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Abstract

When minimizing makespan during off-line planning, the
fastest action sequence to reach a particular state is, by defini-
tion, preferred. When trying to reach a goal quickly in on-line
planning, previous work has inherited that assumption: the
faster of two paths that both reach the same state is usually
considered to dominate the slower one. In this short paper,
we point out that, when planning happens concurrently with
execution, selecting a slower action can allow additional time
for planning, leading to better plans. We present Slo’RTS, a
metareasoning planning algorithm that estimates whether the
expected improvement in future decision-making from this
increased planning time is enough to make up for the in-
creased duration of the selected action. Using simple bench-
marks, we show that Slo’RTS can yield shorter time-to-goal
than a conventional planner. This generalizes previous work
on metareasoning in on-line planning and highlights the in-
herent uncertainty present in an on-line setting.

Introduction

Traditionally, planning has been considered from an off-line
perspective, in which plan synthesis is completed before
plan execution begins. In that setting, if the objective is to
minimize plan makespan, then it is clearly advantageous to
return a faster plan to achieve the goal. For example, in a
heuristic search-based approach to planning, if the planner
discovers two alternative plans for achieving the same state,
it only needs to retain the faster of the two. In A* search, this
corresponds to the usual practice of retaining only the copy
of a duplicate state that has the lower g value.

However, many applications of planning demand an on-
line approach, in which the objective is to achieve a goal
as quickly as possible, and planning takes place concur-
rently with execution. For example, while the agent is tran-
sitioning from state s1 to state s2, the planner can decide
on the action to execute at s2. In this way, the agent’s
choice of trajectory unfolds over time during execution,
rather than being completely pre-planned before execution
begins. While this may result in a trajectory that is longer
than an off-line optimal one, it can result in achieving the
goal faster than off-line planning because the planning and
execution are concurrent (Kiesel, Burns, and Ruml 2015;
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Cserna et al. 2016). This setting also models situations in
which an agent’s goals can be updated during execution, re-
quiring on-line replanning.

The first contribution of this paper is to point out that the
on-line setting differs from the off-line one in that it may
be advantageous for the planner to select a slower action to
execute at s2 even when a faster one is known to reach the
same resulting state s3. This is because the longer action will
give the agent more time to plan before reaching s3. This
might result in a better decision at s3, allowing the agent to
reach a goal sooner. If the decision is substantially better, the
difference may even be large enough to offset the delay due
to the slower action. Anyone who has slowed down while
driving on a highway in order to have more time to study a
map before passing a crucial exit is intuitively familiar with
this scenario. We generalize this reasoning to cover actions
that do not immediately lead to the same state s3.

The second contribution of this paper is a practical on-
line planning algorithm, Slo’RTS (pronounced Slow-are-
tee-ess), that takes this observation into account. We work
in the paradigm of forward state-space search, using real-
time heuristic search algorithms that perform limited looka-
head search and then use the lookahead frontier to inform ac-
tion selection. When operating in a domain that has durative
actions, whose execution times can be different, Slo’RTS
takes actions’ durations into account, estimating the effect
on decision-making at future states. In this way, Slo’RTS
reasons about its own behavior; in other words, it engages
in metareasoning. We implement and test Slo’RTS in some
simple gridworld benchmarks, finding that its metareasoning
can indeed result in better agent behavior. To our knowledge,
this is the first example of a planning algorithm that can dy-
namically plan to give itself more time to think without as-
suming that the world is static. More generally, this work
is part of a recent resurgence of interest in metareasoning in
heuristic search, illustrating how this beautiful idea can yield
practical benefits.

Previous Work

We briefly review the real-time heuristic search and meta-
reasoning algorithms that Slo’RTS is based on. Given our
objective to minimize time to goal, we will assume that plan
cost represents makespan.
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Real-Time Search

Local Search Space-Learning Real-Time A* (LSS-LRTA*)
is a leading general-purpose real-time search algorithm
(Koenig and Sun 2009). Each iteration of LSS-LRTA* op-
erates in two phases: exploration and learning. First, the ex-
ploration phase uses an A* search to expand a local search
space around the agent until an expansion bound is reached,
at which point the agent will commit to the action leading to
the best node at the edge of the lookahead frontier. Second,
in the learning phase, the heuristic values of expanded states
are updated by propagating information backwards from the
lookahead frontier using a Dijsktra-like propagation algo-
rithm. The next iteration then uses these updated h values,
generating a fresh lookahead search frontier.

Dynamic f̂ is a variant of LSS-LRTA* (Kiesel, Burns,
and Ruml 2015). It employs an inadmissible heuristic, no-
tated ĥ. This value is an unbiased estimate of a node’s true
cost-to-goal, rather than an admissible lower bound. Just as
f(s) = g(s) + h(s), we will write f̂ = g(s) + ĥ(s). During
lookahead search, Dynamic f̂ sorts the frontier on f̂ instead
of f , and afterwards, the action selected for execution is the
one leading to the frontier node with the best f̂ value.

While any ĥ could be used, in experiments reported be-
low, we use a version of the standard admissible h that
is debiased online using the ‘single-step path-based error’
method of Thayer, Dionne, and Ruml (2011). During search,
the error ε in the admissible h is estimated at every expan-
sion by the difference between the f value of the parent
node and the f value of its best successor (these will be
the same for a perfect h). If ε̄s is the average error over
the nodes along the path from the root to a node s and d(s)
is an estimate of the remaining search distance (number of
edges along the path) from a state s to the nearest goal, then
ĥ(s) = h(s) + ε̄s · d(s).

During the learning phase, if node a inherits its f value
from a node b on the search frontier, then Dynamic f̂ will
update h(a) using the path cost between a and b (the dif-
ference in their g values) and b’s h value. The remaining
error in the estimate of f(a) will then derive from the er-
ror in h(b). So for each updated h value, Dynamic f̂ also
records the d value of the node it was inherited from, and
thus ĥ(a) = h(a) + ε̄b · d(b).
Metareasoning Search

Metareasoning On-line Real-time Search (Mo’RTS, pro-
nounced Moe-are-tee-ess) addresses domains that have iden-
tity actions, which function as a no-op or idle action by tak-
ing time but not changing the state of the world (O’Ceallaigh
and Ruml 2015). Mo’RTS uses metareasoning to decide
when to execute identity actions. When no identity actions
are taken, Mo’RTS works just like dynamic f̂ . When an
identity action is taken, Mo’RTS can preserve its looka-
head frontier from its previous search iteration and extend
it, allowing deeper lookahead and more accurate decision-
making. In an extreme case, Mo’RTS can decide to take so
many identity actions that it is able to plan all the way to a
goal, thereby imitating the behavior of off-line A* search.

The central decision of Mo’RTS is whether the delay in
reaching the goal caused by the duration of an identity ac-
tion tidentity is outweighed by the expected benefit B of ad-
ditional search:

B > tidentity . (1)
Search will provide benefit if, instead of the current best ac-
tion α, additional search causes the planner to select some
other action β instead. Abusing notation by referring to
states by the actions that lead to them, Mo’RTS represents
the value of an action α as a belief distribution over possible
values, with pα(x) representing the probability density that
α’s true f∗ value is x. This distribution is assumed to be a
Gaussian centered at f̂(α) with variance σ2 = (ε̄b · d(b))2,
where b is the frontier node from which α inherits its value.
Just as in Dynamic f̂ , Mo’RTS allows further search to de-
crease d(b) and hence sharpen our belief about α.

Because actions are chosen based on their f̂ values, to es-
timate benefit, we need to estimate what α and β’s f̂ values
might be after we have performed more search. This is rep-
resented as a Gaussian belief p′ᾱ(x) centered at f̂(α) with
variance

σ2
p′̄
α
= σ2

pα
·min(1,

ds
d(b)

) (2)

where ds is the distance, in search steps, along the path to
a goal that we expect to cover during the extra search. The
intuition is that, if no further search were done, the variance
of p′ᾱ is zero since f̂(α) wouldn’t change, and if we searched
all the way to a goal, we would expect f̂(α) to be distributed
like pα, since that is the definition of pα. ds is estimated by
dividing the number of expansions that will be done during
the search by the expected number of expansions required to
make progress along a search path (estimated by the average
number of expansions from when a node is generated until
it is expanded).

The benefit of search, if the value of the most promising
action α were to become xα and the value of some compet-
ing action β were to become xβ , would be

b(xα, xβ) =

{
0 if xα ≤ xβ

xα − xβ otherwise
(3)

because we would have done α if we had not searched. The
expected benefit is the expected value over our estimates of
p′ᾱ and p′̄

β
:

B =

∫
xα

p′ᾱ(xα)

∫
xβ

p′̄β(xβ)b(xα, xβ)dxβdxα. (4)

Using these estimates, Mo’RTS can decide whether an iden-
tity action is worthwhile. However, in domains in which
there is no identity action that allows the agent to stop the
world and think, Mo’RTS does not apply.

Metareasoning for Durative Actions

Slo’RTS generalizes the ideas behind Mo’RTS. Instead of a
special comparison of the expected benefit of search against
the time cost of an identity action, we add consideration of
time when computing the expected cost of every top-level
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Figure 1: An example search tree considered by Slo’RTS.

action. Figure 1 illustrates a situation in which the agent is
currently transitioning to state s and the planner is deciding
whether to take action α or β once the agent arrives there.
Ordinarily, an action like α would receive a backed up value
equal to the minimum of its children, sαα and sαβ , whose
values are inherited from frontier nodes bαα and bαβ . But
this assumes that we have perfect information about these
values and that no further information will be gained. In
a real-time search context, this assumption does not hold;
there may be insufficient time to fully explore the space, es-
pecially early on.

Slo’RTS recognizes that, if we choose to do α at s, by the
time we actually reach sα, we will have refined our beliefs
about sαα and sαβ , depending on how long α takes to exe-
cute. This leaves open the possibility that, by then, αβ might
be more attractive than αα. So when estimating the value of
sα, Slo’RTS computes the expected minimum over what it
thinks its beliefs about f̂(sαα) and f̂(sαβ) might be after
searching during α. In this way, when comparing sα and sβ ,
the durations of α and β are taken into account.

More formally, for every child b of every top-level action
a, Slo’RTS models its belief about f∗(sab) as a distribution
as in Mo’RTS

pab ∼ N (f̂(sab), (ε̄bab
· d(bab))2) (5)

and its belief about the location of f̂(sab) after search as

p′̄ab ∼ N (f̂(sab), (ε̄bab
· d(bab))2 ·min(1,

ds
d(bab)

) (6)

Note that ds will vary depending on the duration of a, caus-
ing the belief to be a spike at f̂(sab) if a is very fast and to
spread out to mimic pab with full search to the estimated goal
depth. This means that deeper search implies more possibil-
ity for the estimate of f̂(sab) to change and for ab to perhaps
change its ranking with respect to other actions, possibly be-
coming the best action at sa.

To estimate the value of a top-level successor state sa, we
take the expected minimum over the estimates of the beliefs
about the children of sa after planning during a. If the chil-
dren were α and β, this would be

Ea =

∫
xaα

∫
xaβ

p′āα(xaα)p
′
āβ(xaβ)min(xaα, xaβ)dxaβdxaα.

(7)

(a) (b) (c)

Figure 2: Three scenarios with beliefs about α and β.

This may be lower than min(f̂(saα), f̂(saβ)) if it ap-
pears that search might change the values significantly. In
the implementation tested below, we integrate numerically,
and we limit our consideration to the best two actions under
each top-level action. After every search iteration, Slo’RTS
chooses the top-level action that has the smallest expected
value.

Evaluation

We now turn to a brief analysis of the behavior of Slo’RTS
in comparison to conventional on-line planners.

Theorem 1 Conventional real-time search algorithms al-
ways choose the shortest sequence of actions towards any
expanded state within the lookahead search space, assum-
ing the heuristic is consistent.

Proof: Conventional algorithms such as LSS-LRTA* use
A* for their lookahead phase. When A* generates a node
representing the same state as a previously-generated node,
only the one with the lowest g value is retained. This re-
flects the dynamic programming optimal substructure prop-
erty that subpaths of shortest paths are themselves shortest
paths. Furthermore, if the heuristic is consistent, the g value
of any node expanded by A* (and thus within the lookahead
space) is optimal. Thus, real-time searches select only short-
est paths to expanded nodes in the lookahead space. �

Corollary 1 When two sequences of actions lead to the
same state, conventional real-time search algorithms will al-
ways take the faster path over the slower.

This illustrates the uniqueness of Slo’RTS, which has the
ability to select a slower path when it deems it beneficial.

Theorem 2 If the belief distributions of Slo’RTS are accu-
rate, the algorithm makes the optimal rational decision.

Proof: The heart of Slo’RTS, equation 7, estimates expected
cost. Under the definition of rationality as maximizing ex-
pected utility, which, given the objective of Slo’RTS corre-
sponds to minimizing cost, this is the optimal rational deci-
sion given the state of knowledge of the planner. �

The added time complexity of Slo’RTS over LSS-LRTA*
is O(b) where b is the branching factor. At the end of every
planning iteration, when the algorithm makes a decision, it
calculates the expected value of taking each top-level action
using equation 7. If, as in our implementation, this is lim-
ited to two actions per top-level action, then it is constant
time for each top-level action. Another approach would be
to compare each applicable action against the best, leading
to O(b) time per top-level action and O(b2) overall.
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(a) Simple (b) Highway

Figure 3: Schematics of the grid benchmarks.

To gain a concrete sense of Slo’RTS’ behavior, we first
tested the core decision procedure on three classic but com-
pletely synthetic scenarios, illustrated in Figure 2. Each sce-
nario involved two top-level actions, one fast and one slow,
both leading to the same state at which two actions, α and
β, were applicable. In scenario (a), we defined costs in the
search space such that Slo’RTS was quite confident about
the values of α and β. Additional search was not predicted
to have a significant chance of causing β to appear better
than α, and Slo’RTS correctly chose the fast action. In sce-
nario (b), the beliefs about α and β were very uncertain,
but so similar that it didn’t matter much which was chosen.
Slo’RTS recognized this and chose fast. In scenario (c), the
belief about α is quite certain but β is uncertain and has a
chance of leading to a significantly better outcome than α.
In this case, Slo’RTS correctly chose the slow action to al-
low additional search.

We then implemented a Slo’RTS agent in a grid pathfind-
ing domain using the Manhattan distance heuristic and com-
pared it with LSS-LRTA*. In each cardinal direction, both
fast and slow actions were available. Figure 3a shows a sim-
ple instance with an important early decision marked by 1.
The agent has to decide between crossing the obstacle field
that looks slightly worse from the outside or going around
the L shaped obstacle. The optimal path goes through the
obstacle field. Due to the limited lookahead, conventional
real-time planners like LSS-LRTA* always take the better
looking path and go around the obstacle. Slo’RTS recog-
nizes that the path leading into the obstacle field has poten-
tially better cost and slows down before the decision point.
The slow down results in a lookahead that is sufficient to
find a better path through the obstacle field.

Lastly, we implemented a class of benchmark problems
featuring grid cells with expensive irreversible decisions,
shown in Figure 3b. This simulates the example of decid-
ing which exit to take on a highway. The middle section of
the map is repeatable, yielding a sequence of decisions. Each
time the agents passes through this section, it passes one or
two decision points surrounded with irreversible cells, thus
the agent cannot turn back to choose another path. Conven-
tional algorithms like LSS-LRTA* always choose fast ac-
tions and are thus highly dependent on their lookahead pa-
rameter. Slo’RTS correctly identifies the decision points and
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Figure 4: Planner performance on highway instances.

slows down before reaching them, allowing better decision-
making. Since Slo’RTS plans while traveling to the goal,
node expansions are a perfect measure of time-to-goal; Fig-
ure 4 shows the total time-to-goal (in number of node ex-
pansions) as the number of middle segments is increased.
Clearly, in these instances the benefits of slowing down to
make a better decision outweigh increased execution time.

Discussion

There are several promising ways in which Slo’RTS could
be extended. For example, it currently considers only the ef-
fects of time on the decisions at the successors of the current
state, but this could in principle apply to any future antici-
pated states of the agent. We also believe that it should be
possible to derive the ideal amount of time to spend plan-
ning, if the domain allows flexibility in action durations.

There has been extensive prior work on deliberation
scheduling, in which decisions must be made about when to
plan. Most of this work separates the planner from a meta-
reasoning executive that initiate replanning or policy im-
provement meta-actions (Dean et al. 1993; Musliner, Gold-
man, and Krebsbach 2003; Krebsbach 2009). Some work
computes the value of deliberation off-line (Wu and Durfee
2006). In contrast, Slo’RTS embeds metareasoning in the
planner itself, where it has on-line access to detailed infor-
mation regarding the benefit of planning. Our objective of
minimum time-to-goal allows Slo’RTS to directly compare
time spent planning to estimated improvement in plan cost.

The decision faced by a multi-armed bandit algorithm
is similar to that faced by Slo’RTS, in that it involves
a trade-off between exploring to gather more information
versus exploiting the estimates that the agent has already
gathered. Metareasoning itself has been formulated as an
MDP (Lin et al. 2015). Work on control of anytime algo-
rithms is also related, in that one must dynamically decide
whether to continue planning (Hansen and Zilberstein 2001;
Póczos et al. 2009).

There are many real-time search algorithms and it would
be interesting to adapt Slo’RTS to them. daRTAA* attempts
to avoid heuristic depressions which cause revisiting the
same state multiple times (Hernández and Baier 2012).
EDA* provably avoids revisiting states many times, but is
limited to undirected domains in which every action can be
immediately and exactly undone and is nontrivial to use with
lookahead (Sharon, Felner, and Sturtevant 2014).

59



Conclusion

This paper has noted an issue unique to on-line planning,
proposed a principled algorithm for addressing it, and shown
that the algorithm can provide benefit in simple benchmarks.
While not every domain will see benefit from metareasoning
about planning time, it is useful to recognize that planning
can concern more than which actions to do, or even whether
to think more, but also how to provide the time to do so.
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