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Abstract

The introduction of the concept of state novelty has advanced
the state of the art in deterministic online planning in Atari-
like problems and in planning with rewards in general, when
rewards are defined on states. In classical planning, however,
the success of novelty as the dichotomy between novel and
non-novel states was somewhat limited. Until very recently,
novelty-based methods were not able to successfully compete
with state-of-the-art heuristic search based planners.
In this work we adapt the concept of novelty to heuristic
search planning, defining the novelty of a state with respect
to its heuristic estimate. We extend the dichotomy between
novel and non-novel states and quantify the novelty degree of
state facts. We then show a variety of heuristics based on the
concept of novelty and exploit the recently introduced best-
first width search for satisficing classical planning. Finally,
we empirically show the resulting planners to significantly
improve the state of the art in satisficing planning.

Introduction

Informative and fast heuristics as well as search-boosting
and pruning techniques are crucial for the performance of
heuristic search based planners. Recent years have seen
considerable advancements in satisficing planning with the
introduction of state-of-the-art heuristics (Keyder, Hoff-
mann, and Haslum 2014; Domshlak, Hoffmann, and Katz
2015), search boosting with multiple queues (Richter and
Helmert 2009; Richter and Westphal 2010; Xie et al. 2014;
Valenzano et al. 2014), and of states pruning techniques
(Domshlak, Katz, and Shleyfman 2013; Lipovetzky and
Geffner 2012). One such technique is based on the con-
cept of novelty of a state, where the search procedure prunes
nodes that do not qualify as novel. The concept has been
successfully exploited in classical planning via SIW+ and
DFS(i) search algorithms and in heuristic search, in con-
junction with helpful actions (Lipovetzky and Geffner 2012;
2014; 2017). Novelty-based pruning was also successfully
applied to blind state-space search for deterministic on-
line planning in Atari-like problems (Lipovetzky, Ramirez,
and Geffner 2015), where it was later generalized to ac-
count for rewards (Shleyfman, Tuisov, and Domshlak 2016;
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Jinnai and Fukunaga 2017). The latter work, although ap-
plied to Atari-like problems, is valid for planning with re-
wards in general, when rewards are defined on states.

In this work, we bring the concept of novelty back to
heuristic search, which is guided by heuristic estimates of
states rather than by rewards. We thus adapt the novelty
definition of Shleyfman, Tuisov, and Domshlak (2016) to
a novelty of a state with respect to its heuristic estimate.
Specifically, we present the theoretical grounds for defin-
ing the novelty of states with respect to their heuristic esti-
mates. Focusing on the individual facts, we start by intro-
ducing the dichotomic novelty notion per fact (rather than
per state) and use it to quantify the novelty degree of states.
This allows us not only to separate the novel states from the
non-novel ones, which was the rationale behind the previous
usage of novelty both in classical planning and in planning
with rewards, but also to separate the novel states based on
the degree of their novelty, and even to separate the non-
novel states. Going even further, we quantify the contribu-
tion of the individual facts to the state novelty, extending
the dichotomic notion. Our novelty notion is no longer used
solely for pruning search nodes, but rather as a preference.
We obtain new heuristic functions that are used for node or-
dering in a queue. Since these estimates are essentially goal-
unaware, they can not be used as a single heuristic guidance
to a best first search. Subsequently, we use novelty estimates
to guide the search, breaking ties by classical goal-aware
heuristic functions (Lipovetzky and Geffner 2017).

The rest of the paper is structured as follows. The back-
ground section presents the classical planning formalism and
the definition of reward novelty (Shleyfman, Tuisov, and
Domshlak 2016) which we build upon. The next section
presents the theoretical grounds for defining the novelty of
states with respect to their heuristic estimates. Next, we
discuss the various possibilites of exploiting novelty esti-
mates within the heuristic search framework. The experi-
mental section presents an extensive empirical investigation
of various novelty estimates and base heuristics, showing
the benefits of exploiting novelty in practice. Next, we re-
late our work to a recently introduced notion of novelty of
a state with respect to its heuristic estimate (Lipovetzky and
Geffner 2017), discussing the similarities and the differences
between the methods. Finally, we conclude and discuss pos-
sible future directions and prospects.
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Background

We consider classical planning tasks Π = 〈V ,O, s0, s�〉
captured by the well-known SAS+ formalism (Bäckström
and Nebel 1995). In such a task, V is a set of finite-domain
state variables, with each variable v ∈ V being associated
with a finite domain D(v) of variable values. A state is a
complete assignment to V , and S =

∏
v∈V D(v) is the state

space of Π. The complete assignment s0 is the initial state
of Π and the partial assignment s� is the goal of Π. A state
s is a goal state, denoted by s ∈ Ss� , iff s� ⊆ s. O is a finite
set of operators, each given by a pair 〈pre, eff 〉 of partial as-
signments to V , called preconditions and effects. Applying
an operator o in a state s results in a state denoted by s�o�.
For a variable v ∈ V and a state s, the value of v in s is
denoted by s[v]. For a variable v ∈ V and a value ϑ ∈ D(v),
the pair 〈v, ϑ〉 is called a fact, and the set of all facts of Π
is denoted by IF. We sometimes slightly abuse the notation
and refer to a state s as to a set of facts, where f ∈ s iff
f = 〈v, s[v]〉 for some v ∈ V .

As our work was inspired by the novelty in the scope of
blind search with rewards for the Atari-like framework (Sh-
leyfman, Tuisov, and Domshlak 2016), we present here the
definition of novelty of a reward seen so far by Shleyfman,
Tuisov, and Domshlak (2016). We reformulate the definition
here in order to show how our definition relates to this one.

Definition 1 (Reward Novelty) Given a reward function
R : S �→ R

0+ and a set of states seen so far S, the nov-
elty score of a fact (variable value) f is defined as

N(f, S,R) =

{
max

s∈S,f∈s
R(s), f ∈ s for some s ∈ S

−∞, otherwise.

Then, a state s is considered to be novel iff R(s) >
N(f, S,R) for some f ∈ s.

Although the definition is more general, covering sets of
facts, for the sake of readability we restrict our attention here
to individual facts.

Novelty Heuristics for Classical Planning

Our focus in this work is on classical planning as heuristic
search. Thus, we start by adapting the aforementioned def-
inition of novelty of a reward to heuristic search setting as
follows.

Definition 2 (Heuristic Novelty) Given a heuristic func-
tion h : S �→ R

0+ and a set of states seen so far S, the
novelty score of a fact (variable value) f is defined as

N(f, S, h) =

{
min

s∈S,f∈s
h(s), f ∈ s for some s ∈ S

∞, otherwise.

Given a state s, the novelty score of a fact f in state s is
defined as N(f, s, S, h) = N(f, S, h)− h(s) if f ∈ s.

We say that a fact is novel in state s if its novelty score in
s is strictly positive, and that a state is novel if it contains at
least one novel fact. In what follows, we sometimes do not

mention the heuristic h and the set of states seen so far S
in the notation, where these are clear from the context, e. g.,
writing N(f) instead of N(f, S, h) and N(f, s) instead of
N(f, s, S, h). Our goal here is to define heuristic functions
based on a novelty score of facts in a state. Based on the
definitions so far, we could define a variety of heuristics. Our
first definition is rather basic, separating novel states from
the rest. A heuristic hBN(s) is therefore defined as follows.

hBN(s) =

{
0, ∃f ∈s, N(f, s) > 0

1 otherwise.
(1)

This heuristic corresponds to the definition of novelty by Sh-
leyfman, Tuisov, and Domshlak (2016) and presents a ba-
sic dichotomy between states that are novel and those that
are not. It is worth mentioning already here that even such
a simplistic dichotomy leads to remarkable empirical im-
provements.

Observe that the domain of values hBN can possibly ob-
tain is extremely limited, hBN stands for binary novel heuris-
tic. All novel states are treated by the heuristic exactly the
same. To alleviate the problem, we suggest to differentiate
between novel states based on the number of novel facts in
those states. Since heuristic functions are typically built to
prefer lower values, the quantified novel heuristic hQN is de-
fined by

hQN(s) = |V| −
∑
f∈s

N+(f, s), (2)

where N+(f, s) is 1 when N(f, s) > 0 and 0 otherwise.
Similarly, let N -(f, s) be 1 when N(f, s) < 0 and 0
otherwise. Note that hQN, as well as hBN separate novel
states from non-novel ones. The difference between the two
heuristics is that hBN does not separate novel states from
each other, while hQN does. Both hQN and hBN do not sepa-
rate non-novel states though. Thus, hQN dominates hBN in its
informativeness (assuming the same set of states seen so far
S).

Our next heuristic is designed to separate non-novel states
as well. For that, we account both for the number of possi-
tive and negative values N(f, s). The quantified both novel
and non-novel heuristic hQB is defined as

hQB(s) =

⎧⎨
⎩
hQN(s), hQN(s) < |V|
|V|+∑

f∈s

N -(f, s), otherwise. (3)

Note that hQB dominates hQN in terms of informativeness,
separating more states.

Quantifying Novelty Facts

The estimates we derived so far accounted only for whether
the facts of the evaluated state are novel, assigning to each
fact either 0 or 1. Similarly to how hQN and hQB extend the
dichotomy between novel and non-novel states of hBN, we
would like to extend the dichotomy between novel and non-
novel facts given by N+(f, s) and N -(f, s). Our aim here
is to account for the value of N(f, s), rather than merely for
its sign. We present one variant of such extension, allowing
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(a) (b) (c)

Figure 1: Evaluated nodes for (a) hFF
BN vs. hFF, (b) hFF

QN vs. hFF
BN, and (c) hFF

QB vs. hFF
QN.

each fact to accept a range of values K = {0, . . . , k} for
some predefined constant k. We do that by mapping N(f, s)
to K via a simple function, setting

N+
k (f, s) =

⎧⎪⎨
⎪⎩
k N(f, s) =∞[
k×N(f,s)

Ms

]
, 0 < N(f, s) <∞

0, otherwise,

(4)

and

N -
k(f, s) =

{
−
[
k×N(f,s)

Ms

]
, N(f, s) < 0

0, otherwise,
(5)

where Ms is sufficiently large to warrant the image is within
the range. The quantified facts heuristic hQF is then defined
as follows. Let Nop

k (s) =
∑
f∈s

Nop
k (f, s), where op ∈ {+,-}.

Then

hQF(s) =

{
k|V| −N+

k (s), N+
k (s) > 0

k|V|+N -
k(s), otherwise.

(6)

Having Ms := max(N(f), h(s)) would result in a fact nov-
elty score representing relative difference between the best-
so-far heuristic value and the current one, while having Ms

being the same for all states would represent the absolute
difference. However, taking Ms to be too large would re-
sult in most facts obtaining values closer to 0 than to k. It is
unclear how to obtain sufficently small, while still feasible
constants. In our experiments, we chose to use the max-
imal base heuristic value observed so far (excluding dead
ends). While not constant, this number rarely considerably
increases during search and thus effectively allows us to ob-
tain an absolute difference.

Multiple Base Estimators

Exploiting multiple estimators during search is a common
practice in heuristic search planning, and many state of
the art heuristic search planners exploit alternation between
multiple queues (Richter and Westphal 2010; Katz and Hoff-
mann 2014). Each of the estimators can be enhanced by

the novelty heuristic. However, different estimators can give
different novelty scores to the same state, and what is the
best way to integrate these scores is an open question. In
what follows, we suggest a simple adaptation of the novelty
heuristic to describe the novelty of a set of base estimators.

Definition 3 Given a set of states seen so far S, a set of
heuristic functions H = {h1, . . . , hn | hi : S �→ R

0+}, and
a state s, the novelty of a fact f in state s is defined as

N(f, s, S,H) = max
h∈H

N(f, s, S, h) if f ∈ s.

The heuristic functions hBN, hQN, hQB, and hQF defined
in Eqs. 1–6 are obtained by replacing N(f, s, S, h) with
N(f, s, S,H).

Exploiting Novelty Heuristic in Search

Note that our novelty heuristics are not goal-aware. Further,
they all give a score of 0 to the initial state. Such heuristics
are not meant to be used as a sole search guidance in a best
first search, but rather together with an additional heuristic,
that guide the search towards the goal. In what follows, we
use the base heuristic function h as such guidance, especially
since we have already paid the price of computing h.

There are several mechanisms that allow for co-exploiting
several heuristic guidances in a single search. The two most
well-known are alternation between multiple queues, hence-
forth denoted by [x, y], and tie breaking. Naturally, for tie
breaking, the order in which the ties are broken is extremely
important. If the base heuristic is used first, breaking ties by
a novelty heuristic, then the novelty heuristic will come into
play only on the plateaus of the base heuristic, resulting in a
similar behavior to a search with the base heuristic only.

In this work, our goal is different, we want to guide the
search to examine novel states first. For that, we use the
greedy best first search algorithm, using novelty heuristic
as an initial heuristic, breaking ties by the base heuristic1.

1Such scheme was also called best first width search (BFWS)
(Lipovetzky and Geffner 2017).
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This will essentially result in the same behaviour as if we de-
fined several sequential queues to choose from. The heuris-
tic hBN(s) basically emulates two queues, for novel states
and for the rest, choosing from the non-novel queue only if
the novel queue is empty. The heuristic hQN emulates |V|+1
queues, while hQB(s) emulates 2|V| + 1 queues. Note that
using hQF allows to somewhat control the number of queues,
varying the parameter k, getting up to 2k|V| + 1 queues.
Having too many queues, however, is a rather undesired be-
havior, since in the extreme case of all states having different
heuristic values, the search is guided solely by the novelty
heuristic, which as noted above, is not goal aware.

Experimental Evaluation
In order to evaluate the impact our novelty definition has on
heuristic search planning, we implemented the three afore-
mentioned heuristics within the Fast Downward planning
framework (Helmert 2006). Our code is available upon
request. All experiments are performed on an Intel(R)
Core(TM) i7-3740QM CPU @ 2.70GHz, with a timeout of
30 minutes and a memory bound of 2GB, over the bench-
mark of STRIPS problems from the International Planning
Competitions up to 2011.

First, we examine the effect of novelty on a single heuris-
tic in a greedy best first search (GBFS) with lazy eval-
uation and no search enhancements such as helpful ac-
tions/preferred operators. We evaluate our four novelty vari-
ants hBN, hQN, hQB , and hQF on the commonly used heuris-
tics FF (hFF) (Hoffmann and Nebel 2001), landmarks count
(hLM) (Porteous, Sebastia, and Hoffmann 2001), and goal
count (hGC) (Fikes and Nilsson 1971). In what follows, we
depict by hX

Y the novelty heuristic where Y is the novelty
variant and X is the base heuristic. We denote the tie break-
ing scheme by h1|h2| . . . |hn. Further, since in what follows
the novelty heuristic is always used as a first heuristic, break-
ing ties by other heuristics, hX

Y also depicts the tie breaking
scheme where the novelty heuristic is the first heuristic and
the ties are broken by the base heuristic X . For example,
hFF

BN describes the configuration where hBN of hFF is a first
heuristic, tie breaking by hFF, otherwise written by hFF

BN|hFF.
Table 1 depicts the per-domain coverage results for our

first three variants of the novelty heuristic with hFF and
hLM. Observe first that all novelty configurations perform
much better in terms of the overall coverage than the base
configurations hFF and hLM, with the maximal difference
of 195 tasks for the best configuration hFF

QB. Focusing first
on the leftmost part of the table, first four columns that
presents results for hFF and the first three novelty variants
with hFF being the base heuristic, observe that there are mul-
tiple domains with a massive increase in coverage, such
as PIPESWORLD-TANKAGE (18 tasks), ROVERS, TRANS-
PORT08, and VISIT-ALL (17 tasks each), BARMAN and
PARKING (13 tasks each), PATHWAYS and PIPESWORLD-
NOTANKAGE (12 tasks each), TRANSPORT11 (11 tasks),
and TPP (10 tasks). Domains with a more “modest” in-
crease include AIRPORT, PARC-PRINTER11, and TRUCKS
(8 tasks each), as well as STORAGE (7 tasks), DEPOTS
and NOMYSTERY (6 tasks each), MPRIME and PARC-
PRINTER08 (4 tasks each). There are also domains where

Coverage hFF hFF

BN hFF

QN hFF

QB hFF

QF hLM hLM

BN hLM

QN hLM

QB

airport 50 31 39 38 39 50 29 32 32 37
barman11 20 4 14 14 17 9 20 13 13 13
depot 22 15 18 20 21 20 14 18 19 19
driverlog 20 18 20 20 20 20 18 18 18 19
elevators08 30 11 10 10 9 11 23 30 30 27
elevators11 20 0 0 0 0 0 5 10 10 10
floortile11 20 8 7 6 6 8 0 0 0 0
freecell 80 80 79 80 79 79 80 80 80 80
grid 5 4 5 5 5 4 4 4 4 5
logistics98 35 24 25 25 25 20 13 16 16 16
mprime 35 31 35 35 35 35 18 20 19 19
mystery 30 18 19 19 19 19 13 12 12 12
nomystery11 20 8 12 12 14 14 12 16 17 17
openstacks08 30 6 6 6 6 6 30 30 30 30
openstacks11 20 0 0 0 0 0 20 20 20 20
openstacks 30 30 30 30 30 24 30 30 30 30
parcprinter08 30 23 27 27 27 28 28 29 27 30
parcprinter11 20 7 15 15 15 16 18 19 19 19
parking11 20 7 20 20 20 6 0 3 5 10
pathways-nn 30 11 22 23 23 14 5 8 8 8
pegsol08 30 30 30 30 30 30 30 30 30 29
pegsol11 20 20 20 20 20 20 20 20 20 19
pipes-notank 50 30 41 41 42 42 37 36 36 33
pipes-tank 50 22 36 38 40 37 23 28 30 32
rovers 40 22 36 39 39 34 21 23 23 23
satellite 36 25 26 24 24 21 9 11 11 11
scanalyzer08 30 28 30 30 30 29 30 30 30 30
scanalyzer11 20 18 20 20 20 20 20 20 20 20
sokoban08 30 28 28 28 28 29 16 16 15 16
sokoban11 20 18 18 18 18 19 8 8 7 8
storage 30 19 26 25 26 26 17 20 22 22
tidybot11 20 16 17 17 17 15 20 20 20 19
tpp 30 20 30 30 30 25 23 28 27 27
transport08 30 11 28 28 28 16 30 30 30 30
transport11 20 0 10 11 11 1 18 20 20 20
trucks 30 14 17 18 22 18 7 8 7 7
visitall11 20 3 20 20 20 9 20 20 20 20
woodwork08 30 30 30 30 30 23 28 30 30 30
woodwork11 20 19 20 19 19 8 15 20 16 16
zenotravel 20 20 20 20 20 20 18 19 19 19
Sum 1143 729 906 911 924 825 790 845 842 852
Sum total 1456 1042 1219 1224 1237 1138 1103 1158 1155 1165

Table 1: Coverage for GBFS, comparing novelty variants
hBN, hQN, hQB, and hQF for h, tie breaking on h to the base
heuristic h for h ∈ {hFF, hLM} .

novelty confugurations seem to cause a slight coverage re-
duction, such as ELEVATORS08, FLOORTILE, FREECELL,
and SATELLITE. Interestingly, in some of these domains,
namely in ELEVATORS08 and SATELLITE novelty seems to
contribute when used with hLM as a base heuristic.

Focusing now on the rightmost part of the table, the hLM

based configurations, the overall increase in coverage when
exploiting novelty is not as impressive as for hFF, but is still
very large. The overall coverage is increased by all novelty
configurations, hitting the top of 62 tasks with hLM

QB . There
are still many domains with a large coverage increase, such
as PARKING (10 tasks), PIPESWORLD-TANKAGE (9 tasks),
AIRPORT (8 tasks), ELEVATORS08 (7 tasks), DEPOTS, EL-
EVATORS11, NOMYSTERY, STORAGE, TPP, and WOOD-
WORKING11 (5 tasks each). Further, the coverage reduction
here can be quite large, e. g. 7 tasks in BARMAN domain
and 4 tasks in PIPESWORLD-NOTANKAGE domain. The hFF

based novelty configurations excel in both of these domains.
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Coverage FF|LM
∗|FF|LM

LM|FF
∗|LM|FF

hFF

QB
hLM

QB
hFF,LM

QB
hLM

QB
hFF

QB
hFF,LM

QB

airport (50) 35 37 42 40 30 38 37 35
barman11 (20) 3 17 14 10 17 20 20 18
depot (22) 16 19 18 21 16 18 20 21
driverlog (20) 17 20 18 20 15 19 20 20
elevators08 (30) 10 13 29 29 13 29 12 30
elevators11 (20) 0 0 9 9 0 10 0 10
floortile11 (20) 4 6 4 5 3 4 5 3
freecell (80) 78 80 79 78 79 79 80 78
grid (5) 5 5 4 5 4 4 5 5
logistics98 (35) 22 26 20 27 19 20 27 27
mprime (35) 31 35 32 35 31 32 35 35
mystery (30) 18 18 18 19 17 18 18 18
nomystery11 (20) 8 14 17 16 10 17 15 16
openstacks11 (20) 20 16 20 20 20 20 16 20
parcprinter08 (30) 22 27 30 28 30 30 27 30
parcprinter11 (20) 7 15 20 16 20 20 15 20
parking11 (20) 13 20 20 20 20 20 20 20
pathways-nn (30) 9 23 17 26 19 17 24 26
pipes-notank (50) 33 42 33 42 34 31 42 42
pipes-tank (50) 24 39 31 40 26 33 39 41
rovers (40) 22 38 31 37 26 31 38 37
satellite (36) 21 25 13 27 18 13 25 26
scanalyzer08 (30) 28 30 30 30 27 28 30 28
scanalyzer11 (20) 18 20 20 20 17 18 20 18
sokoban08 (30) 28 28 29 28 29 29 28 28
sokoban11 (20) 18 18 19 18 19 19 18 18
storage (30) 18 26 21 25 17 21 25 25
tidybot11 (20) 15 17 18 17 14 20 18 17
tpp (30) 24 30 24 30 24 25 30 30
transport08 (30) 11 28 30 30 30 30 30 30
transport11 (20) 0 10 13 13 13 20 19 18
trucks (30) 15 21 18 18 15 17 21 18
visitall11 (20) 5 20 20 20 20 20 20 20
woodwork08 (30) 30 30 30 30 29 30 30 30
woodwork11 (20) 18 18 17 17 15 16 18 17
zenotravel (20) 17 20 20 20 18 20 20 20

Sum (1033) 663 851 828 886 754 836 867 895

Sum total (1456) 1086 1274 1251 1309 1177 1259 1290 1318

Table 2: Coverage for GBFS when either three novelty vari-
ants used, over hLM, over hFF, and over both, with ties broken
first by hFF and then by hLM or viceversa.

In order to look beyond the per-domain coverage, Figure
1 pairwise compares the three novelty variants of hFF from
Table 1 and hFF in terms of number of nodes evaluated dur-
ing the search. Interestingly, the clearest win picture appears
in Figure 1a, showing a comparison of hFF to hFF

BN, which is
not the best performing variant in terms of overall coverage.
Looking deeper into how the novelty heuristics improve one
on top of another, Figure 1b shows that despite the better
overall performance of hFF

QN compared to hFF
BN, there is a suf-

ficient amount of tasks where hFF
BN performs better, and in

some cases even solves tasks where hFF
QN fails. The same is

true when comparing hFF
QB to hFF

QN (Figure 1c), although here
the win picture is more clear.

We have also experimented with the goal count heuristic.
Here the picture is similar, with overall coverage increased
by 59 tasks with hGC

BN, by 73 tasks with hGC
QN, and by 76 tasks

with hGC
QB, compared to the base configuration of greedy best

first search with the goal count heuristic hGC, which solved
up to 913 tasks overall.

Quantifying Novelty Facts

In order to empirically test the benefits of extending nov-
elty fact dichotomy, we implemented the hQF heuristic in
the same framework. For the reasons mentioned earlier,
we use for Ms the maximal finite base heuristic value ob-
served so far. In order to measure the effect of various k
values, we experimented with k ∈ {1, 10, 100, 1000}. The
best performance in terms of coverage was observed for
k = 100. For the values of k = 10 and k = 1000, the
coverage slightly decreases, with the worst performance ob-
served for k = 1. For the lack of space, we report here
the results for k = 100. The coverage results are depicted
in the last column of the leftmost part of Table 1. While
hFF

QF seems to perform overall worse than the first three nov-
elty heuristic variants (1138 tasked solved overall, com-
pared to 1219 for hFF

BN), it outperforms hFF overall by 96
tasks. hFF

QF outperforms other novelty variants on several
domains, namely AIRPORT, ELEVATORS08, FLOORTILE,
PARC-PRINTER08, PARC-PRINTER11, and SOKOBAN. It
performs especially well in the AIRPORT domain, solving all
50 tasks. To our knowledge, no other domain-independent
planner can solve all tasks in the AIRPORT domain.

Figure 2 presents the results for the hFF
QF variant, compar-

ing it to hFF (Figure 2a) and to hFF
QB (Figure 2b) in terms of

evaluated nodes. Looking beyond the coverage, Figure 2a
hints that hFF and hFF

QF have a complementary performance,
showing that most tasks are positioned sufficiently far from
the diagonal. Further, it shows a large amount of tasks that
were solved by hFF but not by hFF

QF and vice versa. Figure 2b,
while indicating that hFF

QB performs better than hFF
QF overall,

shows a considerable amount of tasks that were solved by
the latter but not by the former. Finally, Figure 2c zooms
in on the AIRPORT domain, on which hFF

QF demonstrates an
exceptional performance.

Multiple Heuristics

Table 2 shows the effect of exploiting multiple base esti-
mates within the novelty heuristic. Since these multiple es-
timates are computed for the benefit of novelty heuristic, we
exploit them for tie breaking. The two base estimates we ex-
perimented with are hFF and hLM. Two base configurations in
columns 1 and 5 are greedy best first search with hFF, break-
ing ties by hLM, denoted by FF|LM, and with hLM, breaking
ties by hFF, denoted by LM|FF, respectively. All other config-
urations employ a novelty heuristic, breaking ties by either
first hFF and then hLM (columns 2-4) or first hLM and then
hFF (columns 6-8). Columns 2 and 7 employ hFF

QB as a first
heuristic, while columns 3 and 6 start with hLM

QB . Columns
4 and 8 describe the configurations with novelty heuristic
based on both hFF and hLM, denoted by hFF,LM

QB . In what fol-
lows, we refer to the configurations in the first 4 columns
as the FF|LM scheme, and to those in the last 4 columns as
the LM|FF scheme. When the scheme is clear from the con-
text, since the tie breaking is the same across the configura-
tions, we refer to the individual configurations by their nov-
elty heuristic. For example, in the context of FF|LM scheme,
the configuration in column 2 is referred to as hFF

QB.
The overall coverage for the FF|LM scheme increases with

more sophisticated novelty configurations. The best config-
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(a) (b) (c)

Figure 2: Evaluated nodes for (a) hFF
QF vs. hFF, (b) hFF

QF vs. hFF
QB, and (c) hFF

QF vs. hFF
QB in AIRPORT domain.

uration, employing novelty of multiple heuristics increases
coverage by 223 tasks compared to not using novelty at all
and by 35 and 58 tasks compared to hFF

QB and hLM
QB , respec-

tively. For the LM|FF scheme, the picture is similar, with
novelty of multiple heuristics increasing coverage by 141
tasks compared to not using novelty at all and by 28 and 59
tasks compared to hFF

QB and hLM
QB , respectively. Looking at per

domain coverage, in most domains taking both heuristics as
a base for the novelty heuristic improves coverage compared
to not using novelty. For the FF|LM scheme, the coverage is
improved in 29 out of the 46 domains, sometimes dramati-
cally (19 tasks each in ELEVATORS08 and TRANSPORT08,
17 tasks in PATHWAYS, 16 in PIPESWORLD-TANKAGE, 15
tasks each in ROVERS and VISIT-ALL, 13 tasks in TRANS-
PORT11, etc.), and is reduced by one instance in one domain.
Similarly, for the LM|FF scheme, the coverage is improved in
26 domains and decreases in three domains by one instance
each. Here also the increase in coverage is often dramatic,
exemplified by 17 tasks in ELEVATORS08 and 15 tasks in
PIPESWORLD-TANKAGE.

Comparing to exploiting a single heuristic for novelty
computation on a per domain basis, for the FF|LM scheme,
the coverage increases in 15 domains and decreases in 7
compared to hFF

QB and increases in 14 domains and decreases
in 9 compared to hLM

QB . The largest decrease is 7 tasks in
BARMAN compared to hFF

QB and 4 tasks each in BARMAN
and PARC-PRINTER11 compared to hLM

QB . The largest in-
crease is by 16 tasks in ELEVATORS08 compared to hFF

QB and
14 tasks in SATELLITE compared to hLM

QB . In SATELLITE,
however, this large increase is due to the poor performance
of hLM

QB compared to the base configuration without novelty.
For the LM|FF scheme, the coverage increases in 10 domains
and decreases in 11 compared to hFF

QB and increases in 15
domains and decreases in 9 compared to hLM

QB . The largest
decrease is 3 tasks in both cases (TRUCKS for hFF

QB and AIR-
PORT and TIDYBOT for hLM

QB ), while the largest increase is by
18 tasks in ELEVATORS08 compared to hFF

QB and 13 tasks in
SATELLITE compared to hLM

QB , which is similar to the FF|LM
scheme.

Coverage hRB hRB
QB [hRB,hLM] [hRB

QB,hLM]

airport (50) 34 39 32 43
barman11 (20) 18 20 19 20
depot (22) 19 20 18 20
driverlog (20) 20 20 19 20
floortile11 (20) 7 7 4 3
freecell (80) 80 79 78 80
grid (5) 4 5 5 5
mprime (35) 35 35 31 35
mystery (30) 18 19 18 19
nomystery11 (20) 14 18 15 19
parking11 (20) 14 20 20 20
pathways-nn (30) 21 23 14 26
pipes-notank (50) 41 43 39 43
pipes-tank (50) 38 38 26 41
rovers (40) 40 36 32 37
scanalyzer08 (30) 28 30 30 29
scanalyzer11 (20) 18 20 20 19
sokoban08 (30) 26 27 26 27
sokoban11 (20) 16 17 16 17
storage (30) 20 25 17 25
tidybot11 (20) 15 17 15 18
tpp (30) 30 30 19 30
trucks (30) 15 18 15 18
woodwork11 (20) 20 19 20 20

Sum (722) 591 625 548 634

Sum total (1456) 1325 1359 1282 1368

Table 3: Coverage for GBFS with hRB, hRB
QB, alternation be-

tween hRB and hLM (marked by [hRB,hLM]), and alternation
between hRB

QB and hLM (marked by [hRB
QB,hLM]).

Novelty and State-of-the-art Heuristic Search

In order to test whether the novelty heuristic can contribute
to the state of the art of heuristic search planning, we en-
hanced the Mercury planner (Katz and Hoffmann 2014) with
our best performing variant, hQB heuristic. Since we are
interested in coverage, we focus on the first iteration of
Mercury, which performs a greedy best first search with a
red-black planning heuristic hRB (Domshlak, Hoffmann, and
Katz 2015), alternating with a queue ordered by preferred
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Figure 3: Evaluated nodes for (a) hRB
QB vs. hRB, (b) alternation between hRB

QB and hLM vs. alternation between hRB and hLM, and
(c) alternation between hRB

QB and hLM vs. hRB.

operators taken from the underlying hFF heuristic. In our
first variant, we apply hQB to hRB, breaking ties by hRB (de-
noted by hRB

QB). Here as well, the preferred operators were
taken from the underlying hFF heuristic. Further, we com-
pare to a variant with additional queues ordered by the land-
mark count heuristic hLM and preferred operators from hLM,
alternating between these queues, denoted by [hRB, hLM].
This variant is similar to the scheme employed by the LAMA
planner, with the main difference being that hFF is replaced
by hRB. Finally, we enhance this variant by using GBFS
with hRB

QB instead of hRB (denoted by [hRB
QB, hLM]). Apply-

ing novelty also to hLM did not render better results in the
last scheme. The coverage results are depicted in Table 3.
Compared to Mercury (first column), the coverage is sig-
nificantly increased by both configurations that employ the
novelty heuristic (columns two and four). Comparing our
best configuration (column four) to Mercury, the coverage
decreases in two domains, FLOORTILE and ROVERS and in-
creases on 17 domains, with overall increase in coverage by
43 tasks.

Figure 3 pairwise compares configurations from Table 3
in terms of evaluated nodes. Figure 3a compares the en-
hancement of hRB, hRB

QB to hRB. Our best performing configu-
ration, alternation between hRB

QB and hLM is compared to alter-
nation between hRB and hLM (Figure 3b) and to hRB (Figure
3c). Focusing on Figure 3c, depicting our best configuration
vs. Mercury, there is no clear overall dominance of any of
the configurations over the other, with the difference in the
evaluated nodes getting up to four orders of magnitude in
favor of novelty and up to three orders of magnitude in fa-
vor of Mercury in extreme cases. Note that most tasks are
not on the diagonal, leaning towards one of the configura-
tions, and thus the behaviour of these two configurations is
complementary.

Recent Novelty-based Heuristic

Recently, a heuristic based on the notion of novelty was
suggested (Lipovetzky and Geffner 2017). The core idea

of the proposed heuristic is similar to ours. However, the
definitions, although similar, vary a lot in the problem as-
pects tackled. In order to discuss the differences, we present
here the definition of Lipovetzky and Geffner (2017). The
novelty-based heuristic Nh is defined as

Nh(s) =

{
0, ∃f ∈s : h(s) /∈ {h(s′) | s′ ∈ S, f ∈ s′}
1 otherwise.

Observe that our binary novelty heuristic hBN can also be
viewed as

hBN(s) =

{
0, ∃f ∈s : h(s) < min{h(s′) | s′ ∈ S, f ∈ s′}
1 otherwise.

In words, the heuristic Nh defines a state to be novel if it
achieves some heuristic value for the first time for at least
one state fact. For instance, if heuristic values 3 and 5 have
been achieved for a certain state fact, and now a value of 4 is
observed, the state is considered to be novel. Thus, for each
fact, all heuristic values observed so far are stored. For hBN

on the other hand, a state is novel if its heuristic value is the
best so far for at least one state fact. As a result, only one
value must be stored per fact.

It is worth mentioning that although the novelty-based
heuristic suggested by Lipovetzky and Geffner does not go
beyond the dichotomy between novel and non-novel states,
it can be adapted to a quantitative measure of novelty, that
separates novel states, analogously to the hQN heuristic. It
is unclear though whether an analogue of our hQB heuristic
that quantifies the non-novel states can also be derived.

Since Nh only separates novel states from non-novel
ones, we compare it to our basic novelty heuristic hBN,
which also only separates novel states from non-novel ones.
For that, we implemented the heuristic of Lipovetzky and
Geffner in the same framework as our heuristics. The table
in Figure ??a depicts the overall coverage comparison for
GBFS with the two novelty variants, using hFF heuristic as
a base and for tie breaking. There are 15 domains in which
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Coverage NFF hFF
BN

barman11 (20) 12 14
depot (22) 22 18
elevators08 (30) 14 10
elevators11 (20) 1 0
parcprinter08 (30) 26 27
parcprinter11 (20) 10 15
pipes-notank (50) 46 41
pipes-tank (50) 42 36
scanalyzer08 (30) 28 30
scanalyzer11 (20) 18 20
storage (30) 25 26
tidybot11 (20) 16 17
transport08 (30) 23 28
transport11 (20) 4 10
trucks (30) 18 17
Sum (422) 305 309

Sum total (1456) 1215 1219

(a)

(b)

Figure 4: Comparison between the basic novelty heuristic
hFF

BN and the recently proposed heuristic NFF in terms of (a)
per-domain coverage, and (b) per-instance evaluated nodes.

coverage differs, of which 9 domains in favor of hFF
BN, show-

ing that the approaches are somewhat complementary. To
demonstrate further that the approaches are complementary,
Figure ??b shows a per instance comparison in terms of the
number of evaluated nodes during search.

Conclusions and Future Work

We presented a quantitative notion of state novelty with re-
spect to known heuristic estimates and suggested one way
of exploiting this notion within heuristic search for satis-
ficing classical planning. We differentiated not only how
novel is a state but also how non-novel it can be. We further
suggested that not all facts should contribute equally to the
degree of state (non-)novelty. As a result, we showed how
to derive multiple novelty heuristics integrated with other

state-of-the-art goal aware heuristics, and tested their perfor-
mance experimentally, finding them to perform extremely
well. Finally, we demonstrated that novelty heuristics ap-
plied to the state-of-the-art heuristic search planner Mercury
significantly improved its performance.

The presented concept of novelty opens up many inter-
esting research directions. First, we suggested one way of
quantifying the novelty of a fact, which is biased towards 0
values on larger base heuristic values. This can be an ad-
vantage on some domains, specifically we conjecture that it
is the reason for the excellent performance in the AIRPORT
domain, solving all 50 instances. But on many other do-
mains it does not match the performance of our top novelty
based performers. Thus, an investigation is needed on alter-
native quantification methods of state novelty in general, and
the degree of contribution of each fact. Second, our current
definition and implementation of handling multiple base es-
timates is rather straightforward. We explore one option of
maximizing over the given heuristics. One could think of
other aggregation methods. On the implementation side, we
are required to store multiple estimates per fact, which can
be quite memory inefficient. Other methods may be found
to perform better. Third, the definitions of state novelty pre-
sented in this work operate with individual facts. Further,
these definitions exploit the set of all individual facts. Both
these restrictions are unnecessary. The definitions can be
adapted to fact sets instead of individual facts, aggregating
over arbitrary sets of such fact sets. This is a promising di-
rection of great potential. There are many challenges here:
how to derive informative and yet sufficiently small sets of
fact sets; how to succinctly keep the “best estimates so far”
for large sets of fact sets, and finally; how to aggregate the
individual fact sets within an overall estimate. Last, but not
least, extending the concept of heuristic novelty to richer for-
malisms is a promising direction for future research.
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