
Efficient Decision-Theoretic Target Localization

Louis Dressel, Mykel J. Kochenderfer
Aeronautics and Astronautics

Stanford University
{dressel,mykel}@stanford.edu

Abstract

Partially observable Markov decision processes (POMDPs)
offer a principled approach to control under uncertainty.
However, POMDP solvers generally require rewards to de-
pend only on the state and action. This limitation is unsuit-
able for information-gathering problems, where rewards are
more naturally expressed as functions of belief. In this work,
we consider target localization, an information-gathering task
where an agent takes actions leading to informative obser-
vations and a concentrated belief over possible target loca-
tions. By leveraging recent theoretical and algorithmic ad-
vances, we investigate offline and online solvers that incorpo-
rate belief-dependent rewards. We extend SARSOP—a state-
of-the-art offline solver—to handle belief-dependent rewards,
exploring different reward strategies and showing how they
can be compactly represented. We present an improved lower
bound that greatly speeds convergence. POMDP-lite, an on-
line solver, is also evaluated in the context of information-
gathering tasks. These solvers are applied to control a hex-
copter UAV searching for a radio frequency source—a chal-
lenging real-world problem.

1 Introduction
In target localization, an agent searches a region for a hidden
target. The target’s location is unknown, so a belief is main-
tained. This probability distribution over possible target lo-
cations is updated using sensor measurements, a measure-
ment model, and Bayes’ rule. The goal of target localization
is to efficiently reach a concentrated belief, which implies
confidence in the target location estimate.

Target localization is an important robotic task with
many real-world applications, like searching for GPS
jammers (Dressel and Kochenderfer 2015), radio-tagged
wildlife (Soriano, Caballero, and Ollero 2009), or rescue
beacons (Hoffmann, Waslander, and Tomlin 2006). In these
examples, robots were used because they cost less than hu-
man solutions and can be used in hazardous environments.
However, these robots require control schemes that allow
them to reason over actions and their effects on localization.

Partially observable Markov decision processes
(POMDPs) offer a principled, decision-theoretic approach
to optimal, closed-loop control under uncertainty (Kael-
bling, Littman, and Cassandra 1998). Although solving

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

POMDPs exactly is computationally intractable (Papadim-
itriou and Tsitsiklis 1987), recent algorithms generate
approximately optimal policies with tight bounds on
suboptimality, even for large problems. This progress
makes POMDPs attractive for real robotic tasks involving
uncertainty. Unfortunately, tasks like target localization or
active sensing are ill-served by this approach because the
traditional POMDP framework requires costs to depend on
state and action only. Expressions of uncertainty, such as
distribution entropy, depend instead on the belief.

Early efforts to overcome this limitation used surrogate
rewards, belief compression, or greedy policies. These tech-
niques often lack bounds on suboptimality. Fortunately, re-
cent work shows that belief-dependent rewards can be used
in the POMDP framework with modifications to existing
offline solvers (Araya et al. 2010). However, issues like
bounds and performance merit further investigation. Online
solvers are another solution as they are more flexible in the
types of rewards used. The recently proposed POMDP-lite
method even uses information-theoretic techniques to en-
courage exploration in large POMDPs (Chen et al. 2016).

In this paper, we expand on this recent work on POMDP
solvers. We modify SARSOP—one of the best offline
POMDP solvers—to handle belief-dependent rewards, pro-
viding compact representations for these rewards without
adding many actions or α-vectors, in contrast to prior work.
We also present an improved lower bound that significantly
reduces computation time. The resulting offline solver is
compared to POMDP-lite in an information gathering con-
text. Results suggest the offline solver has better perfor-
mance, though POMDP-lite requires far less computation
and is more scalable. Finally, we implement our policies on
an unmanned aerial vehicle (UAV) searching for a simulated
GPS jammer—a challenging real-world problem.

The paper proceeds as follows. Section 2 covers back-
ground information on POMDPs, including POMDP solvers
like POMDP-lite and target localization with POMDPs.
Sections 3 and 4 build on previous work and show how
point-based offline solvers can be modified for belief-
dependent rewards, with an emphasis on improving compu-
tational tractability. The resulting offline solver is compared
to POMDP-lite on two example problems in Section 5. Sec-
tion 6 presents the jammer hunting problem.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

70

2 Background

2.1 POMDPs

A POMDP consists of a state space S, action space A, obser-
vation space O, transition function T , observation function
Z, reward function R, and discount factor γ. At each time
step t, the agent takes action a ∈ A from state s ∈ S , arriv-
ing in some new state s′ ∈ S with probability p(s′ | s, a) =
T (s, a, s′). The agent also receives reward rt = R(s, a).
The agent’s goal is to maximize the expected discounted re-
ward E[

∑∞
t=0 rtγ

−t], where γ ∈ [0, 1) ensures a finite sum.
If the agent always knows its state, the problem is fully

observable and simply called a Markov decision process
(MDP). In an MDP, a policy π maps states to actions. The
expected discounted reward starting from state s and fol-
lowing policy π is called the value of state s and is denoted
V π(s). The goal is to find an optimal policy π∗ that maxi-
mizes the value from every state. This optimal value func-
tion V ∗ can be found by iteratively applying the Bellman
update to convergence:

V (s) = max
a

R(s, a) + γ
∑
s′

T (s, a, s′)V (s′). (1)

In a POMDP, the state is not fully observable. Instead, a
noisy observation o ∈ O is sampled according to observa-
tion function Z(a, s, o) = p(o | a, s). These noisy obser-
vations are combined with a prior to maintain a belief b, or
probability distribution over the states. After taking action
a from b and observing o, a new belief b′ can be generated
with Bayes’ rule. The solution to a POMDP is a mapping
from belief to action. The Bellman update for POMDPs is

V (b) = max
a

ρ(b, a) + γ

∫
b′
τ(b, a, o, b′)V (b′)db′. (2)

Equation (2) is similar to Equation (1), where the states are
now beliefs. The transition function τ describes the proba-
bility of transitioning from b to b′ given action a and obser-
vation o. It can be rewritten in terms of T and Z. The belief-
dependent reward function ρ(b, a) is rewritten using a state-
based reward function R(s, a): ρ(b, a) =

∑
s R(s, a)b(s).

Because ρ is expressed as an expectation of state-based re-
ward conditioned on belief, value functions generated with
Equation (2) are piecewise linear and convex (PWLC) over
belief. Therefore, the optimal value function can be approx-
imated arbitrarily well with a set of linear functions (Small-
wood and Sondik 1973). These linear functions are called
α-vectors. The value function is the upper surface of a set Γ
of α-vectors: V (b) = maxα∈Γ α · b.

2.2 Offline Solvers

Offline POMDP solvers typically update Γ until the result-
ing value function closely approximates the optimal. These
approaches require a state-dependent reward to ensure the
value function is PWLC. The updating uses point-based
value iteration, where value iteration is performed over a set
of points in belief space (Pineau et al. 2003). Belief space is
infinite, so these methods only consider the reachable space,
or set of beliefs that can be reached from an initial belief.

A search tree is created from this initial belief, and the tran-
sition and observation functions are used to generate new
belief nodes. A benefit of offline solvers is that all solv-
ing happens before execution; while executing the policy, an
agent simply queries the offline results.

SARSOP is an offline, point-based solver that reduces
computation time by estimating the reachable space under
optimal policies (Kurniawati, Hsu, and Lee 2008). SARSOP
maintains upper and lower bounds on the value function and
uses heuristics to predict the value of new beliefs. These
techniques reduce the size of the search tree.

2.3 POMDP-lite

Online POMDP solvers typically form a search tree whose
root is the current belief during execution. This tree is
smaller than the tree starting from the initial belief, making
online solvers more scalable. However, the agent is forced to
recalculate this tree as the belief is updated, requiring com-
putation that might be infeasible on robotic hardware.

POMDP-lite is a recently proposed online solver that has
outperformed other online methods (Chen et al. 2016), mak-
ing it a useful benchmark. POMDP-lite leverages partial ob-
servability; in many problems, part of the state is observable.
This is often true in target localization, where an agent might
know its own position while the target remains hidden. In
that case, it is computationally beneficial to decompose the
monolithic state space S from Section 2.1 into the Cartesian
product of observable state space X and unobservable state
space Θ.

POMDP-lite reduces the POMDP to an MDP with state
space X . Values that depend on the unobserved state are
treated as expectations over the unobserved state space,
with weights dictated by the current belief over unobserved
states. For example, the transition function becomes

Tb(b, x, a, x
′) =

∑
θ∈Θ

b(θ)P (x′ | x, θ, a),

and the reward function becomes

Rb(b, x, a) =
∑
θ∈Θ

b(θ)R(x, θ, a). (3)

A crucial part of POMDP-lite is that it encourages explo-
ration by augmenting the reward from Equation (3) with an
exploration reward Re. This reward is the expected �1 diver-
gence between the current belief b and the next belief b′:

Re(b, x, a) =∑
θ,x′,o

P (o | θ, x′, a)P (x′ | x, θ, a)b(θ)∥∥b′ − b
∥∥
1

. (4)

At the current belief b, the MDP has state space X , tran-
sition function TMDP = Tb, and reward function RMDP =
Rb+λRe, where λ is a scale factor encoding the preference
of information rewards over original rewards. This MDP is
solved and the best action from the observed state is taken.
An observation is received, the belief is updated, and a new
MDP is solved. If the problem is small enough, the MDP
can be solved exactly with value iteration. Otherwise, an
online method such as UCT can be used.

71

POMDP-lite has been used to solve POMDPs with
large state spaces but has not yet been used in a purely
information-gathering context. In this work, we compare
it to offline methods modified for belief-dependent rewards.

2.4 Prior POMDP Localization Approaches

Surrogate rewards are a common approach to circumvent-
ing the limitation of state-dependent rewards (Hsu, Lee, and
Rong 2008; Dressel and Kochenderfer 2015). Surrogate re-
wards “trick” the agent into desired behavior with a state-
based reward that requires solving the localization problem.
In localization tasks, a surrogate reward might be given if
the agent reaches the target’s location. Although this forces
the agent to find the target, the agent is also incentivized
to stay near the target, even if better measurements can be
made farther away.

Another POMDP localization technique is to augment the
state space with a compressed version of the belief (Roy et
al. 1999; Roy, Gordon, and Thrun 2005; Thrun, Burgard,
and Fox 2005). The compressed belief commonly con-
sists of the belief entropy and the index of the maximum
belief. The dynamics of transitioning between these aug-
mented states can be learned through Monte Carlo simula-
tions (Thrun, Burgard, and Fox 2005; Dressel and Kochen-
derfer 2015). Although learning these dynamics allows for
non-greedy planning to minimize entropy, compressing dif-
ferent beliefs might lead to the same compressed belief. This
loss of information can lead to suboptimal control.

Another common approach is to abandon long-term plan-
ning and focus instead on the next time-step. In localization
tasks, these greedy approaches guide agents to take the con-
trol action leading to lowest expected entropy after a single
step (Hoffmann, Waslander, and Tomlin 2006). Entropy is
a measure of spread in a distribution (a uniform distribution
maximizes entropy), making it a good objective function.
However, greedy behavior can be suboptimal as the agent
trades long-term optimality for short-term gain.

3 Belief-Dependent Rewards

As explained in Section 2.2, POMDP solvers like SARSOP
rely on state-dependent rewards to maintain a PWLC value
function that can be approximated with α-vectors. A key in-
sight by Araya et al. was that so long as ρ(b, a) was itself
PWLC, then value functions generated with Equation (2)
would also be PWLC (2010). The term “ρPOMDP” refers
to POMDPs with PWLC belief-dependent rewards.

Another framework is the POMDP with information re-
wards (POMDP-IR), which adds “guess” actions performed
simultaneously with normal actions (Spaan, Veiga, and
Lima 2014). There is one guess action per state, each yield-
ing a state-based reward if it corresponds to the true state.
Although these actions greatly increase the action space,
they decompose nicely out of the Bellman update because
they do not affect the system dynamics. It has actually been
shown that a POMDP-IR is equivalent to a ρPOMDP (Sat-
sangi, Whiteson, and Spaan 2015).

Here, we examine three PWLC belief-dependent reward
functions. None rely on entropy—a common uncertainty

measure—because it is not piecewise linear. We could gen-
erate a PWLC approximation with tangential hyperplanes at
selected points, but generating a good, dense approximation
before solving can lead to an enormous set of hyperplanes.
An alternative is to only generate hyperplanes at new nodes
in the belief tree, but this requires extra computation at each
new node.

3.1 Max-Norm Reward

An alternative reward is the �∞-norm, or max-norm, pro-
posed by Eck and Soh in the context of ρPOMDPs (2012).
This PWLC function can be represented exactly with the
standard basis of R|S|:

ρ(b, a) = max
α∈Γρ

α · b, Γρ =
{
e1, ..., e|S|

}
. (5)

The ability to compactly and exactly represent the max-
norm reward is a great advantage over negative entropy. Sur-
prisingly, a sparse approximation of negative entropy can
perform worse than a max-norm reward, even when evalu-
ated by the expected sum of negative entropy (Araya 2013).
The max-norm is also more intuitive—a max-norm of 0.6
suggests there is a 60% chance the agent is in the most likely
state, whereas a distribution entropy of 2 nats is less useful
to a human evaluator.

3.2 Threshold Reward

A disadvantage of the max-norm is that the agent always re-
ceives some reward, even at uniform beliefs. Sometimes,
we want an agent to reach a highly concentrated belief as
quickly as possible, but the agent might be driven by the
max-norm reward to collect rewards at less-concentrated be-
liefs in the near-term. Spaan, Veiga, and Lima suggested
thresholded rewards in the POMDP-IR framework, but this
requires an additional guess action per state (2014). Our
ρPOMDP version does not:

ρ(b, a) = max

(
‖b‖∞ − cρ
1− cρ

, 0

)
, (6)

where cρ is the max-norm cutoff. A belief max-norm below
cρ induces no reward. Above cρ, the reward increases lin-
early until it reaches a maximum value of 1. An exact repre-
sentation of the threshold reward only needs one hyperplane
per state and an additional
0 hyperplane.

3.3 Guess Reward

We examine a final reward function introduced in the
POMDP-IR literature (Spaan, Veiga, and Lima 2014). In a
POMDP-IR, the agent guesses the true system state at each
time step. The agent is rewarded 1 for guessing correctly
and 0 otherwise. This reward function is equivalent to the
max-norm, because the expected reward of the guess equals
the belief max-norm (Satsangi, Whiteson, and Spaan 2015).
In one variant, the agent can guess instead of taking a nor-
mal action. The agent’s action space is augmented with a
single guess action independent of the problem dynamics; it

72

is assumed the state with highest belief density is chosen for
the guess. This guess reward function can be represented as

ρ(b, a) = 1{a = guess}
(
max
α∈Γρ

α · b
)

, (7)

where Γρ is defined in Equation (5) and 1{x} is the indicator
function that returns 1 if x is true. Purely belief-dependent
rewards require an external termination condition, like an
entropy threshold (Eck and Soh 2012). The guess action
forces the agent to reason about the cost of acquiring new in-
formation, removing the need for external termination con-
ditions.

3.4 Action Rewards

Often there is a cost to performing sensing actions—they
might take longer than other actions or use more resources.
Adding an action-dependent reward R(a) maintains the
PWLC property.

4 SARISA
Here we incorporate the PWLC rewards from the previous
section into offline, point-based solvers. Specifically, we
modify SARSOP and call the resulting algorithm SARSOP
with information-seeking actions (SARISA).

4.1 Backup

The backup operation uses the Bellman update to improve
the value function at belief b using information at the child
beliefs of b. We denote αa,o ∈ Γ as the maximizing α-vector
at the belief reached when taking a from b and observing o.
Then, a set of α-vectors is created for each action a, where
αa describes the α-vector created for action a. The entry in
αa for state s is updated:

αa(s) = R(s, a) + γ
∑
o,s′

T (s, a, s′)Z(a, s, o)αa,o(s
′)

= αb(s) +R(a) + γ
∑
o,s′

T (s, a, s′)Z(a, s, o)αa,o(s
′)

(8)

where αb = argmaxα∈Γρ
α · b. If we use the max-norm

reward, the update is:

αa(s) = 1{s = argmax
s′

b(s′)}+R(a) +

γ
∑
o,s′

T (s, a, s′)Z(a, s, o)αa,o(s
′). (9)

A similar update can be written for the threshold reward:

αa(s) =
1{b(s∗) > cρ}

1− cρ

[
1{s = s∗} − cρ

]
+R(a) +

γ
∑
o,s′

T (s, a, s′)Z(a, s, o)αa,o(s
′), (10)

where s∗ = argmaxs b(s). Equations (9) and (10) repre-
sent a computational benefit over the traditional ρPOMDP
backup shown in Equation (8)—we do not need to maintain
a set Γρ or compute αb at each backup, a previous criticism
of ρPOMDPs (Satsangi, Whiteson, and Spaan 2015).

4.2 Upper Bound

In SARSOP, the upper bound is represented with a set of
belief-value pairs, and the sawtooth approximation (Shani,
Pineau, and Kaplow 2013) is used to interpolate for values
at new beliefs. The fast informed bound (FIB) approxima-
tion generates this upper bound. FIB switches max and sum
operators in the Bellman update and is an upper bound on
the value function (Hauskrecht 2000). Here, we derive FIB
for rewards depending on belief and action. FIB is initialized
with a set Γ of α-vectors, with one α-vector αa per action a,
each of which is usually initialized to zeros. We start with a
variant of the Bellman update:

V (b) = max
a

[
ρ(b, a) +

γ
∑
o

max
α∈Γ

∑
s,s′

b(s)p(s′, o | s, a)α(s′)
]

= max
a

[
max
α∈Γρ

∑
s

b(s)α(s) +
∑
s

b(s)R(a) +

γ
∑
o

max
α∈Γ

∑
s,s′

b(s)p(s′, o | s, a)α(s′)
]

≤ max
a

∑
s

b(s)

[
max
α∈Γρ

α(s) +R(a) +

γ
∑
o

max
α∈Γ

∑
s′

p(s′, o | s, a)α(s′)
]

.

We assume the PWLC belief-dependent reward is uniform at
the corners of the belief simplex, as is the case with negative
entropy and the max-norm. We denote this corner reward as
rb∗ . Because we assume no state-dependent rewards, every
element in a specific α-vector will have the same value. For
α-vector α, we denote this constant value αc. This term does
not rely on s′ or o:

V (b) ≤ max
a

∑
s

b(s)

[
rb∗ +R(a) +

γmax
α∈Γ

αc

∑
o,s′

p(s′, o | s, a)
]

= max
a

∑
s

b(s)

[
rb∗ +R(a) + γmax

α∈Γ
αc

]
︸ ︷︷ ︸

α
(k+1)
a (s)

.

Each αa can now be updated iteratively, independently of
belief. The element corresponding to state s is updated in
step k + 1 using the α-vectors from step k: α

(k+1)
a (s) =

rb∗ + R(a) + γmaxα(k)∈Γ α
(k)
c . This iteration can be rep-

resented as a geometric sum because the α-vector max-
imizing α

(k)
c always belongs to the action with highest

reward—so, every element in αa converges to R(a)+(rb∗+
γmaxa R(a))/(1 − γ). Because every element in an α-
vector is the same, the α-vector belonging to the highest re-
ward action dominates at any belief—and each element has

73

0 0.2 0.4 0.6 0.8 1

10

15

20 V U

V L

V ∗

V L,i

b(s1)

V
al

ue

Figure 1: Example two-state problem with the max-norm
reward, γ = 0.95, and no action costs. The true value V ∗
is bounded by upper and lower bounds V U and V L. The
improved bound V L,i is much tighter than V L.

the value
rb∗ +maxa R(a)

1− γ
. (11)

This dominant α-vector is used to generate a set of belief-
value pairs, initializing the upper bound. The result in Equa-
tion (11) is easy to compute and requires no iteration. How-
ever, this FIB-generated upper bound is equivalent to a naı̈ve
upper bound that simply discounts the maximum possible
reward to infinity. This result is unsurprising because the
FIB iterations include no notion of belief and should not be
able to capture the effect of belief-dependent rewards. How-
ever, the result is shown here for completeness. Improved
upper bounds are an area of future research.

4.3 Lower Bound

The lower bound maintained by SARSOP is the set Γ of
α-vectors representing the value function. This bound is
initialized with one α-vector per action using a blind pol-
icy (Hauskrecht 1997). In a POMDP with belief and action-
dependent rewards, the worst greedy reward is equal to
rbw + maxa R(a), where rbw is the worst belief-dependent
reward, typically achieved when the belief is uniform. As
with the upper bound, the resulting α-vectors will be dom-
inated by the α-vector corresponding to the action with the
highest reward, where every element is

rbw +maxa R(a)

1− γ
. (12)

The lower bound can be initialized to a single α-vector be-
longing to the highest reward action, with each element
equal to the value shown in Equation (12), but this bound
is very loose.

We can derive a tighter lower bound for the max-norm
reward if the agent has an action that is guaranteed not to
change the belief. The belief max-norm remains unchanged
after applying this action, and the infinitely discounted max-
norm is a lower bound on the value at the belief. Figure 1

Figure 2: The LazyScout problem. The UAV must find a ra-
dio beacon (white triangle) located between some buildings.
Grey cells indicate possible locations of the hidden beacon.
The UAV can climb above the buildings to receive a perfect
observation.

shows the improved bound, which directs exploration and
helps convergence.

Localization of a stationary target always satisfies this as-
sumption. The agent only needs a non-observing action that
returns a null observation—common in target localization,
where agents often have the option to move or make a mea-
surement. If the agent is always sensing, we can simply add
an action that discards the observation. This action only ex-
ists to guide exploration during solving, and it is unlikely to
be the optimal action selected during execution.

If non-zero, the non-observing action’s reward can be in-
cluded in the infinite discounting. The improved bound can
be expressed compactly with one α-vector per state, each
corresponding to the non-observing action. The same bound
holds for the guess reward function—the guess action takes
the role of the non-observing action. A similar bound can be
derived for the threshold reward function. An additional
0
α-vector represents the no reward belief region.

5 Example Problems

Before using SARISA on a larger problem, we validate it
against POMDP-lite on toy examples. We also compare per-
formance against surrogate and greedy methods.

5.1 LazyScout

We present LazyScout, a toy localization task showing the
possible suboptimality of greedy entropy minimization and
surrogate rewards. A UAV equipped with a range sensor
seeks a radio beacon located between buildings. The UAV
knows its own location, so each range measurement implies
a beacon location. When the UAV travels between build-
ings, its observations are degraded by clutter and multipath.
It might observe the grid cell containing the beacon, the cell
before, or the cell after, each with equal probability. Alter-
natively, the UAV can climb above the buildings. Climb-
ing takes two time steps and no measurements can be made
while climbing. However, once above the buildings, the
UAV observes the true beacon location. Figure 2 is a graph-
ical representation of LazyScout.

The optimal action is to climb above the buildings, which
ensures localization in two steps. However, both greedy en-
tropy minimization and a surrogate reward strategy act sub-
optimally. Greedy entropy minimization fails because the

74

Table 1: Reward comparison for LazyScout
reward first action reward steps to solve
structure localize time (s)

surrogate buildings 17.521 4.3 0.86
greedy buildings 17.521 4.3 -
SARISA (�∞) climb 18.266 2.0 0.06
POMDP-lite climb 18.266 2.0 -

Figure 3: Grid used for rock problems: five rocks, γ = 0.95,
rover starts in upper left.

noisy measurement received through the buildings is “bet-
ter” than receiving no measurement while climbing. If we
define a surrogate, state-dependent reward function that re-
wards the UAV for reaching the beacon location, the UAV
will try to stay near the estimated location of the beacon.
The extra time required to climb and descend is not worth
it—the UAV can piece together enough noisy measurements
as it moves through the buildings and closer to the beacon.
Localization might take longer, but the time to physically
reach the beacon is reduced.

Simulation results comparing surrogate rewards, greedy
rewards, SARISA with the max-norm reward function, and
POMDP-lite are shown in Table 1. SARISA and POMDP-
lite lead to the correct first action, cutting localization time
in half (here localization means concentrating belief to a sin-
gle cell). SARISA’s bounds converge to 18.266, the theoret-
ically correct initial value when evaluating with the max-
norm reward and γ = 0.95.

The SARISA solver used the improved lower bound, lead-
ing to a solve time of 0.06 s. When this improved bound
was not used, convergence took 0.99 s, nearly a factor of 17
longer. The improved bound drastically reduces the number
of backups necessary: the improved version only used 237
backups while the unimproved version needed 1,961.

5.2 RockSample and RockDiagnosis

RockSample is commonly used to test the effectiveness of
POMDP solvers (Smith and Simmons 2004). A rover moves
in a square grid and samples rocks that exist at known loca-
tions and might have scientific value. From a given grid cell,
the rover can move to a non-diagonal neighbor cell, use a
laser to scan any rock, or sample a rock occupying the same
cell. Scanning a rock provides a noisy measurement of its
value. Sensor noise increases with the rover’s distance from

Table 2: Reward comparison for RockSample, when evalu-
ated by max-norm reward.

policy solve time (s) reward

surrogate 34 7.6
SARISA (�∞) 7200 12.7
POMDP-lite - 10.7
reach - 8.1
random - 8.4

the rock. The rover is rewarded for sampling a valuable rock
and penalized for sampling a worthless one.

The goal in a modified version of RockSample called
RockDiagnosis is only to determine whether each rock is
valuable (Araya 2013). The rover has no sample action—
instead, it maneuvers and scans to learn the worth of each
rock. The original RockSample can be seen as RockDiag-
nosis with a surrogate reward, where the sample costs ex-
ist only to encourage this learning. A RockDiagnosis agent
should determine the rock states more quickly.

We first solved the RockDiagnosis problem shown in Fig-
ure 3 with SARISA and the max-norm reward function,
comparing it to a “surrogate” policy solved on the Rock-
Sample model with SARSOP, a random action policy, and a
“reach” policy that moved the agent in the shortest path to
each rock, making a perfect observation at each. We also
used POMDP-lite, solving the MDP exactly at each step
with value iteration. We also use the original information re-
ward shown in Equation (4), instead of experimenting with
other reward functions, such as the expectation of

∥∥b′ − b
∥∥
∞

or simply the expectation of
∥∥b′∥∥∞. Preliminary results sug-

gest performance does not vary much with these reward vari-
ants. Therefore we just use the original, leaving variants as
a subject for future work.

Table 2 shows the mean sum of discounted max-norm re-
wards during 2000 simulations of 100 steps for each pol-
icy. SARISA yields the highest reward, which is unsur-
prising because its reward function matches the evaluation
reward function. However, the result is not insignificant.
An early attempt at solving RockDiagnosis of the same size
used a modified version of Perseus (Spaan and Vlassis 2005)
and could not outperform the random policy (Araya 2013),
suggesting our work is an improvement over early POMDP
solvers incorporating belief-dependent rewards.

A notable result is the slow convergence of SARISA—
after 7200 s, the lower and upper bounds were 12.3 and 14.4.
In contrast, the RockSample policy bounds converged to a
width of 0.001 in just 34 s. One way to improve conver-
gence is to find tighter starting bounds, a subject of future
research. Although POMDP-lite underperforms SARISA, it
is extremely efficient; it requires no offline solving and ac-
tions are selected at each belief in under 0.02 s.

We also explore the effect of other reward functions. Sup-
pose we want the rover to be 95%-confident—according to
its model—in a rock configuration, as fast as possible. We
might use the threshold reward from Equation (6) with a cut-
off cρ = 0.9. Because beliefs with max-norm below 0.9

75

Table 3: Reward comparison for RockSample, when evalu-
ated by threshold reward.

policy solve time (s) reward

SARISA (thresh 0.9) 7200 6.1
SARISA (max-norm) 7200 4.2
POMDP-lite - 7.1

0 2,000 4,000 6,000

20

40

60

80

100

Solve Time (s)

M
ea

n
St

ep
s

to
m
a
x
s
b(
s)

≥
0
.9
5

Max-Norm
Thresh(0.9)
POMDP-lite

Figure 4: Average steps to reach a highly concentrated be-
lief. If a trajectory did not reach the desired max-norm, the
worst-case value of 100 was assigned.

yield no reward, the agent is encouraged to reach highly con-
centrated beliefs more quickly. Figure 4 shows how quickly
policies solved with max-norm and threshold rewards reach
a belief with a max-norm of 0.95. The max-norm policies
almost always failed to reach the desired confidence if they
had been solved for less than an hour. After solving for
two hours, the performance was much better, probably be-
cause SARISA had time to reach further down the belief
tree to more highly-concentrated beliefs. In contrast, thresh-
old policies solved for even a short amount of time reach the
desired confidence quickly. POMDP-lite (with the reward
from Equation (4)) also reached highly concentrated beliefs
quickly.

Policies were evaluated using the threshold reward. Mean
discounted rewards are shown in Table 3. As expected, the
threshold policy outperforms the max-norm policy because
it was trained on the evaluation reward function. How-
ever, POMDP-lite outperforms the threshold SARISA pol-
icy. This is probably due to SARISA’s unconverged bounds,
which were 4.6 and 13.7 after 7200 s. These bounds are
much wider than in the max-norm case, most likely because
rewards only occur deep in the search tree at concentrated
beliefs. The improved lower bound also assigns no value to
beliefs below the threshold max-norm, so the lower bound
is probably loose, leading to poor convergence. As a re-
sult, POMDP-lite might be a better choice when we desire
threshold-like rewards. Still, the improved lower bound sig-
nificantly helps SARISA’s performance. As Figure 5 shows,
the improved lower bound is higher after 30 seconds of solv-
ing than the unimproved bound after two hours.

0 2,000 4,000 6,000

0

2

4

Solve Time (s)

L
ow

er
B

ou
nd

V
al

ue

Normal
Improved

Figure 5: Lower bound on RockDiagnosis when using
threshold reward with cutoff of 0.9. The improved lower
bound improves convergence.

6 Jammer Localization

GPS is a critical part of air travel, but it is susceptible to
RF interference and jamming (Geyer and Frazier 1999). We
consider the problem of using a multirotor UAV to hunt a
GPS jammer, modeled as a WiFi router. The search area
is modeled as an 11 × 11 grid with 10m × 10m cells. A
state s consists of the known UAV position (xv , yv) and un-
known jammer position (xj , yj)—we assume the UAV has
an alternate (non-GPS) navigation system. At each step, the
UAV can deterministically move to a neighboring grid cell,
rotate in place, or hover (terminate the search). The UAV is
constrained to a constant altitude.

A multirotor UAV armed with a directional antenna can
estimate bearing to an RF source by rotating in place (Grae-
fenstein et al. 2009). We model the noise as zero-mean
Gaussian, consistent with results from the literature (Perkins
et al. 2015). Noise standard deviation is 13◦ at most ranges,
but it increases to roughly 40◦ if the jammer and UAV are
in adjacent cells. To reduce computation, the angular space
is split into 10◦ bins. An additional null measurement is re-
ceived when the UAV does not rotate, yielding 37 possible
observations.

We want the agent to reason about when to stop making
measurements, so we use a guess reward: ρ(b, a) = 1{a =
hover}‖b‖∞+λR(a), where R(a) is the action reward and λ
is a scale factor relating action and information rewards. The
sensing reward R(a) depends roughly on the time to com-
plete an action; R(a) = −1 for moving in a cardinal direc-
tion, R(a) = −√

2 for moving diagonally, and R(a) = −3
for rotating to measure bearing. A similar surrogate reward
replaces the max-norm reward with 1 if the UAV hovers over
the jammer.

We varied λ and solved each model for 12 hours with
SARISA. We ran 1210 simulations to completion, with
the jammer at random locations and the UAV starting at
the center. We measured the time to make a decision
(hover) and whether the agent’s guess—the state with high-
est probability—matched the true state. We compared our
policies to a greedy policy that moves the UAV to the

76

60 65 70 75

0.15

0.2

0.25

Localization Time (s)

E
rr

or
R

at
e

SARISA
SARSOP

POMDP-lite
Greedy

Unimproved

Figure 6: Simulation-produced Pareto curve showing the
effectiveness of belief-dependent rewards in the jammer-
hunting problem.

cell that, after rotation, yields the lowest expected entropy.
These greedy policies were stopped at different cutoff max-
norm values. As seen in Figure 6, SARISA policies achieve
slightly less error in less time. However, at lower er-
ror rates than shown, POMDP methods underperform the
greedy method, probably because this requires reaching fur-
ther down the search tree.

We also implemented POMDP-lite using the information
reward Re from Equation (4). Just as we did with SARISA
and SARSOP, we scaled the expected POMDP reward by a
factor λ, leading to the MDP reward RMDP = λRb + Re.
POMDP-lite outperforms the greedy method but underper-
forms SARISA and SARSOP. However, POMDP-lite’s rel-
ative performance seems to improve at lower error rates,
where the offline solvers have trouble reaching deep nodes.

Although SARISA seems to perform best, the methods
all have comparable performance. It is possible the greedy
method is close to the true optimal policy for this particular
problem. The more striking result is the effect of the im-
proved lower bound. Solving for λ = 2 yielded bounds of
(45.8, 91.6) for the improved bound and (7.6, 92.6) for the
unimproved bound. This inferior bound limited the depth of
search tree exploration, and highly concentrated beliefs were
not reached. As Figure 6 shows, only a single value of λ
yielded a comparable error rate, and this point is Pareto dom-
inated by all other solvers. In this problem, the improved
lower bound enables our use of belief-dependent rewards
and a point-based POMDP solver. Another important in-
sight arises from the surrogate’s bounds: (44.1, 86.4). These
are similar to SARISA’s, suggesting information-gathering
problems are inherently difficult, even if we wrap the belief-
dependent reward into a similar state-dependent reward.

We implemented our policies on a DJI Flamewheel F550
hexcopter searching for a WiFi router (simulated GPS jam-
mer). The UAV carries a directional Yagi antenna and can
be seen in Figure 7. The UAV also carries a small ODROID

Figure 7: The hexcopter UAV used for flight tests. The white
cylinder in front of the UAV is a directional Yagi antenna.
The WiFi router to the right of the vehicle serves as the sim-
ulated GPS jammer.

computer to execute SARISA and POMDP-lite policies.
The ODROID passes the selected action to the Pixhawk
flight controller over serial. The flight controller executes
the action. If the action is to rotate, the ODROID estimates
bearing from antenna measurements, updates its belief, and
picks a new action. The ability to run these policies on a
real UAV in a plausible target localization task is a promis-
ing step for decision-theoretic target localization.

7 Conclusion

Previous work showed how to incorporate belief-dependent
rewards into offline POMDP solvers. We build on this prior
work in the context of target localization with the goal of
improving computational efficiency. We examine differ-
ent belief-dependent rewards and how they induce different
information-gathering behavior. We show that the backup
operations of these rewards do not need a set Γρ of linear
functions, leading to reduced computation during backup—
the core, inner loop of POMDP solvers. We provide an im-
proved lower bound that greatly improves performance, al-
lowing us to tackle larger problems like jammer-hunting.

We compare our resulting offline solver, named SARISA,
to POMDP-lite, a powerful online solver. SARISA outper-
forms POMDP-lite on problems where our improved lower
bound greatly improves convergence—like with the max-
norm and guess reward functions. When the starting bounds
are loose, as with the threshold reward, POMDP-lite begins
to outperform SARISA. POMDP-lite is also more scalable.
Improving convergence and guaranteeing near-optimality
requires further research. A promising avenue might be my-
opic policy bounds (Lauri et al. 2016).

The SARISA solver is open-source and available at https:
//github.com/sisl/SARISA.jl.

Acknowledgments This work was supported by NSF
grant DGE-114747 and the Hellman Fellows Fund.

77

References

Araya, M.; Buffet, O.; Thomas, V.; and Charpillet, F. 2010.
A POMDP extension with belief-dependent rewards. In Ad-
vances in Neural Information Processing Systems (NIPS),
64–72.
Araya, M. 2013. Des algorithmes presque optimaux pour
les problèmes de décision séquentielle à des fins de collecte
d’information. Ph.D. Dissertation, Université de Lorraine.
Chen, M.; Frazzoli, E.; Hsu, D.; and Lee, W. S. 2016.
POMDP-lite for robust robot planning under uncertainty. In
IEEE International Conference on Robotics and Automation
(ICRA), 5427–5433.
Dressel, L., and Kochenderfer, M. J. 2015. Signal source
localization using partially observable Markov decision pro-
cesses. In AIAA Infotech@Aerospace Conference.
Eck, A., and Soh, L.-K. 2012. Evaluating POMDP rewards
for active perception. In International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 1221–
1222. International Foundation for Autonomous Agents and
Multiagent Systems.
Geyer, M., and Frazier, R. 1999. FAA GPS RFI mitigation
program. In International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GPS), 107–114.
Graefenstein, J.; Albert, A.; Biber, P.; and Schilling, A.
2009. Wireless node localization based on RSSI using a
rotating antenna on a mobile robot. In Workshop on Posi-
tioning, Navigation and Communication (WPNC), 253–259.
IEEE.
Hauskrecht, M. 1997. Incremental methods for computing
bounds in partially observable Markov decision processes.
In AAAI Conference on Artificial Intelligence (AAAI), 734–
739.
Hauskrecht, M. 2000. Value-function approximations for
partially observable Markov decision processes. Journal of
Artificial Intelligence Research 33–94.
Hoffmann, G. M.; Waslander, S. L.; and Tomlin, C. J.
2006. Distributed cooperative search using information-
theoretic costs for particle filters, with quadrotor applica-
tions. In AIAA Guidance, Navigation, and Control Confer-
ence (GNC), 21–24.
Hsu, D.; Lee, W. S.; and Rong, N. 2008. A point-
based POMDP planner for target tracking. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2644–2650. IEEE.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1):99–134.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: Ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
Systems. Zurich.
Lauri, M.; Atanasov, N.; Pappas, G. J.; and Ritala, R.
2016. Myopic policy bounds for information acquisition
POMDPs. arXiv preprint arXiv:1601.07279.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12(3):441–450.
Perkins, A.; Dressel, L.; Lo, S.; and Enge, P. 2015. Antenna
characterization for UAV based GPS jammer localization. In
International Technical Meeting of The Satellite Division of
the Institute of Navigation, volume 2015. Tampa, Florida.
Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), volume 3, 1025–1032.
Roy, N.; Burgard, W.; Fox, D.; and Thrun, S. 1999. Coastal
navigation-mobile robot navigation with uncertainty in dy-
namic environments. In IEEE International Conference on
Robotics and Automation (ICRA), volume 1, 35–40.
Roy, N.; Gordon, G. J.; and Thrun, S. 2005. Finding approx-
imate POMDP solutions through belief compression. Jour-
nal of Artificial Intelligence Research 23:1–40.
Satsangi, Y.; Whiteson, S.; and Spaan, M. T. J. 2015. An
analysis of piecewise-linear and convex value functions for
active perception POMDPs. Technical Report IAS-UVA-15-
01, Informatics Institute, University of Amsterdam.
Shani, G.; Pineau, J.; and Kaplow, R. 2013. A survey
of point-based POMDP solvers. Autonomous Agents and
Multi-Agent Systems 27(1):1–51.
Smallwood, R. D., and Sondik, E. J. 1973. The optimal
control of partially observable Markov processes over a fi-
nite horizon. Operations Research 21(5):1071–1088.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In Conference on Uncertainty in Ar-
tificial Intelligence (UAI), 520–527. AUAI Press.
Soriano, P.; Caballero, F.; and Ollero, A. 2009. RF-based
particle filter localization for wildlife tracking by using an
UAV. In International Symposium of Robotics.
Spaan, M. T., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artifi-
cial Intelligence Research 195–220.
Spaan, M. T.; Veiga, T. S.; and Lima, P. U. 2014. Decision-
theoretic planning under uncertainty with information re-
wards for active cooperative perception. International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS) 1–29.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT Press.

78

