and
PDDL has supported axioms which specify derived predi-
cates as a logic program with negation-as-failure semantics
since version 2.2 (Edelkamp and Hoffmann 2004)

Previous work on derived predicates and axioms for plan-
ning has focused on the advantages of expressivity (com-
pactness) of domain modeling using axioms, (Thiébaux,
Hoffmann, and Nebel 2005), as well as search algorithms
which are aware of axioms (Coles and Smith 2007; Gerevini,
Saetti, and Serina 2011; Ivankovic and Haslum 2015b). Pre-
vious work has shown that axioms can be exploited by a
search algorithm to solve problems more efficiently, com-
pared to a version of the problem without explicit axioms.

Consider the single-agent puzzle Sokoban, in which the
player pushes stones around in a maze. The goal is to push
all the stones to their destinations. The standard PDDL for-
mulation of Sokoban used in the International Planning

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Competition(IPC) consists of two kinds of operators, push
and move. push lets the player push a box in one direction,
while move moves the player into an unoccupied location.

Ivankovic and Haslum (2015a) proposed a new formu-
lation of Sokoban with axioms and showed that this leads
to a problem with a smaller search space (Ivankovic and
Haslum 2015b). They remove the move operators entirely,
and introduce axioms to check whether the player can reach
a box to push it. The reformulated push operators now have
a derived predicate reachable(loc) instead of at-player=loc as
their precondition. The values of the derived predicates are
determined by the following axioms:

1. reachable(loc)← at-player=loc
2. reachable(to)← reachable(from), clear(to),

connected(from,to)
Intuitively, the first axiom means that the current location of
the player is reachable. The second axiom means a clear lo-
cation next to a reachable location is also reachable. Figure1
illustrates the search space with and without axioms. With
axioms, the search space only has the transitions indicated
by the black arrows. The transitions indicated by the white
arrows are captured by axioms as reachability analysis.

Figure 1: The search space of the Sokoban domain.

While previous work focused on axioms as expressive do-
main modeling constructs used by human domain modelers,
this paper shows that axioms can also be viewed as struc-
ture to be discovered and exploited. We investigate a com-
pletely automated, reformulation approach which extracts
axioms from standard PDDL domains, solves the reformu-
lated problem instance with an axiom-aware planner, and

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

218

then converts the solution to the axiom-reformulated prob-
lem back into a valid plan for the original problem instance.
For example, in Sokoban, the standard domain with the push
and move operators is automatically reformulated to a do-
main without the move operator. After finding a plan which
achieves the goals in this reformulated state space, which
consists solely of push, we then decode the plan to generate
a valid plan for the original domain (with move and push).

We propose methods for automatically extracting
two classes of axioms from standard (axiom-free)
SAS+(STRIPS) planning models. Our first method
(Sec. 3) partitions the operators in a SAS+ model into
observable operators, which are in some sense “funda-
mental” operators, and τ -operators, which are “auxiliary”
operators. Given a list observable operators to execute, a set
of τ -operators to be executed is implied. We reformulate
the problem such that the preconditions of the observable
operators are derived predicates which are established by
τ -operators, and axioms representing how these derived
predicates are implied are added to the domain. Our second
method (Sec. 4) extracts axioms based on groups of fluents
where exactly one of the fluents must be true at all times.
We generate ε-axioms which describe the truth value of
one member of such a “exactly-1” group in terms of the
other members of the group. Sec. 5 describes the procedure
for converting solutions to the reformulated problems to
solutions for the original domain.

We show that τ -operators and ε-axioms can be extracted
from half of the STRIPS + action costs IPC benchmark do-
mains (Sec. 6). We then evaluate our reformulation on var-
ious planners (Sec. 7) and show that the axioms extracted
from IPC standard benchmarks can be exploited to speed up
satisficing planning, for model-based planning (integer pro-
gramming and answer set programming).

2 Review of SAS+ and Axioms

We adopt the definition of axiom-enhanced SAS+ used in
Helmert (2009) and Ivankovic and Haslum (2015b).

Definition 1. A SAS+ problem with axioms Π is a tuple (V
,O, I,G, U,A) where
- V is a set of primary variables. Each variable vi has a finite
domain of values D(vi).
- O is a set of operators. Each operator o has a precondition
(pre(o)) and an effect (eff(o)), which consists of variable as-
signments of the form vi=x where x∈D(vi). We abbreviate
vi=1 as vi when we know the variable is binary. An operator
o is applicable in a state s iff s satisfies pre(o). The resultant
state o(s) has the assignments specified in eff(o). We abbre-
viate a sequence of application of operators o1,o2,...,on as
o1o2...on(s). cost(o) is the associated cost of the operator o.
- I is an initial assignment over primary variables.
- G is a partial assignment over variables that specifies the
goal conditions.
- U is a set of secondary variables. Secondary variables are
binary and do not appear in operator effects. Their values are
determined by axioms after each operator execution.
- A is a set of axioms with form u←φ where u (head) is
a secondary variable and φ (body) is a conjunction of posi-

tive and negative variable assignments. Intuitively, an axiom
requires u to be true when φ holds. Unless implied by an
axiom, u is false by default (negation by failure semantics).
A(s) denotes the result of evaluating a set of axioms A in a
state s.

Axioms and primary variables can be seen as forming a
logic program. Formally, the values of secondary variables
are determined by the stable model (c.f., Gelfond and Kahl
2014) of the program.

The set of axioms must be stratified. A set of axioms is
stratifiable if and only if there is a mapping l from U to
{0, ...,m} such that
• for every axiom a that has ui as its head, for every uj that

appear in its body, l(uj)≤l(ui)
• for every axiom a that has ui as its head, for every not uj

that appear in its body, l(uj)<l(ui)
When A is stratified, A(s), the result of axiom evaluation,

is guaranteed to be unique (Apt, Blair, and Walker 1988).

A solution (plan) to Π is an applicable sequence of oper-
ators o0, ..., on that maps I into a state where the G holds.

3 τ -Axiom Extraction: Representing Internal

Transitions as Axioms

We extract operators whose effects become irrelevant given
some other operator, and express this structure as axioms.
For example, in the aforementioned Sokoban example, we
need move operators only to check if the player can get be-
hind a stone to push it. How the player reaches there does not
matter since the resulting state will always be the same. In
this sense, the states visited by the player’s move are ”indis-
tinguishable” with respect to the push operator. We formally
capture this intuition as follows.

Definition 2. A pair of states s,s′ are distinguishable with
respect to an operator o if and only if o is applicable in both
states and the resulting states differ (o(s) �=o(s′)). Otherwise,
s,s′ are indistinguishable.

Definition 3. A set of states S is indistinguishable with re-
spect to o if and only if every pair of states in S are indistin-
guishable with respect to o.

In Figure 1, states (b) and (f) are distinguishable w.r.t. the
grounded push operator since the resulting states ((c) and
(g)) differ. However, states (d),(e) and (f) are indistinguish-
able w.r.t. the grounded push operator since the push opera-
tor is applicable only in (f).

Using the notion of indistinguishability, we identify a set
of move-like operators and push-like operators.

Definition 4. Let T (s) be a set of states reachable from s
using only the operators in T ⊂O, We call a set of operators
T �O the τ -operators, if and only if for every state s, T (s)
is indistinguishable with respect to every operator in T̄ . We
call T̄ the observable operators. We denote a sequence of
zero or more consecutive τ -operators as τ∗.

Theorem 1. Given a state s and an applicable sequence
of operators τ∗o and τ∗

′
o (o is an observable operator),

τ∗o(s)=τ∗
′
o(s).

219

Proof. Suppose τ∗o(s) �=τ∗
′
o(s). This means τ∗(s) and

τ∗
′
(s) are distinguishable w.r.t. an observable operator o,

which contradicts Definition 4.

Now that we know τ -operators are just checking if ob-
servable operators are applicable rather than making change
of their own, we want to express τ -operators as axioms. Be-
low, we show how to 1. identify τ and observable operators
2. convert τ -operators into axioms which correctly infer ap-
plicability of observable operators, and 3. modify observable
operators accordingly for the reformulated domain.

3.1 τ -Axiom Extraction

We use the multi-valued semantics of a SAS+ problem to
identify τ -operators using the notion of dominance.

Definition 5. Let effvar(o) and prevar(o) be the set of vari-
ables that appear in eff(o) and pre(o) respectively. An oper-
ator o dominates o′ if and only if effvar(o′) ⊆ prevar(o).

For example, consider the following (simplified) SAS+
formulation of Sokoban, with two actions,

move(from,to): pre(move) = [at-player = from] ∧ clear(to),
eff(move) = [at-player = to] , and;

push(from,to,dest) : pre(push) = [at-player = from] ∧ [at-
stone = to] ∧ clear(dest), eff(push) = [at-player = to] ∧ [at-
stone = dest].

Since effvar(move(from,to)) = {at-player} ⊆ pre-
var(push(from,to,dest)) = {at-player,at-stone,clear(dest)},
push(from,to,dest) dominates move(from,to).

Theorem 2. Given a set of operators T , if every operator in
T is dominated by every operator in T̄ , then T is a set of
τ -operators.

Proof. Let T be a set of operators such that every operator in
T is dominated by every operator in T̄ . Given a state s and
an operator o∈T̄ , assume s′, s′′∈T (s) are distinguishable
w.r.t. o. Since o is applicable in both s′ and s′′, they must
have the same values for all variables in pre(o), and there
must exist some variable v not in pre(o) whose value differs
in s′ and s′′. However, by the definition of dominance, oper-
ators in T cannot change the values of variable not in pre(o),
so there can be no such v, a contradiction.

We denote the set of all variables appearing in the effects
of all of the τ -operators as Vτ . For the Sokoban example,
Vτ consists of one variable, at-player. Since τ -operators only
change variables in Vτ , states reachable from a state s can be
characterized by assignments over Vτ . We call these the in-
ternal states of s. There can be multiple partitions for a given
set of operators O satisfying the definition of τ -operators.
For now, we are interested in finding one such partition.

Graph-Based τ -Axiom Extraction Since the dominance
relation is defined over pairs of operators, one approach is to
use a graph of the relationships between operators.

Definition 6. The dominance graph for a SAS+ problem Π
is a directed graph G=(V,E) such that (1) V=O, (2) (o,o′)
∈ E iff o dominates o′.

If a set of vertices V can be partitioned into T and T̄ such
that there is an edge from every vertex in T̄ to every ver-
tex in T , then the operators corresponding to T and T̄ are
τ -operators and observable operators, respectively. To deter-
mine if such a partition exists for a given graph G=(V,E),
we examine strong-connectedness of its complement graph
Ḡ. The strongly connected components (SCCs) of G can be
computed in O(|V |+ |E|) time (Tarjan 1972). Let T̄ be the
vertices in a sink (with no out-going edges) SCC of the com-
plement graph Ḡ. Then there is an edge from every vertex in
T̄ to every vertex in T on the graph G. This is because there
is no edge from a vertex in T̄ to a vertex in T on Ḡ. If a
partition exists, then the τ -operators and observable opera-
tors have been found. T found this way is maximal w.r.t. set
inclusion. Suppose we add o∈T̄ to T . Since T̄ is a strongly
connected component, there is some o′∈T̄ that has an edge
to o on the complement graph Ḡ , which means there is no
edge from o′ to o in the original graph.

Since the number of edges of a graph is at most |V 2|, this
algorithm runs in O(|V |2) time and space.

Variable-Based τ -Axiom Extraction Since our domi-
nance relation relies on multi-valued variables, we can
search over subsets of variables instead of partitions of op-
erators, using a greedy algorithm that keeps track of all the
candidates for Vτ . The initial set of candidates consists of
prevar(o) for every operator o. This is because a set of vari-
ables that appear in effects of tau-operators, Vτ , if it ex-
ists, must be a subset of the set s of variables in precondi-
tions of an operator. As we iterate through every operator o,
we check if for every candidate c, either prevar(o) ⊇ c or
effvar(o) ⊆ c is true, and if so, keep the candidate for the
next iteration. The two conditions correspond to o being an
observable operator and a τ -operator respectively. When a
candidate c is not viable for an operator o we add prevar(o)
∩ c and effvar(o) ∩ c to the next candidates. After the last
iteration, we pick a candidate c of the largest cardinality. Ev-
ery operator o with effvar(o) ⊆ c becomes a τ -operator. Al-
though in the worst case there may be an exponential number
of candidates (all the subsets of the initial candidates), we
show in Section 6 that this algorithm usually outperforms
the graph-based algorithm.

3.2 Encoding

Given a SAS+ problem Π=(V,O, I,G, U=φ,A=φ), τ -
operators T �O with every operator in T dominated by ev-
ery operator in T̄ , we reformulate Π into a new SAS+ prob-
lem with axioms Π′=(V ′, O′, I ′, G′, U ′, A′) as follows.
• V ′=V , I ′=I .
• For every internal state r, we introduce a secondary vari-

able ur∈U ′. We can also denote ur as u{v1=x1,...,vn=xn},
where {v1=x1, ..., vn=xn} is the assignments on Vτ cor-
responding to r. Since the current state is also a reachable
internal state, we introduce an axiom [u{v1=x1,...,vn=xn}
←v1=x1, ..., vn=xn]∈A′. For Sokoban, this introduces
an axiom [uat-player=loc←at-player=loc], which means that
the current location is always reachable.
• Goal conditions on variables not in Vτ remain, so {vi=
x|[vi=x]∈G, vi �∈Vτ}⊆G′. To see if the goal conditions

220

on Vτ are achieved, we introduce a secondary variable g
and a new goal condition g∈G′. [g←ur]∈A′ for all the
internal states that satisfy the goal conditions.

• For o∈T̄ , there is a reformulated operator o′∈O′ such
that:
- pre(o′) consists of {vi=x|vi �∈Vτ , [vi=x]∈pre(o)} and
u{v1=x1,...,vn=xn} where {v1=x1, ..., vn=xn} are the
preconditions on Vτ . Note that o∈T̄ always has the pre-
conditions on Vτ . Intuitively, this means that we need to
reach {v1=x1, ..., vn=xn} to apply o. In Sokoban, while
the original push had pre(push) = [at-player = from] ∧
[at-stone = to] ∧ clear(dest), the reformulated operator
now has pre(push’) = uat-player = from ∧ [at-stone = to] ∧
clear(dest),
- eff(o′) keeps the original effects {vi=x|vi∈Vτ , [vi=x]∈
eff(o)}. Additionally, now that we have extracted the τ -
operators, we only check whether a certain value for
Vτ is reachable instead of actually modifying the vari-
ables. Hence, once o′ is applied, it needs {vi=x|[vi=
x]∈pre(o), vi∈Vτ , vi �∈effvar(o′)} as its effect to ”restore”
values for Vτ .

• For every pair of internal states r, r′, if there exists
o∈T with r′=o(r) (with respect to variables on Vτ),
we introduce an axiom [ur′←ur, vn+1=xn+1, ..., vm=
xm]∈A′, where vn+1, ..., vm are preconditions not in Vτ .
For Sokoban, this introduces the axiom [uat-player=to←
uat-player=from, clear(to), connected(from,to)].

We show that this encoding is correct.

Lemma 1. For every state A′(s) in Π′, ur=1 if and only if
an internal state r is reachable from s in the original problem
Π using only τ -operators.

Proof Sketch. We show this by induction. For {v1=x1, ...,
vn=xn} which is already true in s, the lemma holds due
to the axiom u{v1=x1,...,vn=xn}←v1=x1, ..., vn=xn. If the
lemma holds for every internal state r reachable in less than
k steps, it also holds for every r′ achievable in less than k+1
steps because of [ur′←ur, vn+1=xn+1, ..., vm=xm].

Lemma 2. Given a state s, an applicable sequence τ∗o, and
the reformulated operator o′, τ∗o(s)=o′(s). (Proof : imme-
diate from construction of o′.)

Theorem 3. Π′ has a plan if and only if Π has a plan.

Proof Sketch. If Π has a plan p, a reformulated plan p′ with
all τ -operators removed is a plan for Π′. For o′ in p′, ur∈
pre(o′) is true by Lemma 1, since r is reachable using τ∗ in
p. By Lemma 2, the result of applying τ∗o and o′ will be the
same. Hence, p′ obtained this way is a plan for Π′. It is easy
to show that p′ also achieves the goals.

Conversely, if Π′ has a plan p′, there also exists a plan p
for Π. p has operators corresponding to p′ except that the
gaps between the observable operators need to be filled with
τ -operators to reach the internal state r where the next ob-
servable operator o is applicable. Since ur is true when ap-
plying o′ in p′, by Lemma 1, there is always a sequence of τ∗
that leads to r. By Lemma 2, the result of applying τ∗o and
o′ will be the same. By Theorem 1, the choice of τ∗ doesn’t
matter. Hence, p is a plan for Π

4 ε-Group Axioms

Our next method identifies a class of redundant fluents
whose values can be determined from the other fluents, and
express them as secondary variables. For example, in blocks,
whether or not block a’s surface is clear can be inferred from
the on relationships among the blocks (clear(a)←not hold-
ing(a), not on(b,a)...).

We now propose a new algorithm which transforms
“inessential” variables such as clear(a) into secondary vari-
ables whose values are determined by a new type of ax-
iom, ε-axioms. Since identifying all inessential variables is
computationally too hard, we capture a particular subset of
those variables using exactly-1 invariants (ε-group) which
has been used in previous works such as (Edelkamp and
Helmert 2000) and (Alcázar and Torralba 2015).

Definition 7. A set of fluents g is an ε-group iff exactly one
member of g is true in every reachable state.

Every SAS+ variable is an ε-group, since variables
have exactly one value at a time, e.g., in blocks vari-
ables for the locations for the block capture the fact that
they must be at exactly one location at time. However,
some ε-groups are not captured by variables. For example,
g={holding(a),on(b,a),...,clear(a)} is an ε-group which does
not correspond to a SAS+ variable. Since exactly one of
g holds, and the fluents other than clear(a) are represented
by other variables, we can derive an axiom [clear(a)← not
holding(a), not on(b,a),...] which determines when block a
is clear. A similar idea can be found in (Haslum 2007),
where clear(a) is replaced with the formula (¬holding(a) ∧
¬on(b,a) ...) instead of axioms.

Unlike in a mutex group, set of fluents of which at most
one is true in every state, at least one of the fluents in an ε-
group must be true. We find ε-groups by iterating through all
of the mutex groups found by the PDDL-to-SAS+ translator
(Helmert 2009) and filtering as follows. A mutex group g
is an ε-group if: (1) One of the fluents is true in the initial
state; and (2) For every operator o that might delete one of
the fluents in g, |del(o,g)| ≤ |add(o,g)|, where add(o,g) and
del(o,g) are a set of fluents in g that o might add and delete,
respectively. The latter constraint ensures that the number of
true fluents in a group never decreases.

Next, we show how to produce a problem with fewer pri-
mary variables using ε-axioms. We first review the widely
used translation procedure from PDDL (STRIPS) to SAS+
by Helmert (2009). The candidates for the SAS+ variables
are mutex groups. The translator first finds the mutex groups
that can be found in tractable time, and then augments ev-
ery such group with the special value “none” It then seeks
to cover the set of all fluents using the fewest mutex+none
groups (subsets of fluents). Since this set covering problem
is NP-hard, Helmert’s algorithm greedily selects the mu-
tex+none group with the largest cardinality until all fluents
are covered. On blocks, this greedy strategy chooses the lo-
cations of the blocks as variables, leaving clear(block) fluents
uncovered. The resulting SAS+ problem has a binary vari-
able for each clear(block) fluent.

Instead of generating SAS+ variables by greedily cov-
ering the fluents using mutex+none groups as in (Helmert

221

2009), we use the following algorithm to seek a SAS+ prob-
lem with the minimal number of primary variables, while
representing inessential variables with axiom. We cover the
fluents with ε-groups, using an integer program (IP). The
key idea is that we can leave one fluent from every ε-group
uncovered, because its value can be determined from other
fluents. Our IP model has the following binary variables:
• yf=1 if and only if a fluent f need not be covered.
• xm=1 if and only if a mutex m is selected to be a variable.
The objective function is min((|E| + 1) ·

∑
m∈M xm +∑

f∈F yf) to minimize the number of primary variables,
breaking ties in favor of less inessential variables. Note that
E, M , and F denote a set of ε-groups, mutex groups and
fluents respectively. There are 2 constraints:
• yf +

∑
m∈M afmxm≥1 for every fluent f where afm

represents if a fluent f is contained in a mutex m. (a flu-
ent have to be covered by a mutex or chosen to be left
uncovered).

•
∑

f∈e yf≤1 for every ε-group e (at most one fluent from
every ε-group can be uncovered). Note that for a fluent f
not in any ε-group, yf=0.

Each uncovered fluent corresponds to a secondary variable
u in the resulting SAS+ problem, whose value is determined
by an ε-axiom [u← not x, not v,...,not z] where x,v and z are
the other fluents in the same ε-group as u.

Combining τ -axioms and ε-axioms Extracting ε-axioms
can sometimes enable τ -axioms extraction. The τ -extraction
algorithms in Sec. 3 can fail to extract τ -axioms due to “su-
perfluous” fluents in the domain. For example, consider the
standard SAS+ formulation of Sokoban, with two actions,

move(from,to): pre(move) = [at-player = from] ∧ clear(to),
eff(move) = [at-player = to] ∧ ¬clear(to) ∧ clear(from),
and;

push(from,to,dest) : pre(push) = [at-player = from] ∧ [at-
stone = to] ∧ clear(dest), eff(push) = [at-player = to] ∧ [at-
stone = dest] ∧ clear(from) ∧ ¬ clear(dest).

In this formulation, the dominance relationship does not
hold between the move/push operators because clear(to)∈
eff(move) (the place the player moved from will be vacant af-
ter the move). Although all of the other effects of move are in
the preconditions of push, clear(to) /∈ pre(push), preventing
the dominance condition (Def. 5) from being satisfied, so the
partition into τ /observable operators fails, preventing axiom
extraction. If we could somehow eliminate clear(to) from
eff(move), we could establish that push dominates move.
Indeed, clear(to) is inessential, since clear(to) is determined
entirely by the locations of the player and stones (clear(to)
← not at-player = loc, not at-stone1 = loc, ..., not at-stonen =
loc). Running ε-axiom extraction before τ -extraction elimi-
nates clear(to), allowing τ -extraction to succeed.

Previously, for τ -axiom extraction, we assumed the orig-
inal SAS+ problem had U=φ and A=φ. To apply τ -axiom
extraction to a problem with ε-axioms, we must deal with
introduced secondary variables U and axioms A. For every
u∈U and internal state r, we introduce a secondary variable
ur, which represents the value of u in internal state r. For
every axiom with u as its head, we make a copy of it for
every ur. A reformulated operator o′∈T̄ has ur in pre(o′)

instead of u.

5 Decoding

A plan p′=o′1, ..., o
′
m for the encoded problem with τ -

axioms Π′ is not necessarily a plan to the original problem
Π. Theorem 3 guarantees we can always decode p′ back to
p. We now show exactly how to do this. From the initial state
of Π, we try to apply operators in p′ in order. Whenever the
current state does not satisfy pre(o′i), we solve a subprob-
lem Πsub with pre(o′i) as its goal, operators restricted to τ -
operators. A plan for Πsub is then inserted before o′i. Unfor-
tunately, since Πsub is a SAS+ problem itself, finding a plan
for it is PSPACE-complete (Bäckström and Nebel 1995).

However, empirically, Πsub is trivially solved for all our
IPC benchmarks (Table 2). Our current implementation
solves the axiom decoding subproblems using Fast Down-
ward (Helmert 2006), using A* with the blind heuristic.
Note that by turning τ -operators into axioms, we lose their
information about cost. Thus, decoding an optimal plan for
Π′ does not mean we will have an optimal plan for Π′.

For a problem only with ε-axioms, we do not need to per-
form decoding at all since the possible transitions do not
change from the original problem.

6 Evaluation of Axiom Extraction

We applied the τ -axiom and ε-axiom extraction algorithms
to all IPC domains (IPC1998-IPC2014), excluding domains
containing conditional effects, and domains with preexisting
derived predicates. Out of duplicate sets of domains (e.g.,
pegsol-[opt11/sat11], pegsol-[opt08/sat08]), we only include
one (in this case, pegsol-opt11). This results in a set of 1442
instances from 44 domains on which we executed axiom ex-
traction (30min., 2GB /instance). Table 1 compares: (1) De-
fault - standard Fast Downward translator (Helmert 2006),
(2) Graph-based τ -axiom extraction, (3) Variable-based τ -
axiom extraction, (4) ε-axiom extraction, and (5) ε-axiom
followed by Variable-based τ -axiom extraction.

Overall, τ -axioms or ε-axioms were found in 22/44 do-
mains, so these axioms are relevant to a substantial frac-
tion of IPC domains. Although variable-based τ -axiom ex-
traction has worst-case exponential runtime complexity, it
is significantly faster than the polynomial-time graph-based
algorithm in practice, and the graph-based algorithm fails
on many instances due to memory exhaustion. On instances
where both methods finished within the resource limit, they
both found the same number of τ -operators. ε-axiom extrac-
tion, which includes a significantly modified PDDL to SAS+
translator, is slightly slower than the default translator.

Although τ -axiom extraction by itself failed on Sokoban
(for the reason explained in Section 4), combination with ε
extraction enables τ -axiom extractions. In the grid domain,
where the player walks around a maze to retrieve the key to
the goal, we identified the player movements as τ -operators
and armempty as an inessential variable – unlike in Sokoban,
these τ -axioms could be found without extracting ε-axioms.
miconic is a elevator domain where we must transport a set of
passengers from their start floors to their destination floors

222

Domain (30min,2GB) Default Graph-based τ Var-based τ ε-Axiom ε-Axiom + Var-based τ
done time done time # τ done time # τ done time # ε done time # τ

Domains with τ -axioms only
miconic(150) 150 0.26 150 1.12 184455/150 150 0.77 184455/150 150 150 0/0 150 0.87 184455/150
pegsol-opt11(20) 20 0.17 20 0.31 660/20 20 0.28 660/20 20 20 0/0 20 0.33 660/20
satellite(36) 34 0.34 18 5.01 45/1 33 0.58 45/1 34 34 0/0 33 0.69 45/1
scanalyzer-opt11(20) 19 0.44 9 5.60 252/1 19 0.69 252/1 19 19 0/0 19 0.87 252/1
tpp(30) 30 0.37 18 3.86 8/4 30 0.56 8/4 30 30 0/0 30 0.68 8/4

Domains with ε-axioms only
barman-opt14(14) 14 0.32 14 0.95 0/0 14 0.49 0/0 14 14 116/14 14 0.57 0/0
blocks(35) 35 0.17 35 0.32 0/0 35 0.27 0/0 35 35 372/35 35 0.33 0/0
depot(22) 22 0.56 19 4.29 0/0 22 0.81 0/0 22 22 824/22 22 1.06 0/0
driverlog(20) 20 0.24 16 1.97 0/0 20 0.38 0/0 20 20 67/20 20 0.45 0/0
freecell(80) 80 0.94 17 12.74 0/0 80 1.38 0/0 80 80 320/80 80 1.67 0/0
mystery(30) 30 0.42 20 4.59 0/0 30 0.65 0/0 30 30 22/15 30 0.77 0/0
parcprinter-opt11(20) 20 0.20 20 0.37 0/0 20 0.31 0/0 20 20 20/20 20 0.37 0/0
parking-opt14(20) 20 0.83 4 12.27 0/0 20 1.31 0/0 20 20 500/20 20 1.58 0/0
rovers(40) 40 0.46 23 3.95 0/0 40 0.65 0/0 40 40 333/40 40 0.78 0/0
storage(30) 30 0.30 20 1.83 0/0 30 0.47 0/0 30 30 810/30 30 0.56 0/0
tidybot-opt14(20) 20 None 0 None 0/0 20 None 0/0 20 20 20/20 20 None 0/0
woodworking-opt11(20) 20 0.39 20 1.27 0/0 20 0.57 0/0 20 20 359/20 20 0.67 0/0

Domains with both ε-axioms and τ axioms
airport(50) 50 2.53 41 7.21 23/6 50 3.02 23/6 50 50 8275/50 50 10.71 23/6
grid(5) 5 0.63 2 8.34 200/2 5 1.08 880/5 5 5 5/5 5 1.36 880/5
gripper(20) 20 0.15 20 0.28 40/20 20 0.25 40/20 20 20 40/20 20 0.29 40/20
sokoban-opt08(30) 30 0.28 30 0.62 0/0 30 0.40 0/0 30 30 1208/30 30 1.42 3176/30
visitall-opt14(20) 20 0.20 20 0.52 80/20 20 0.32 80/20 20 20 20/20 20 0.51 80/20
all(1442) 1439 0.46 1105 2.65 185763 1438 0.71 186443 1439 1439 13311 1438 1.16 189619

Table 1: Axiom extraction results: for each method, done = number of instances where axiom extraction algorithms completed
within resource limit (30min, 2GB), time = average runtime of axiom extraction algorithm(s) among instances where all the con-
figurations completed within resource limit, # τ = sum of τ -operators found / number of instances with τ -operators, # ε = number
of ε-axioms found / number of instances with ε-axioms. 44 Domains, 1442 instances. Axioms were found in 22/44 domains. Due
to space, details are not shown for 22/44 domains where axioms were not found: childsnack-opt14(20), elevators-opt11(20),
floortile-opt14(20), ged-opt14(20), hiking-opt14(20), logistics00(28), logistics98(35), maintenance-opt14-adl(5), movie(30),
mprime(35), nomystery-opt11(20), openstacks-opt14(20), pathways(30), pipesworld-notankage(50), pipesworld-tankage(50),
psr-small(50), schedule(150), tetris-opt14(17), thoughtful-sat14-strips(20), transport-opt14(20), trucks(30), zenotravel(20).

using 1 elevator. Operators for moving the elevator up/down
were identified as τ -operators.

There are ”incidental” τ -axioms which exist in some in-
stances but don’t reflect the structure of the domain, e.g., in
tpp, where trucks move around to buy goods, the easiest in-
stances contain only one truck, and our algorithm identified
operators driving trucks as τ -axioms since all other oper-
ators (buying and loading goods) specify the truck’s loca-
tion. This no longer holds, however, when instances contain
≥2 trucks, because when truck2 loads goods, the location of
truck1 is indeterminate.

7 Improving Planner Performance Using

Extracted Axioms

The main contributions of this paper are the novel meth-
ods for extracting τ -operators and ε-axioms described in the
previous sections. However, having extracted the axioms, a
natural question is whether the axioms can be successfully
exploited to improve planner performance. Thus, in this sec-
tion, we experimentally evaluate the effect of integrating τ -
operators and ε-axioms into several classes of planners.

We evaluate all 22 IPC benchmark domains (732 in-
stances total) for which either τ -operators, ε-axioms, or both
were extracted in at least one instance in the experiment in
Section 6. All experiments are performed on a Xeon E5-
2670 v3, 2.3GHz. and the runtime limits include all steps

of problem solving, including axiom extraction, encoding,
decoding, translation/parsing, and search.

7.1 Model-Based Planners

We evaluate the effect of adding axioms to satisficing,
model-based planners. Although the fastest model-based
planners are SAT-based (Rintanen, Heljanko, and Niemelä
2006), we focus on two model-based approaches with stan-
dard solvers that handle numbers, i.e., Integer Programming
(IP) and Answer Set Programming (ASP), because one of
the primary advantages of a model-based planner is the
ability to add new constraints objectives to the cost func-
tion, facilitating extensions to the classical planning frame-
work, (c.f., (Srivastava et al. 2007)). A standard approach
to model-based planning is to translate a planning problem
instance into a k-step model, where a feasible solution to
the k-step model corresponds to a solution to the original
planning problem with n<k “steps”. A standard, sequential
search strategy first generates a 1-step model (e.g., SAT/IP
model), and attempts to solve it. If it has a solution, then the
system terminates. Otherwise, a 2-step model is attempted,
and so on (Kautz and Selman 1992).

∀ vs. sequential (seq-) semantics and model selection
Adding axioms changes the semantics of a “step” in the k-
step model. As noted by Dimopoulos et al (1997) and Rinta-
nen et al (2006), most model-based planners, including the

223

base IPlan/ASPlan planners we evaluate below, use ∀ se-
mantics , where each “step” in a k-step model consists of
a set of actions which are independent of each other and
can be executed in parallel. In contrast, sequential seman-
tics (seq-semantics) adds exactly 1 action at each step in the
iterative, sequential search strategy. In general, ∀ semantics
is faster than seq-semantics, since ∀ semantics significantly
decreases the # of iterations of the sequential search strategy.

For the axiom-reformulated models, we add a constraint
which restricts the number of actions executed at each step to
1, imposing seq-semantics. This is because a single operator
can have far-reaching effects on derived variables, and estab-
lishing independence with respect to all derived variables af-
fected by multiple operators is nontrivial (future work). seq-
semantics can degrade the performance of axiom-enhanced
planners compared to base planners using ∀ semantics be-
cause seq-semantics usually requires more iterations than ∀
semantics. However, with axioms, a single action can trigger
many axioms (implied actions), so it is possible that solving
axiom-reformulated models can require significantly fewer
steps than a model without axioms. Thus, there is a trade-
off between loss of explicit parallel execution semantics (∀
vs. seq) and the implied parallel execution semantics due to
axioms. In the experiments below, the base planners (IPlan,
ASPlan) use ∀-semantics.

On instances where axioms are not extracted, it is bet-
ter to use ∀ semantics. Thus, the IP/ASP models be-
low with a “+” postfix in the configuration name use a
∀/seq model selection policy : First, execute τ -axiom ex-

traction. If τ -axioms are discovered, then use the axiom en-
hanced, seq-semantics model, otherwise, use the standard
base model (with ∀ semantics), e.g., IPlan(τ, ε)+ first runs
axiom extraction and if τ -axioms are found, then it uses the
axiom-reformulated seq-semantic IPlan(τ, ε) model, other-
wise, it uses the standard ∀-semantic IPlan model.

The model selection policy can make mistakes, resulting
in poor performance compared to the “correct” model selec-
tion for each problem. Thus, we also evaluate an ideal model
selection policy which selects the best model out of: (1) the
base planner (∀ semantics), (2) τ -enhanced (seq-semantics),
(3) ε-enhanced (seq), (4) τ ,ε-enhanced (seq). It retrospec-
tively selects the best result out of the 4 models, representing
an upper bound achievable using perfect model selection.

Integer Programming Our baseline IP-based planner,
which we call IPlan (Miura and Fukunaga 2017), is based
on the state change variable model, where the variables rep-
resent changes in state values (Vossen et al. 1999). The state
change variable model was the basis of Optiplan (van den
Briel and Kambhampati 2005), which incorporated variable
elimination based on a relaxed planning graph. IPlan im-
proves upon Optiplan by adding some additional, straight-
forward mutex constraints.

Axioms can be integrated into an IP-based
model, as follows: Given an axiom of the form
a←b1, ..., bm, notc1, ..., notcm, the corresponding nor-
mal logic program (NLP) Pt for time step t, is the rule:

xsat
a,t←xsat

b1,t, ..., x
sat
bn,t, notx

sat
c1,t, ..., notx

sat
cm,t (1)

where xsat
f,t is an auxiliary boolean variable which denotes

Figure 2: Makespan (n) comparison per instance for IPlan
vs. IPlan(τ, ε)+.

whether f is true at step t. The models for Pt correspond
to the truth values for the derived variables. Each NLP Pt

is then translated to a integer program (IP) using the method
by Liu, Janhunen, and Niemeiä (2012), and these linear con-
straints are added to the IPlan model.

We compared the following: (1) SCV (a reimplementa-
tion of Optiplan (van den Briel and Kambhampati 2005)) 1,
(2) IPlan (IPlan with ∀ semantics), (3) IPlanS (IPlan with
seq-semantics), (4) IPlan(τ) (τ -axiom extraction only), (5)
IPlan(τ)+ (τ -axiom extraction + ∀/seq-model selection), (6)
IPlan(ε) (ε-axiom extraction only), (7) IPlan(τ, ε) (both ε and
τ -axiom extraction), (8) IPlan(τ, ε)+ (IPlan(τ, ε) + ∀/seq
model selection), and (9) IPlan(τ, ε)∗ (ideal model selec-
tion). The IP models are solved using Gurobi Optimizer
6.5.0 (single-threaded, 5min., 2GB RAM per problem.

Table 2 shows that IPlan(τ, ε)+ achieves significantly
higher coverage than the baseline models (SCV, IPlan,
IPlanS). Switching from ∀ semantics (IPlan) to seq-
semantics (IPlanS) significantly degrades performance, but
the performance boost due to axioms more than compen-
sates for this loss. Improvements due to axioms are particu-
larly apparent on gripper, miconic, pegsol and Sokoban. Al-
though most of the improvements are due to τ -axioms, the
utility of ε-axioms is shown by the improved coverage of
IPlan(ε) on blocks compared to the baseline. There is strong
synergy between ε-extraction and τ -extraction (Sec. 4), and
as a result, IPlan(τ, ε) significantly improves coverage on
gripper and Sokoban compared to IPlan(ε) and IPlan(τ). The
coverage gap between IPlan(τ, ε)+ and IPlan(τ, ε)∗ is only
6, so the ∀/seq-model selection is quite successful for IPlan.

As shown in Fig. 2 and Table 2, the value for n (the
step at which the solution was found) is usually smaller
with axioms than without. On the other hand, since IPlan
with axioms is constrained to use sequential semantics (1
action/layer), while IPlan uses ∀ semantics (multiple inde-

1We could not use the original Optiplan code because it depends
on an outdated ILOG Concert API which is no longer supported in
recent CPLEX releases.

224

Domain SCV Iplan IplanS Iplan(ε) Iplan(τ) Iplan(τ, ε) Iplan(τ)+ Iplan(τ, ε)+ (τ, ε)∗
n # n # n # n # n d # n d # n d # n d

Domains with τ -axioms only
miconic(150) 28 9.04 29 9.04 25 10.44 25 10.44 65 5.80 1.28 65 5.80 1.28 65 5.80 1.28 65 5.80 1.28 65
pegsol-opt11(20) 1 16.00 1 16.00 2 16.00 2 16.00 17 14.00 1.11 17 14.00 1.12 16 14.00 1.11 17 14.00 1.18 17
satellite(36) 8 8.67 8 8.67 3 11.00 3 11.00 3 9.00 0.27 3 9.00 0.26 8 7.00 0.24 8 7.00 0.26 8
scanalyzer-opt11(20) 11 4.33 11 4.33 4 7.67 3 7.67 3 7.33 0.22 3 7.33 0.22 11 4.00 0.21 11 4.00 0.22 11
tpp(30) 10 5.40 12 5.40 5 11.40 5 11.40 5 9.80 0.40 5 9.80 0.39 12 7.40 0.38 12 7.40 0.40 12

Domains with ε axioms only
barman-opt14(14) 0 None 0 None 0 None 0 None 0 None None 0 None None 0 None None 0 None None 0
blocks(35) 16 15.75 28 15.75 28 15.75 32 15.75 28 15.75 None 32 15.75 None 28 15.75 None 28 15.75 None 32
depot(22) 7 6.50 11 6.50 2 12.50 2 12.50 2 12.50 None 2 12.50 None 11 6.50 None 11 6.50 None 11
driverlog(20) 11 6.00 11 6.00 4 10.75 4 10.75 4 10.75 None 4 10.75 None 11 6.00 None 11 6.00 None 11
freecell(80) 18 6.00 18 6.00 7 9.14 9 9.14 9 9.14 None 10 9.14 None 18 6.00 None 18 6.00 None 18
mystery(30) 13 5.09 16 5.09 14 5.45 13 5.45 12 5.45 None 12 5.45 None 16 5.09 None 16 5.09 None 16
parcprinter-opt11(20) 20 11.18 20 11.18 11 27.64 11 27.64 12 27.64 None 11 27.64 None 20 11.18 None 20 11.18 None 20
parking-opt14(20) 0 None 0 None 0 None 0 None 0 None None 0 None None 0 None None 0 None None 0
rovers(40) 18 5.00 21 5.00 4 9.25 4 9.25 4 9.25 None 4 9.25 None 21 5.00 None 21 5.00 None 21
storage(30) 9 6.14 9 6.14 7 6.71 7 6.71 7 6.71 None 7 6.71 None 9 6.14 None 9 6.14 None 9
tidybot-opt14(20) 0 None 0 None 0 None 0 None 0 None None 0 None None 0 None None 0 None None 0
woodworking-opt11(20) 20 3.10 20 3.10 10 14.30 10 14.30 10 14.30 None 10 14.30 None 20 3.10 None 20 3.10 None 20

Domains with both ε axioms and τ axioms
airport(50) 13 15.14 15 15.14 7 16.29 7 16.29 7 16.29 0.05 7 16.29 0.06 15 15.14 0.05 15 15.14 0.06 15
grid(5) 0 None 1 None 1 None 1 None 1 None 0.55 1 None 0.56 1 None 0.54 1 None 0.56 1
gripper(20) 4 9.00 4 9.00 2 14.00 2 14.00 8 10.00 1.37 12 10.00 2.01 8 10.00 1.29 12 10.00 1.99 12
sokoban-opt08(30) 0 None 0 None 0 None 1 None 0 None None 5 None 1.00 0 None None 5 None 1.00 5
visitall-opt14(20) 3 22.50 3 22.50 4 22.50 4 22.50 3 22.00 0.11 2 22.00 0.08 3 22.00 0.12 2 22.00 0.09 4
all(732) 210 9.01 238 9.01 140 12.93 145 12.93 200 11.75 1.09 212 11.75 1.18 293 8.36 1.09 302 8.36 1.19 308

Table 2: IPlan Results: for each method, #= number of instances solved within resource limit (5min, 2GB), n = avg. makespan
(the first step the solution was found) for instances solved by all configurations, decode = avg. time needed for decoding

pendent actions per step), it is possible for IPlan to solve
problems in fewer steps than IPlan+axioms (e.g., in the grip-
per domain, where n is larger for IPlan with axioms among
problems solved by both IPlan with/without axioms).

Answer Set Programming We use ASPlan (Miura and
Fukunaga 2017) which uses a SAS+ adopted encoding of
(Gebser, Kaufmann, and Schaub 2012).

The extracted axioms are directly expressible in ASP. We
use clingo4.5.4, a state-of-the-art ASP solver (Potassco
2016) to solve the ASP models. We compared (1) AS-
Plan (base), (2) ASPlanS, (3) ASPlan(τ), (4) ASPlan(τ, ε),
(5)ASPlan(ε), (6) ASPlan(τ, ε)+, and (7) ASPlan(τ, ε)∗.
These configurations are analogous to the IPlan configura-
tions evaluated above.

As shown in Table 3, ASPlan(τ, ε)+ solved more prob-
lems than ASPlan on the grid, miconic, pegsol, Sokoban do-
mains. In addition, ASPlan(ε) solved more problems than
both ASPlan and ASPlan(τ, ε)+ on blocks, freecell, mystery,
visitall. ASPlan(τ, ε)∗ has a coverage of 263, significantly
higher than all other configurations. This indicates that im-
proving the model selection heuristic can result in better us-
age of axiom extraction, and is a direction for future work.

7.2 Forward Search Planning

We ran Fast Downward (Helmert 2006) planner (30 min.,
2GB RAM per instance) using A* search with a blind
heuristic with and without axioms on the domains with τ -
axioms. As shown in Figure 3, the number of nodes ex-
panded for sokoban-opt08, miconic, and grid are smaller
with extracted axioms than the number of nodes expanded
without axioms, i.e., search efficiency improved with axioms.
However, so far, we have not found a forward search plan-
ner which handles derived predicates and outperforms the
baseline search with respect to runtime when run on our
τ+ε axiom-reformulated problems. Due to nontrivial inter-

Figure 3: Number of nodes expanded by Fast Downward A*
(blind heuristic) with and without extracted axioms.

actions between axioms and heuristics, developing a forward
search-based planner which runs faster using an axiom-
reformulated domain is a direction for future work.2

2Thiébaux, Hoffmann, and Nebel (2005) compare the perfor-
mance of directly supporting derived predicates vs. using compiled
axioms (which adds an exponential number of variables to the do-
main or results in a significantly longer plan); this is different from
comparing a standard domain vs the axiom-reformulated version
of that domain. Ivankovic and Haslum (2015b) evaluates the # of
instances solved vs. the # of search steps.

225

Domain (5min, 2GB) ASPlan ASPlanS ASPlan(ε) ASPlan(τ, ε) ASPlan(τ, ε)+ (τ, ε)∗
n # n # n # n decode # n decode

Domains with both ε axioms and τ axioms
miconic(150) 35 9.90 29 11.69 29 11.69 40 6.66 0.68 40 6.66 0.69 40
pegsol-opt11(20) 3 18.50 3 18.50 3 18.50 4 14.50 0.88 4 14.50 0.88 4
satellite(36) 11 9.00 4 12.50 4 12.50 4 11.00 0.25 11 7.75 0.26 11
scanalyzer-opt11(20) 5 5.50 3 7.50 3 7.50 3 7.00 0.55 5 5.00 0.55 5
tpp(30) 15 5.40 5 11.40 5 11.40 5 9.80 0.28 16 7.40 0.28 16

Domains with ε-axioms only
barman-opt14(14) 0 None 0 None 0 None 0 None None 0 None None 0
blocks(35) 18 16.78 18 16.78 29 16.78 30 16.78 None 18 16.78 None 30
depot(22) 9 6.50 2 12.50 2 12.50 2 12.50 None 9 6.50 None 9
driverlog(20) 14 6.86 7 13.71 7 13.71 7 13.71 None 14 6.86 None 14
freecell(80) 1 5.00 7 8.00 7 8.00 7 8.00 None 1 5.00 None 7
mystery(30) 9 5.11 16 5.56 16 5.56 16 5.56 None 9 5.11 None 16
parcprinter-opt11(20) 20 9.50 4 17.25 4 17.25 4 17.25 None 20 9.50 None 20
parking-opt14(20) 0 None 0 None 0 None 0 None None 0 None None 0
rovers(40) 23 5.00 4 9.25 4 9.25 4 9.25 None 23 5.00 None 23
storage(30) 14 7.60 10 8.80 11 8.80 11 8.80 None 14 7.60 None 14
tidybot-opt14(20) 0 None 0 None 0 None 0 None None 0 None None 0
woodworking-opt11(20) 20 3.00 3 11.50 2 11.50 2 11.50 None 20 3.00 None 20

Domains with both ε-axioms and τ -axioms
airport(50) 18 17.09 11 24.73 11 24.73 11 24.73 0.06 18 17.09 0.06 18
grid(5) 0 None 2 None 2 None 3 None 1.06 3 None 1.05 3
gripper(20) 3 9.00 2 14.00 2 14.00 3 10.00 0.59 3 10.00 0.57 3
sokoban-opt08(30) 3 45.00 4 45.00 4 45.00 6 10.00 1.25 6 10.00 1.22 6
visitall-opt14(20) 4 23.33 4 23.33 4 23.33 3 22.67 0.10 3 22.67 0.10 4
sum(732) 225 11.55 138 14.42 149 14.42 165 12.01 0.65 237 9.83 0.65 263

Table 3: ASPlan Results: for each method, #= number of instances solved within resource limit (5min, 2GB), n = avg. makespan
(the first step the solution was found) for instances solved by all configurations, decode = avg. time needed for decoding

7.3 Other Planners

There are few existing satisficing that fully handle axioms
as defined in Def. 1. Although our definition of axioms in
Def. 1 is a general one used by other work (Helmert 2006;
Ivankovic and Haslum 2015b), (e.g., Fast Downward sup-
ports our definition), The version of PDDL used in IPC-4
only supported a more limited form which does not allow
negated derived predicates to appear in other axioms. Thus
planners such as FF-x (Thiébaux, Hoffmann, and Nebel
2005) and LPG-td (Gerevini, Saetti, and Serina 2011) from
that time cannot handle ε-axioms, and as a result, some τ -
axioms can not be extracted (Sec. 4).

For example, LPG-td is a local-search based planner
which handles derived predicates (Gerevini, Saetti, and Se-
rina 2011). Due to the limitations explained above, the ε-
axioms can not be extracted, and τ -axioms can only be par-
tially extracted. Nevertheless, we evaluated the performance
of LPG-td on the (partial) τ -axiom-reformulated domains
vs the performance of LPG-td on the original domains. This
usually results in slightly worse performance than the base
planner, which is to be expected. Despite this, LPG-td cov-
erage increases from 3 to 20 on pegsol-sat11, and 4 to 5 on
tpp, so partial τ -extraction is useful on some domains. FF-
X is a version of Fast Forward (Hoffmann and Nebel 2001)
which supports axioms. We also tried evaluating FF-X, with
partial τ -extraction, but did not obtain any positive results.

8 Conclusions

We proposed novel methods for automatically identifying
and extracting two classes of axioms, τ -axioms and ε-
axioms, from standard SAS+ models without explicit ax-
ioms. While previous work focused on axioms as a domain
modeling tool which improves expressivity , our work shows
that starting from a standard domain model which does not
include axioms, we can successfully extract derived predi-
cates in a standard domain without axioms and then exploit
this to improve search performance. The domains on which
our system improved planner performance were not origi-
nally designed using derived predicates and axioms, show-
ing that natural, PDDL models sometimes contain derived
variables, and our automated reformulation results in a “bet-
ter” model than the original, human-designed models.

References

Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning.
In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, 2–6.
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards a
theory of declarative knowledge. Foundations of Deductive
Databases and Logic Programming 89–148.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Barrett, A.; Christianson, D.; Friedman, M.; Kwok, C.;

226

Golden, K.; Penberthy, S.; Sun, Y.; and Weld, D. 1995.
UCPOP users manual. Technical Report TR93-09-06d, Uni-
versity of Washington, CS Department.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Journal of Arti-
ficial Intelligence Research 28:119–156.
Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encod-
ing planning problems in nonmonotonic logic programs. In
Proceedings of the 4th European Conference on Planning:
Recent Advances in AI Planning, 169–181.
Edelkamp, S., and Helmert, M. 2000. Exhibiting knowledge
in planning problems to minimize state encoding length. In
Proceedings of 5th European Conference on Planning: Re-
cent Advances in AI Planning, 135–147.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th International Plan-
ning competition. Technical Report Technical Report 195,
Albert-Ludwigs-Universitt Freiburg, Institut fr Informatik,
2004.
Gebser, M.; Kaufmann, R.; and Schaub, T. 2012. Gearing up
for effective asp planning. In Correct Reasoning. Springer.
296–310.
Gelfond, M., and Kahl, Y. 2014. Knowledge Representa-
tion, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. Cambridge University
Press.
Gerevini, A.; Saetti, A.; and Serina, I. 2011. Planning in
domains with derived predicates through rule-action graphs
and local search. Annals of Mathematics and Artificial In-
telligence 62(3-4):259–298.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In Proceedings of the 20th international joint
conference on Artifical intelligence, 1898–1903.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5):503–
535.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Ivankovic, F., and Haslum, P. 2015a. Code supplement for
”optimal planning with axioms. http://users.cecs.anu.edu.
au/∼patrik/tmp/fd-axiom-aware.tar.gz.
Ivankovic, F., and Haslum, P. 2015b. Optimal planning with
axioms. In Proceedings of the 24th International Conference
on Artificial Intelligence, 1580–1586.
Kautz, H., and Selman, B. 1992. Planning as satisfiability. In
Proceedings of the 10th European Conference on Artificial
Intelligence, 359–363.
Liu, G.; Janhunen, T.; and Niemeiä, I. 2012. Answer set pro-
gramming via mixed integer programming. In Proceedings
of the Thirteenth International Conference on Principles of
Knowledge Representation and Reasoning, 32–42.

Manna, Z., and Waldinger, R. J. 1987. How to clear a
block: A theory of plans. Journal of Automated Reasoning
3(4):343–377.
Miura, S., and Fukunaga, A. 2017. Axioms in model-based
planners. https://arxiv.org/abs/1703.03916.
Potassco. 2016. The University of Potsdam Answer
Set Programming collection (Potassco). http://potassco.
sourceforge.net/.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence, 2016–2022.
Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing 1(2):146–160.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1):38–69.
van den Briel, M. H. L., and Kambhampati, S. 2005. Opti-
plan: Unifying ip-based and graph-based planning. Journal
of Aritificial Intelligence 24(1):919–931.
Vossen, T.; Ball, M. O.; Lotem, A.; and Nau, D. S. 1999. On
the use of integer programming models in AI planning. In
Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, 304–309.

227

