
A Polynomial Planning Algorithm that Beats LAMA and FF

Nir Lipovetzky
The University of Melbourne

Melbourne, Australia
nir.lipovetzky@unimelb.edu.au

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

It has been shown recently that heuristic and width-based
search can be combined to produce planning algorithms with
a performance that goes beyond the state-of-the-art. Such al-
gorithms are based on best-first width search (BFWS), a plain
best-first search set with evaluations functions combined lex-
icographically to break ties, some of which express novelty-
based preferences. In BFWS(f5), for example, the evaluation
function f5 weights nodes by a novelty measure, breaking
ties by the number of non-achieved goals. BFWS(f5) is a
best-first algorithm, and hence, it is complete but not poly-
nomial, and its performance doesn’t match the state of the
art. In this work we show, however, that incomplete versions
of BFWS(f5) where nodes with novelty greater than k are
pruned, are not only polynomial but have an empirical perfor-
mance that is better than both BFWS(f5) and state-of-the-art
planners. This is shown by considering all the international
planning competition instances. This is the first time where
polynomial algorithms with meaningful bounds are shown
to achieve state-of-the-art performance in planning. Practi-
cal and theoretical implications of this empirical finding are
briefly sketched.

Introduction
Recently, it was shown that many of the common classical
planning benchmarks domains can be solved by a polyno-
mial algorithm, called Iterative Width (IW), provided that
instances feature a single goal atom (Lipovetzky and Geffner
2012). For problems with multiple atomic goals, however,
IW is not effective, and extensions such as Serialized IW
(SIW), where IW is used to achieve one atomic goal at a
time, do not compete with the best planners. The aim of this
paper is to narrow the performance gap between polyno-
mial planning algorithms and state-of-the-art planners. For
this, we move away from pure width-based methods such as
IW and build on a recent search framework, best-first width
search (BFWS), that integrates width-based and heuristic
search (Lipovetzky and Geffner 2017). We review width-
based search and best-first width-search next, and present
then the new polynomial planning algorithms, the evalua-
tion, and the conclusions.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Width-based Search
Pure width-based search algorithms are exploration algo-
rithms that do not look at the goal at all. The simplest such
algorithm is IW(1), which is a plain breadth-first search
where newly generated states that do not make an atom
X = x true for the first time in the search are pruned. The al-
gorithm IW(2) is similar except that a state s is pruned when
there are no atoms X = x and Y = y such that the pair of
atoms 〈X = x, Y = y〉 is true in s and false in all the states
generated before s. IW(k) is a normal breadth-first except
that newly generated states s are pruned when their “nov-
elty” is greater than k, where the novelty of s is i iff there is
a tuple t of i atoms such that s is the first state in the search
that makes all the atoms in t true, with no tuple of smaller
size having this property (Lipovetzky and Geffner 2012).
While simple, it has been shown that IW(k) manages to
solve arbitrary instances of many of the standard benchmark
domains in low polynomial time provided that the goal is a
single atom. Such domains can be shown to have a small and
bounded width w that does not depend on the instance size,
which implies that they can be solved (optimally) by running
IW(w). Moreover, IW(k) runs in time and space that are ex-
ponential in k and not in the number of problem variables.
The procedure IW, that calls the procedures IW(1), IW(2),
. . . sequentially, has been used to solve instances featuring
multiple (conjunctive) atomic goals, in the context of Serial-
ized IW (SIW), an algorithm that calls IW for achieving one
atomic goal at a time. While SIW is a blind search proce-
dure that is incomplete (it can get trapped into dead-ends),
it turns out to perform much better than a greedy best-first
search guided by the standard delete relaxation heuristics.
Other variations of IW have been used for planning in the
Atari games and those of the General Video-Game AI com-
petition (Lipovetzky, Ramirez, and Geffner 2015; Geffner
and Geffner 2015; Shleyfman, Tuisov, and Domshlak 2016;
Jinnai and Fukunaga 2017).

Best-First Width Search
Best-first width algorithms (BFWS) have been shown to
achieve state-of-the-art performance by combining width
and heuristic search (Lipovetzky and Geffner 2017; Katz et
al. 2017). BFWS(f) with f = 〈h, h1, . . . , hn〉 is a standard
best-first search that uses the function h to rank the nodes
in OPEN, breaking ties lexicographically with the functions

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

195

h1, . . . , hn. The primary evaluation function h is given by
the novelty measure of the node. The novelty w(s) of a
newly generated state s given the functions h1, . . . , hn is i
iff there is a tuple (set) of i atoms X = x and no tuple of
smaller size, that is true in s but false in all previously gener-
ated states s′ with the same function values h1(s

′) = h1(s),
. . . , and hn(s

′) = hn(s). For example, a new state s has
novelty 1 if there is an atom X = x that is true in s and false
in all the states s′ generated before s where hi(s

′) = hi(s)
for all i. We write the measures w as w〈h1,...,hn〉 sometimes
in order to make explicit the functions hi used in the defini-
tion and computation of w.

For the planner BFWS(f5) (Lipovetzky and Geffner
2017), the evaluation function f5 is given by the tuple
〈w,#g〉 where #g(s) tracks the number of the atomic goals
that are not true in s. The novelty measure w is computed
given two functions: the goal counter #g, and a second
counter #r(s). This second counter tracks the number of
atoms in the last relaxed plan computed in the way to s that
have been made true. Relaxed plans (such as in FF) are not
computed in every state but only in the initial state and in
the states that decrease the #g count. This is because in
this “exploratory” setting, computing relaxed plans in ev-
ery node is not cost-effective. The exact definition of #r(s)
is as follows: if π is the set of actions in the last relaxed
plan computed in the way to state s, say in state s′, and R
is the set of atoms associated with such a plan, then #r(s)
is the number of atoms in R that have been made true in
some state s′′ in the way from s′ to s including these two
states (Lipovetzky and Geffner 2014). For STRIPS prob-
lems, the set of atoms associated with a plan is given by
the preconditions and positive effects of the actions in the
plan. In the implementation of BFWS, a default simplifica-
tion is that novelty measures are computed with 3-value pre-
cision, i.e., w(s) is determined to be either 1, 2, or greater
than 2. That is, novelty measures greater than 2 are treated
as novelty measures equal to 3. This is because determin-
ing that a novelty measure for a node is k is exponential
in k − 1, as all potential new tuples of size up to k need
to be considered. The algorithm BWFS(f5) with the nov-
elty measure w in f5 simplified to w〈#g〉 would be similar
to SIW (Lipovetzky and Geffner 2012) in the sense that it
would use the goal counter #g to provide a form of goal
serialization while keeping the novelty measures associated
with the different subproblems separate. On the other hand,
unlike SIW, BWFS(f5) is a plain best-first search algorithm
that is complete. The additional #r counter used as part of
the novelty measure w = w〈#g,#r〉 in f5 yields a form of
decomposition within each subproblem as well. In partic-
ular, BWFS(f5) solves delete-free problems by expanding
novelty-1 states only, something that wouldn’t be true if the
novelty measure w = w〈#g〉 was used instead.

Polynomial k-BFWS
BFWS is a complete search algorithm that can be easily
turned into a polynomial but incomplete search algorithm
by just pruning the states s whose novelty w(s) exceeds a
bound k. For this, it is assumed that the number of functions
hi in w = w〈h1,...,hn〉, and their range, are all polynomial.

For example, for w = w〈#g,#r〉 in BFWS(f5), there are
two functions #g and #r such that each takes at most |F |
different values, where F is the set of atoms in the prob-
lem. The polynomial version of BFWS(f5) that is obtained
by pruning nodes with novelty w = w〈#g,#r〉 greater than
k never expands more than |F |k+1 × |G| nodes, where |G|
represents the number of goals, and never generates more
than |F |k+1 × |G| × |A| nodes, where A is the number of
(ground) actions.

We write k-BFWS(f) to refer to the version of BFWS(f)
where nodes with novelty measure greater than k are pruned.
We note that unlike BFWS, k-BFWS is not a standard best-
first search, as it is not complete. The k-BFWS(f5) algo-
rithm with k = 1 was used as the front-end of the complete
Dual-BFWS algorithm (Lipovetzky and Geffner 2017), as it
terminates quickly, successfully or not. Other front-end al-
gorithms such as Enforced Hill Climbing in FF (Hoffmann
and Nebel 2001), are often fast but are not polynomial, as
more than one action may be “helpful” at each node and the
depth of this search is not bounded in general.

k-BFWS Variants
Below we evaluate k-BFWS(f5) with k values 1 and 2 and
two variations of this algorithm that are still polynomial. The
first k-BFWS variation results from a simple, polynomial
consistency test each time that a state s achieves a new goal.
In the consistency-variant, a goal atom p that is true in s
but false in its parent is considered unachieved, and hence
it’s not used for decreasing the count, if it can be shown
that p has to be undone in order to reach the other goals.
This is determined by computing the hmax heuristic from
the state s excluding the actions that delete the atom p. This
is the test used in SIW for discarding some goal serializa-
tions (Lipovetzky and Geffner 2012). The test is polynomial
and doesn’t affect the number of nodes expanded by the al-
gorithm in the worst case. The second k-BFWS variation
increases the number of expanded nodes by a constant fac-
tor of M by allowing some nodes with novelty greater than
k to go unpruned. For this, a node s′ is regarded as a k+-
descendant of a node s if (a) s′ is a descendant of node s,
(b) s′ has novelty greater than k, (c) s has novelty no greater
than k, and (d) nodes s′′ between s and s′ have all novelty
greater than k. In the M-variant of k-BFWS, the first k+-
descendants of a node are not pruned. The bound on the total
number of expanded nodes is then (M +1)× |F |k+1 × |G|.
For M = 0, this variation of k-BFWS reduces to k-BFWS.

To summarize, using BFWS(f5) as the base algorithm, we
consider three polynomial variations that result from 1) the
pruning bound k, 2) the use of a polynomial consistency test
in the goal count, and 3) the use of the M parameter for ex-
panding the set of unpruned nodes. These three variations
can be combined. The version that uses k equal to 2, consis-
tency tests, and M is denoted as 2-C-M, while the version
that uses no consistency tests and M equal to 0, is denoted
by the number k alone and corresponds to k-BFWS(f5). Any
sequence of these polynomial variants defines a polynomial
portfolio as well. The notation 〈1,2,2-M〉 is used to denote
the sequential portfolio where 1-BFWS is followed by 2-

196

BFWS and then 2-BFWS with M > 0. Other polynomial
portfolios are obtained by using different values of M . For
instance, the planner 2-M can be used first with M equal
to 1, then 2, 4, 8, . . . , until Mmax. Indeed, in the experi-
ments below, each M -planner will be used in this manner
with Mmax fixed to 32. In this and in all polynomial port-
folios, no timeouts are imposed on the planners; a planner
in a sequential portfolio is invoked iff all precedent plan-
ners finished with no solution, and time is available. This
choice exploits the fact that all the planners are polynomial
and finish quickly, whether successfully or unsuccessfully.
For example, 1-BFWS finishes with no solution in 374 of
the 1676 STRIPS problems below, and in 220 of them, this
happens before 0.1 seconds. This explains why portfolios
that start with 1-BFWS often solve more problems that 1-
BFWS alone even after a few tens of a second (as shown in
the plots).

Figure 1: Coverage over IPC-2014 problems as function of
time.

Figure 2: Coverage over all STRIPS problems as function of
time.

Experimental Results
We have evaluated the performance of these polynomial
BFWS variants and portfolios over the STRIPS instances
of all Int. Planning Competitions so far (1676 instances in

1 2 〈1,2〉 〈2-M〉 〈1,2,2-M〉 LAMA11
Barman (20) 0 20 20 20 20 19
CaveDiving (20) 0 0 0 8 8 7
Childsnack (20) 1 1 2 3 2 0
CityCar (20) 1 5 5 5 5 3
Floortile (20) 0 2 2 2 2 2
GED (20) 20 19 20 19 20 20
Hiking (20) 0 7 7 8 11 16
Maintenance (20) 17 12 17 16 17 7
Tetris (20) 17 16 17 12 17 8
Thoughtful (20) 15 17 17 17 17 15
Transport (20) 20 20 20 20 20 14
Coverage (280) 151 179 187 190 199 171
Average Time 47 64 47 52 47 128

Table 1: Coverage over STRIPS and ADL IPC-14 problems.
Domains solved fully by all planners ommited. Avg. time in
seconds over problems solved by all planners. Best coverage
shown in red.

total), and separately, over the instances of the 2014 Int.
Planning Competition, some of which feature conditional
effects as well. These are all instances from the satisficing
tracks. The polynomial planners are implemented in LAPKT
(Ramirez, Lipovetzky, and Muise 2015). The experiments
were performed on a 2.40GHz Intel Processor with time and
memory cutoffs of 30 min and 8GB respectively. Table 1
compares some polynomial k-BFWS variants with LAMA-
11 (Richter and Westphal 2010) over the instances of the
2014 IPC. All the polynomial planners, with the exception
of 1-BFWS, solve more problems than LAMA-11, faster,
and with better plans (avg plan qualities are 320 vs. 374 for
LAMA-11; not shown). Moreover, the polynomial planners
solve more problems than LAMA-11 not only at the cut-
off time, but at all times as shown by the curves in Fig-
ure 1. Some of them solve also more problems than the
best IPC-2014 planners like Jasper (Xie, Müller, and Holte
2014), Mercury (Domshlak, Hoffmann, and Katz 2015), and
the Ibacop portfolio (Cenamor, De La Rosa, and Fernández
2014), that solve 193, 177, and 198 instances respectively.
The polynomial planners 2-M and 〈1,2,2-M〉 solve 190 and
199 instances each. In comparison, BWFS(f5) solves 192
problems (not shown). Table 2 shows the performance of
these planners over the STRIPS benchmarks, along with
FF1 and Dual-BFWS (Lipovetzky and Geffner 2017). Once
again, the coverage of the best polynomial k-BFWS vari-
ants are at level of the best exponential planners, most of-
ten with better average times and plan qualities, as shown at
the bottom of the table. It is also interesting that 1-BFWS
solves as many problems as FF (1234 vs 1235) almost one
order of magnitude faster, while 1-C-BFWS, that just adds
consistency tests to 1-BFWS, has a higher coverage (1318)
and is 4 times faster. LAMA-11 solves 1508 of these in-
stances, outperforming 1-BFWS and 1-C-BFWS but not the
〈1,2-C-M〉 and 〈1,2-C,2-M〉 portfolios that solve 1511 and
1518 problems with better average times and plan lengths.
Curves showing coverage as a function of time are shown in
Fig. 2.

1Metric-FF-2.1 in classic-FF mode but ignoring costs, as origi-
nal FF does not parse action costs.

197

Discussion
We have shown that the performance of the best exponen-
tial planners can be approached by means of polynomial al-
gorithms with meaningful bounds. The result is important
because the difference between polynomial and exponential
algorithms is significant both practically and theoretically.
The result also highlights the importance of novelty mea-
sures and width-based search. Indeed, while these polyno-
mial planners compute relaxed plans when a new goal is
achieved, they make no use of heuristic estimators, help-
ful actions, and landmarks; the techniques that are crucial
to modern heuristic search planners. From a practical point
of view, the polynomial algorithms are powerful and fast,
so that even when they fail to solve a problem, they fail
quickly. A consequence of this is that they can be given a
quick try before using other polynomial or exponential algo-
rithms. In the paper, we did this in the context of sequential
polynomial portfolios but they can be used in combination
with existing planners as well. For example, if 1-BWFS is
run before the planners FF and LAMA-11, the number of
STRIPS benchmarks solved jumps from 1235 to 1493 in the
first case, and from 1508 to 1548 in the second. Many other
possible ways of using these ideas are possible and worth ex-
ploring. From a theoretical point of view, these polynomial
algorithms manage to solve some domains fully. This raises
the question of whether this is a property of the instances
or a property of the domain that will apply to any instance.
The algorithm IW has been shown to solve in polynomial
time any instance of many benchmark domains, provided
that it features a single atomic goal. Similarly, SIW can be
shown to solve instances with multiple goals, such as Visi-
tall, where atomic goals can be achieved in polynomial time,
one at a time, in any order. The algorithm k-BFWS goes be-
yond this and can be shown to solve any delete-free problem,
something that is not true of either IW or SIW. The range of
problems that these k-BWFS algorithms can provably solve,
however, is not clear yet and deserves further study.

Acknowledgements
The work by N. Lipovetzky is partially supported by the
Australian Research Council linkage grant LP11010015. H.
Geffner is partially supported by grant TIN2015-67959-P,
MEC, Spain.

References
Cenamor, I.; De La Rosa, T.; and Fernández, F. 2014. IBA-
COP and IBACOP2 planner. In Proc. of the 8th Int Planning
Competition.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red–
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Geffner, T., and Geffner, H. 2015. Width-based planning for
general video-game playing. In Proc. 11th AI and Interac-
tive Digital Entertainment Conf. (AIIDE).
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Jinnai, Y., and Fukunaga, A. 2017. Learning to prune dom-
inated action sequences in online black-box planning. In
Proc. AAAI.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2017. Adapting novelty to classical planning as heuristic
search. In Proc. ICAPS.
Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proc. ECAI, 540–
545.
Lipovetzky, N., and Geffner, H. 2014. Width-based algo-
rithms for classical planning: New results. In Proceedings of
the European Conference on Artificial Intelligence (ECAI),
88–90.
Lipovetzky, N., and Geffner, H. 2017. Best-first width
search: Exploration and exploitation in classical planning.
In Proc. AAAI.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical planning with simulators: Results on the atari video
games. In Proc. IJCAI.
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.
Accessed: 2016-09-15.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:122–177.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind
search for atari-like online planning revisited. In Proc. IJ-
CAI.
Xie, F.; Müller, M.; and Holte, R. 2014. Jasper: the art of
exploration in greedy best first search. In Proc. of the 8th Int
Planning Competition.

198

k-BFWS Polynomial Planners Exponential Planners
1 1-C 2 2-C 〈1,2-C-M〉 〈1,2-C,2-M〉 FF LAMA11 Mercury JASPER Dual-BFWS

airport (50) 49 47 49 47 49 49 40 31 35 36 49
barman-sat11-strips (20) 0 0 20 20 20 20 4 20 20 20 20
barman-sat14-strips (20) 0 0 20 20 20 20 3 19 19 20 20
blocks (35) 21 34 35 35 35 35 25 35 35 35 35
childsnack-sat14-strips (20) 0 0 0 1 1 1 0 0 6 0 10
depot (22) 19 21 21 21 22 22 20 22 18 22 22
driverlog (20) 20 20 20 20 20 20 18 20 20 20 20
floortile-sat11-strips (20) 0 0 4 2 4 6 6 6 7 6 8
floortile-sat14-strips (20) 0 0 2 1 2 2 2 2 2 2 4
freecell (80) 73 72 80 80 80 80 78 79 79 80 80
ged-sat14-strips (20) 19 16 20 16 19 19 4 20 20 20 20
grid (5) 4 5 4 5 5 5 5 5 5 5 5
hiking-sat14-strips (20) 0 0 7 7 8 11 13 16 12 20 12
logistics98 (35) 34 34 28 24 34 34 35 35 35 35 34
mprime (35) 29 29 29 31 32 32 34 35 35 35 35
mystery (30) 14 14 19 19 21 22 15 19 16 19 19
nomystery-sat11-strips (20) 3 4 14 13 13 14 7 13 13 20 19
openstacks-sat11-strips (20) 20 20 20 19 20 20 11 20 20 20 20
openstacks-sat14-strips (20) 20 20 20 15 20 20 9 20 16 20 20
openstacks-strips (30) 28 29 27 29 28 28 26 30 30 30 28
parcprinter-08-strips (30) 6 30 15 30 30 30 30 30 30 30 30
parcprinter-sat11-strips (20) 0 18 1 20 20 20 20 20 20 20 19
parking-sat11-strips (20) 20 20 20 20 20 20 4 20 20 20 20
parking-sat14-strips (20) 20 19 20 20 20 20 0 20 13 20 20
pathways-noneg (30) 27 26 23 26 29 29 14 30 29 30 30
pegsol-08-strips (30) 12 25 23 29 30 29 29 30 30 30 30
pegsol-sat11-strips (20) 2 16 12 19 20 19 19 20 20 20 20
pipesworld-notankage (50) 49 48 49 50 50 50 43 44 43 45 50
pipesworld-tankage (50) 23 28 33 30 34 33 26 42 40 44 33
psr-small (50) 7 21 22 36 45 43 49 50 50 50 50
rovers (40) 40 40 40 35 40 40 40 40 40 40 40
satellite (36) 31 32 29 27 31 31 33 36 36 36 32
scanalyzer-08-strips (30) 30 28 30 28 30 30 27 30 30 30 30
scanalyzer-sat11-strips (20) 20 18 20 18 20 20 17 20 20 20 20
sokoban-sat08-strips (30) 0 0 11 10 18 21 26 29 28 27 25
sokoban-sat11-strips (20) 0 0 5 5 11 13 16 19 18 18 16
storage (30) 30 28 23 27 30 30 18 19 20 26 28
tetris-sat14-strips (20) 17 12 18 12 17 17 3 7 13 13 17
thoughtful-sat14-strips (20) 16 16 17 17 17 17 14 15 12 18 20
tidybot-sat11-strips (20) 9 6 19 19 20 19 16 16 13 18 18
tpp (30) 30 30 28 30 30 30 28 30 30 30 29
transport-sat08-strips (30) 30 30 30 30 30 30 18 30 30 30 30
transport-sat11-strips (20) 20 20 20 20 20 20 1 17 20 20 20
transport-sat14-strips (20) 20 20 20 20 20 20 0 14 20 15 20
trucks-strips (30) 4 4 11 7 8 9 9 15 18 23 14
visitall-sat11-strips (20) 20 20 20 20 20 20 4 20 20 20 20
visitall-sat14-strips (20) 20 20 20 20 20 20 0 20 20 20 20
woodworking-sat08-strips (30) 30 30 29 30 30 30 29 30 30 30 30
woodworking-sat11-strips (20) 20 20 12 20 20 20 19 20 20 20 20
Coverage (1676) 1234 1318 1387 1428 1511 1518 1235 1508 1504 1556 1559
Average Time 10 24 46 33 10 10 88 40 42 38 10
Average Length 118 117 118 117 118 118 71 130 115 132 118

Table 2: Coverage over all STRIPS benchmarks from IPCs: k-BFWS polynomial vs. exponential planners. Domains solved by
all planners ommited. Averages plan quality and time in seconds over problems solved by all planners. Best coverage shown in
red.

199

