
Improving MPGAA* for Extended Visibility Ranges

Carlos Hernández
Depto. de Ciencias de la Ingenierı́a

Universidad Andrés Bello
Santiago, Chile

Jorge A. Baier
Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Abstract

Multipath Generalized Adaptive A* (MPGAA*) is an A*-
based incremental search algorithm for dynamic terrain that
can outperform D* for the (realistic) case of limited visibility
ranges. A first contribution of this paper is a brief analysis
studying why MPGAA* has poor performance for extended
visibility ranges, which concludes that MPGAA* carries out
an excessive number of heuristic updates. Our second contri-
bution is a method to reduce the number of heuristic updates
that preserves optimality. Finally, a third contribution is a
variant of MPGAA*, MPGAA*-back, which we show out-
performs MPGAA* and D* on a wide range of dynamic grid
pathfinding scenarios, and visibility ranges.

Introduction

Incremental Heuristic Search (IHS) is a well-established
sub-area of Heuristic Search whose objective is the devel-
opment of algorithms capable of deciding the actions that
lead an agent from a given initial state to a given goal state
in a dynamic, changing environment.

Goal directed navigation, the problem of moving an agent
from one cell to another over a grid, is an application do-
main of IHS. Since their proposal, the D* (Stentz 1994) al-
gorithm, and later the D* Lite (Koenig and Likhachev 2002)
algorithms were considered the state of the art for this prob-
lem. D* is a complex algorithm, and D* Lite, while simpler,
is still significantly more complicated than A*.

Recently, Multipath Generalized Adaptive A* (MP-
GAA*) (Hernández, Ası́n, and Baier 2015) was proposed
as an alternative to D*. MPGAA* is an extension of Gen-
eralized Adaptive A* (Sun, Koenig, and Yeoh 2008) that,
being based on A*, is simpler to understand and implement
than D* and D* Lite. Moreover, MPGAA* was shown to
outperform D* Lite over a wide range of benchmarks.

A key feature of MPGAA* is that every action taken by
the agent lies on an optimal path to the goal. MPGAA*
guarantees this by running a consistency-reestablishing
procedure—inherited from GAA*—each time it observes a
change in the environment that could make the heuristic in-
consistent. By ensuring that A* uses a consistent (and ad-
missible) heuristic, only optimal paths to the goal are found.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we show that the consistency-reestablishing
module of MPGAA* is a source of significant overhead, and
propose a remedy: Improved MPGAA*. Our motivation is
problems in which agents have extended visibility ranges,
that is, problems in which agents can observe changes in
the environment that are relatively far away from their cur-
rent position. Arguably, those situations are not too com-
mon in practice, but the question of whether or not MP-
GAA* still can outperform the D* family of algorithms in
such a setting is an interesting one. The question is more
relevant given that recent evaluations (Aine and Likhachev
2016) have shown that MPGAA* incurs severe overheads,
due to heuristic updating, in some settings.

What enables us to propose Improved MPGAA* is the
interesting observation that neither consistency nor admissi-
bility is actually needed to guarantee optimality, but rather
a weaker condition. By realizing this, we propose a lazy
heuristic update procedure that still guarantees that MP-
GAA* finds optimal paths. In our empirical evaluation, car-
ried out over a number of benchmarks and visibility ranges,
we show that Improved MPGAA* outperforms D* and D*
Lite in the majority of the benchmarks, while the original
version of MPGAA* usually could not.

Background

A goal directed navigation problem is a tuple P =
(G, γ, sstart , sgoal), where G = (V,E) is an undirected
graph in which V is a set of states and E is a set of arcs,
and where sstart , the start state, and sgoal , the goal state, are
both in V , and where γ = c0c1 . . . is an infinite sequence of
cost functions, each of which maps each element in E to a
non-negative value in R∪{∞}. Sequence γ is used to model
the fact that the terrain may change as the agent moves, and
the cost value ∞ is used to represent the fact that states may,
in practice, become disconnected from its neighbors in G.

A path over G is a sequence of states s0s1 . . . sn such that
for all i ∈ {1, . . . , n}, it holds that (si−1, si) ∈ E. The cost
of a path s0 . . . sn is

∑n−1
i=0 ci(si, si+1). σ = s0 . . . sn is a

solution to path-planning problem P if s0 = sstart , sn =
sgoal , and the cost of σ is finite.

In real-world scenarios, agents have limited visibility and
thus can only observe the cost of edges within their visibility
range. Formally, if the agent is at si, and its visibility range

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

149

is k, then the arcs by which ci and ci+1 may differ are only
those reachable from si+1 via a path of length k or less.

A heuristic function hc is such that hc(s) is a non-negative
estimate of the cost of a path from s to sgoal under cost func-
tion c. We omit the subscript if the cost function is clear from
the context. h is admissible iff for every state s, h(s) does
not overestimate the cost of any path from s to sgoal . h is
consistent if for every (s, t) ∈ E it holds that:

h(s) ≤ c(s, t) + h(t), (1)

and h(sgoal) = 0. Consistency implies admissibility. Fi-
nally, h∗(s) is the cost of an optimal path from s to sgoal .

Multipath Generalized Adaptive A*

Multipath Generalized Adaptive A* (MPGAA*) is built on
top of the A*-based algorithm, Generalized Adaptive A*
(Sun, Koenig, and Yeoh 2008) (GAA*). Like GAA*, its
objective is to move an agent to the goal state. In each it-
eration, it runs an A* search rooted in the current state to-
wards the goal. Once a path is found, it updates the heuristic
function and proceeds to move the agent following the path.
Each time a step towards the goal is taken by the agent, the
algorithm observes the environment and, if relevant changes
are detected, it updates the heuristic (if needed), and then
runs a complete new A* search towards the goal. The only
difference between MPGAA* and GAA* is that the former
will stop the A* search earlier, potentially saving significant
search time. MPGAA* stops an A* search when expanding
a state s if the following conditions hold: (1) s is part of a
path returned by a previous A* execution, and (2) it can be
verified that the path connecting s and the goal state is still
optimal given the current knowledge of the agent.

Algorithm 1 shows a pseudocode of MPGAA*. Proce-
dure main runs the main loop described above. There are
a number of variables/properties that are used in the pseu-
docode, the most relevant of which we explain now. Pointer
next(s) is set to null at initialization, and, as soon as a path
s1s2 . . . sn is returned by an A* search, next(si) is set to
si+1 in the iteration of Line 72. As usual in A*, a parent
pointer for s, parent(s) is used to keep track of which state
was s expanded from. Another relevant property, search(s),
is used to store the number of the search iteration at which s
was last expanded. Variable counter counts the number of
iterations—this important variable is also used by procedure
InitializeSearch, to set the g-value of an unexpanded
state in the current iteration. Finally, variable Q is a priority
queue used by the procedure that updates the heuristic, a key
part of the algorithm that we elaborate on now.

Above we mentioned that h is updated when running MP-
GAA*. The objective of such updates is twofold. First, up-
dating the heuristic makes it more informed, which poten-
tially saves time in a subsequent search. Second, the heuris-
tics updates also aim at preserving the consistency of the
heuristic, which has an important theoretical implication: it
guarantees that any path computed by A* is optimal with
respect to the current knowledge of the agent (Sun, Koenig,
and Yeoh 2008; Hernández, Ası́n, and Baier 2015).

MPGAA* updates the heuristic function in two different
sections of the code. First, right after an A* search returns,

(a) (b) (c)

Figure 1: MPGAA*’s expensive consistency maintainance.
Numbers in the cells are h-values. The agent is represented
by •, and the goal by ◦. Arrows show the next pointer.

Figure 2: Improved MPGAA*’s heuristic update on the grid-
world of Figure 1. The heuristic is updated for three cells,
regardless of the width of the grid.

in Lines 70–71. Intuitively this update aims at making h
more informed. The second section of the code that up-
dates the heuristic the Observe procedure; specifically,
in Lines 34–37. Indeed, when an edge decreases its cost,
there is potential for the heuristic to become inconsistent,
as it may invalidate Inequality (1). Thus whenever an arc
(s, s′) is observed to decrease its value, Observe adds
state s to the priority queue Q and then invokes procedure
ReestablishConsistency. This last procedure is a
version of Dijkstra’s algorithm: it extracts the state with least
h-value from Q and updates the h-value of its predecessors.
The process repeats until Q is empty. Upon termination,
both updates guarantee that h is consistent, for every state s
in the search graph (Sun, Koenig, and Yeoh 2008).

Improved MPGAA*

As mentioned above, MPGAA* is optimal because the
heuristic function remains consistent and thus admissible,
which allows A* to return an optimal path (Hart, Nilsson,
and Raphael 1968). However, below we elaborate on two
observations that are key to obtaining an improved version
of MPGAA*. First, we observe that re-establishing the con-
sistency is a potentially very expensive procedure, requiring
some times the expansion of a large portion of the search
space. Second, we observe that admissibility of h is not re-
quired to guarantee optimality of A* but, rather, a weaker
condition. When put together, these two observations lead
us to propose an intuitively less ambitious consistency main-
tenance algorithm which results in improved performance.

We observe first that consistency maintenance is an
expensive procedure. We illustrate this with the 4-
neighbor grid world of Figure 1. After finding a first
path (shown in Figure 1b), the agent updates the heuris-
tic function, moves to C5. Upon reaching C5, it dis-
covers that C7 is no longer an obstacle (depicted in Fig-
ure 1b). Because some arcs have decreased their cost
ReestablishConsistency—which henceforth we ab-
breviate as RC—is executed, which updates the heuristic of
8 cells, B1 and C1..7, resulting in the situation depicted by
Figure 1c. Observe that, had we chosen a similar but wider
grid, the number of cells expanded by RC would have grown

150

Algorithm 1: MPGAA*

1 procedure InitializeState(s)
2 if search(s) �= counter then
3 g(s) ← ∞
4 search(s) ← counter

5 procedure A*(sinit)
6 InitializeState(sinit)
7 parent(sinit) ← null
8 g(sinit) ← 0

9 Open ← ∅
10 insert sinit into Open with f-value g(sinit) + h(sinit)

11 Closed ← ∅
12 while Open �= ∅ do
13 remove a state s from Open with the smallest f-value g(s) + h(s)
14 if GoalCondition(s) then
15 return s

16 insert s into Closed
17 for each s′ ∈ succ(s) do

18 InitializeState(s′)
19 if g(s′) > g(s) + c(s, s′) then

20 g(s′) ← g(s) + c(s, s′)
21 parent(s′) ← s

22 if s′ is in Open then

23 set priority of s′ in Open to g(s′) + h(s′)
24 else

25 insert s′ into Open with priority g(s′) + h(s′)

26 return null
27 function Observe(s)
28 Einc ← arcs in the range of visibility from s whose cost has increased
29 Edec ← arcs in the range of visibility from s whose cost has decreased
30 for each (t, t′) ∈ Einc ∪ Edec do

31 c(t, t′) ← new cost of (t, t′)

32 for each (t, t′) ∈ Einc do
33 next(t) ← null

34 if Edec �= ∅ then

35 for each (s, s′) in Edec do

36 InsertState (s, s′, Q)

37 ReestablishConsitency () // not in Improved MPGAA*

38 return Einc ∪ Edec �= ∅

39 function GoalCondition (s)
40 while next(s) �= null and h(s) = h(next(s)) + c(s, next(s)) do
41 s ← next(s)

42 return sgoal = s

43 procedure InsertState(s, s′)
44 if h(s) > c(s, s′) + h(s′) then

45 h(s) ← c(s, s′) + h(s′)
46 next(s) ← null
47 support(s) ← s′
48 if s in Q then
49 Update priority of s in Q to h(s)

50 else
51 Insert s into Q with priority h(s)

52 procedure ReestablishConsitency()
53 while Q is not empty do

54 Extract state s′ with lowest h-value in Q

55 for each s such that s′ ∈ Succ(s) do

56 InsertState (s, s′, Q)

57 procedure main()
58 Q ← empty priority queue
59 counter ← 0
60 Observe (sstart)
61 for each state s ∈ S do
62 search(s) ← 0
63 h(s) ← H(s, sgoal)

64 next(s) ← null
65 while sstart �= sgoal do
66 counter ← counter + 1
67 s ← A*(sstart)
68 if s = null then
69 return “goal is not reachable”

70 for each s′ ∈ Closed do

71 h(s′) ← g(s) + h(s) − g(s′)
72 while s �= sstart do
73 next(parent(s)) ← s
74 s ← parent(s)

75 repeat
76 t ← sstart
77 sstart ← next(sstart)
78 next(t) ← null
79 Move agent to sstart
80 restart ← Observe(sstart)
81 until sstart = sgoal or restart = true

Algorithm 2: Improved MPGAA*
1 procedure InitializeState(s)
2 if search(s) �= counter then
3 g(s) ← ∞
4 search(s) ← counter
5 ReestablishConsitency(s)

6 procedure ReestablishConsitency(t)
7 while Q is not empty and h(top(Q)) < h(t) do

8 Extract state s′ with lowest h-value in Q

9 for each s such that s′ ∈ Succ(s) do

10 InsertState (s, s′, Q)

with the size of the grid. In fact, the number of updated
states is equal to the width of the grid. Worse even, after
making several updates to the heuristics, those new h-values
may play no role in future searches. In our example, observe
that the next search expands only one state: C5 (Figure 1c).
Note also, that had our grid been wider, this second search
would have expanded one cell too.

Our second observation is that it is not necessary to fo-
cus on re-establishing consistency of the heuristic. This
is because neither consistency nor admissibility is required
to guarantee A*’s optimality. Theorem 1 by Hart, Nils-
son, and Raphael (1968) states (slightly rephrased): “if

h(s) ≤ h∗(s), for every node s, then A* finds an optimal
path”. Nevertheless, the requirement “h(s) ≤ h∗(s), for ev-
ery node s” is not used in the proof but rather a weaker con-
dition, namely that “h(s) ≤ h∗(s), for every node s that ever
enters in the open list”. So with this observation in hand,
we conclude that, to preserve optimality, we only need to
guarantee that the h-value of each node entering Open does
not overestimate the true cost to the goal. This is important
because it means we can focus only on having h-values of
states relevant for the search.

One more observation is needed to produce an im-
proved, optimal MPGAA*. When executing RC, the h-
values of states extracted from the priority queue Q are non-
decreasing. Despite this being an obvious remark, following
from the fact that Q is ordered by h, the important impli-
cation is that we can stop RC sooner and run it only when
needed. Indeed, assume that we observed changes in the en-
vironment, that we added these states to Q (Lines 35-36, Al-
gorithm 1) but that we do not run RC in Line 37. Assume we
now start searching for a new path using A* and that we are
about to add s to the open list. Here we would be at risk of
generating a suboptimal path if h(s) > h∗(s). If such were
the case, running RC before adding s to Open would result
in setting the h-value of s to a lower value. Thus, before

151

Visibility 50 Visibility 100 Visibility 200

Bucket A* D* Lite iMPGAA* iMPGAA*-B Faster A* D* Lite iMPGAA* iMPGAA*-B Faster A* D* Lite iMPGAA* iMPGAA*-B Faster
1 0.38 0.39 0.40 0.36 72% 0.38 0.43 0.47 0.43 46% 0.38 0.44 0.59 0.57 13%
2 1.34 1.26 1.32 1.12 90% 1.35 1.39 1.50 1.36 75% 1.40 1.52 1.86 1.73 33%
3 3.62 2.51 3.01 2.30 87% 3.85 2.73 3.60 2.63 76% 4.13 3.00 4.68 3.40 40%
4 5.24 3.87 4.42 3.46 89% 6.13 4.20 5.52 4.14 76% 7.36 4.80 8.07 5.57 49%
5 9.85 5.55 6.57 4.93 87% 10.38 5.96 8.14 5.72 78% 12.50 6.90 11.84 7.72 52%
6 12.01 7.59 7.60 6.58 88% 14.04 8.18 10.23 7.76 80% 14.66 9.37 13.94 10.01 56%
7 16.81 10.31 10.00 8.47 92% 19.29 10.96 13.72 9.77 84% 22.61 12.82 19.52 12.98 61%
8 28.67 14.82 14.55 12.13 93% 30.09 15.77 17.88 13.76 86% 36.05 18.11 26.25 17.28 70%
9 45.88 22.42 19.74 16.95 99% 51.49 23.95 25.53 18.61 96% 60.95 27.44 37.10 23.93 83%

10 127.43 50.01 40.61 34.35 99% 140.60 51.09 52.43 36.92 97% 163.12 57.98 76.13 45.66 86%

Table 1: Average runtime of algorithm variants.

 40000

 80000

 120000

 180000

 50 100 200

To
ta

l E
xp

an
si

on
s

Visibility Range

GAA*
iGAA*

MPGAA*
iMPGAA*

MPGAA*-B
iMPGAA*-B

Figure 3: Impact of our technique on expansions.

adding s to Open, assume we run RC. Assume further that
eventually the h-value at the top of queue Q is greater than
h(s). This means that h(s) will not decrease if we continue
to run RC. We can therefore conclude that h(s) ≤ h∗(s),
stop the update procedure, and resume search.

Our improved version of MPGAA* replaces two proce-
dures of the original MPGAA*, which are shown in Algo-
rithm 2, and removes Line 37 of Algorithm 1. The rest of
the code of MPGAA* remains without modification. The
resulting algorithm, Improved MPGAA* is also optimal.

Theorem 1 (Optimality of Improved MPGAA*) If h is
initially consistent, the movement performed in Line 79 lies
on an optimal path to sgoal over graph G with respect to
(current) cost function c.

On the practical side, as a result of updating only those
states that are needed, Improved MPGAA* may need to up-
date substantially fewer states than MPGAA*. Figure 2 il-
lustrates this for the example described earlier.
MPGAA*-B Another improvement we propose comes from
the observation that the first search can be done with back-
ward A* (from the goal to the initial state). Afterwards we
set h(s) as the g-value of s for each state expanded by A*,
and resume normal execution of MPGAA*. Besides a more
informed heuristic, doing this has the advantage that the
backward search creates many paths to the goal state. We
call this version MPGAA*-back or MPGAA*-B, for short.

Experimental Evaluation

The objective of our evaluation was twofold. First, we
wanted to investigate the impact of applying our technique

over algorithms that use the RC procedure. Second, we
wanted to compare with state-of-the-art algorithms. We fo-
cus the evaluation on pathfinding tasks in grid-like dynamic
terrain. We use eight-neighbor grids with cardinal moves
costing 1 and diagonal moves costing

√
2. The heuristic is

the octile distance. All algorithms have a common code base
and use a standard binary heap for Open and Q. Experiments
were ran on a 2.60GHz Intel Core i7 under Linux.

We used maps of 512 × 512 scaled to 1024 × 1024 from
the MovingAI repository (Sturtevant 2012). Specifically, we
used 4 room maps (Indoor), 4 World of Warcraft III maps
(Outdoor) and 4 random maps.1 In each map we set an
additional 5 percent of random obstacles. Like Aine and
Likhachev (2016), every 50 movements, 0.5% randomly
chosen unblocked cells become blocked and an equal num-
ber of the blocked cells are randomly chosen and set as un-
blocked. We evaluated 3 visibility range values: 50, 100,
and 200. For each map we generated 250 random problems.

Figure 3 shows the impact of applying our technique over
GAA*, MPGAA* and MPGAA*-B. We evaluate efficiency
in terms of total expansions, which includes expansions
during search and during updates (the figure also shows
standard error bars). Our technique improves every algo-
rithm and more significant improvements are observed for
iMPGAA*-B over MPGAA*-B. As the the visibilty ranges
increase improvements increase.

Table 1 compares repeated A* (i.e., A* with replanning),
D* Lite, iMPGAA* and iMPGAA*-B. We analyzed the ef-
ficiency (in average runtime) depending on problem hard-
ness, where we measure the hardness of problem as the run-
time that D* Lite needs to solve them. We sort the prob-
lems according to hardness, allocating each problem in one
of 10 buckets such that each bucket contains the same num-
ber of problems (bucket 10 thus contains the hardest prob-
lems). Additionally, we show the percentage of instances
that iMPGAA*-B is faster than D* Lite in each Bucket.
We observe that (1) for small and medium visibility ranges,
iMPGAA*-B is faster than D* Lite in all buckets, and (2)
for the largest visibility range, D* Lite has a smaller run-
time than iMPGAA*-B in some buckets. This may be ex-
plained by the fact that iMPGAA*-B needs to carry out more
search (farther away from the current state) when the visibil-

18room 000, 16room 000, 32room 000, 64room 000, blast-
edlands, dragonfire, duskwood, gardenofwar, random512-10-0,
random512-15-0, random512-20-0 and random512-25-0.

152

ity range is larger. Note that A* can be faster than the other
algorithms for simple problems. Overall, we observe that
iMPGAA*-B dominates D* Lite because it is faster in most
of the problems evaluated.

Due to space, we do not include results per each bench-
mark, but iMPGAA*-B dominates in all. When aggregating
results over visibility ranges we see that cost is similar for
all algorithms and that iMPGAA*-B has the best runtime.

Conclusions

We presented Improved MPGAA*, a variant of MPGAA*
that does not maintain the heuristic consistent yet is still op-
timal. Our exprimental analysis confirms that our techniques
improve the efficiency of algorithms that use the RC proce-
dure, especially for larger visibility ranges. iMPGAA*-B
dominates all algorithms evaluated, including D*Lite.

Acknowledgements

We acknowledge support from Fondecyt via grants number
1150328 and number 1161526.

References

Aine, S., and Likhachev, M. 2016. Truncated incremental
search. Artificial Intelligence 234:49–77.
Hart, P. E.; Nilsson, N.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimal cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2).
Hernández, C.; Ası́n, R.; and Baier, J. A. 2015. Reusing
Previously Found A* Paths for Fast Goal-Directed Naviga-
tion in Dynamic Terrain. In Bonet, B., and Koenig, S., eds.,
Proceedings of the 29th AAAI Conference on Artificial Intel-
ligence (AAAI), 1158–1164. AAAI Press.
Koenig, S., and Likhachev, M. 2002. D* lite. In Proceed-
ings of the 18th National Conference on Artificial Intelli-
gence (AAAI), 476–483.
Stentz, A. 1994. Optimal and efficient path planning
for partially-known environments. In Proceedings of the
11th International Conference on Robotics and Automation
(ICRA), 3310–3317.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Sun, X.; Koenig, S.; and Yeoh, W. 2008. Generalized
Adaptive A*. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multi Agent Systems
(AAMAS), 469–476.

153

