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Abstract

Recent work in decentralized, schedule-driven traffic control
has demonstrated the ability to significantly improve traffic
flow efficiency in complex urban road networks. However, in
situations where vehicle volumes increase to the point that
the physical capacity of a road network reaches or exceeds
saturation, it has been observed that the effectiveness of a
schedule-driven approach begins to degrade, leading to pro-
gressively higher network congestion. In essence, the traf-
fic control problem becomes less of a scheduling problem
and more of a queue management problem in this circum-
stance. In this paper we propose a composite approach to
real-time traffic control that uses sensed information on queue
lengths to influence scheduling decisions and gracefully shift
the signal control strategy to queue management in high vol-
ume/high congestion settings. Specifically, queue-length in-
formation is used to establish weights for the sensed vehicle
clusters that must be scheduled through a given intersection at
any point, and hence bias the wait time minimization calcula-
tion. To compute these weights, we develop a model in which
successive movement phases are viewed as different states
of an Ising model, and parameters quantify strength of inter-
actions. To ensure scalability, queue information is only ex-
changed between direct neighbors and the asynchronous na-
ture of local intersection scheduling is preserved. We demon-
strate the potential of the approach through microscopic traf-
fic simulation of a real-world road network, showing a 60%
reduction in average wait times over the baseline schedule-
driven approach in heavy traffic scenarios. We also report ini-
tial field test results, which show the ability to reduce queues
during heavy traffic periods.

Introduction

Traffic congestion in urban areas is a serious problem, re-
sulting in significant economic cost to drivers in terms of
wasted time and fuel, as well as substantial environmental
cost due to increased vehicle emissions. The problem is also
quite challenging, requiring tight coordination among traf-
fic signals across road networks with multiple, conflicting
dominant flows that typically shift through the day. While
it is generally believed that improvements to traffic sig-
nal control offer the most promise for reducing congestion,
there is little consensus on how to solve this network-level
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coordination problem. Offline generation of fixed, coordi-
nated timing plans optimizes for the average case (which
can be quite different than actual traffic flows at any time)
and also immediately start to “age”. However, conventional
wisdom has also tended to argue against the viability of
real-time adaptive signal control in complex urban environ-
ments. Centralized coordination mechanisms that adjust sig-
nal timing parameters (e.g., cycle time, green time splits and
offsets) dynamically based on sensed traffic have had the
most success (Robertson and Bretherton 1991; Lowrie 1992;
Heung, Ho, and Fung 2005; Gettman et al. 2007). But these
approaches are inherently susceptible to scalability issues,
and are generally designed for gradual adjustment (e.g., ev-
ery 5-10 minutes) as opposed to real time adaptive signal
control. On the other hand, decentralized, online planning
approaches (Sen and Head 1997; Gartner, Pooran, and An-
drews 2002; Shelby 2001; Cai, Wong, and Heydecker 2009;
Jonsson and Rovatsos 2011) have historically had difficulty
in planning with a sufficiently long horizon to provide an
effective basis for coordination.

Recent work in decentralized, online planning, however,
has developed a schedule-driven approach to real-time traf-
fic control that overcomes this horizon problem (Xie, Smith,
and Barlow 2012; Xie et al. 2012). Key to this approach
is a formulation of the core intersection scheduling prob-
lem as a single machine scheduling problem, where input
jobs are clusters of vehicles in close proximity to each other
(i.e., approaching platoons, queues). This aggregate repre-
sentation allows plans to be efficiently generated with order-
of-magnitude longer horizons than was previously possible,
and hence enables network-level coordination through ex-
change of schedule information. Under this approach, the
goal is to allocate green time to different signal phases, over
time, where a signal phase is a compatible traffic movement
pattern (e.g., East-West traffic flow). Each intersection asyn-
chronously computes a schedule of green phases that min-
imizes the cumulative delay through the intersection of all
approaching vehicles, and then communicates expected out-
flows to its downstream neighbors as it begins to execute
its schedule. Scalability is ensured by the fact that intersec-
tions only communicate with their direct neighbors. How-
ever, since the planning horizon is extended, outflow infor-
mation can propagate to non-local neighbors. Results ob-
tained in an initial field test showed a 25% reduction in travel
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times, a 40% reduction in wait times and 30% reduction in
number of stops through the network (Smith et al. 2013), and
the system currently controls a network of 50 intersections
in the East End area of Pittsburgh PA.

Despite these results, however, there are circumstances
when the effectiveness of such a schedule-driven approach
to coordination can break down. In particular in situations of
high congestion, where the number of vehicles approaches
the physical capacity of interconnected queues in the net-
work, the traffic control problem becomes less of a schedul-
ing problem (e.g., involving just a single cluster spanning
the planning horizon along each intersection approach in the
extreme case), and more of a problem of managing queues.
In this paper, we propose a composite approach to real-time
traffic control that addresses this issue, by using sensed in-
formation on queue lengths to influence scheduling deci-
sions and gracefully shift the signal control strategy to queue
management in high volume/high congestion settings.

To stabilize queues in a network (i.e., to prevent un-
bounded growth of queues), the vehicle clusters associated
with longer queues should be serviced first. Within the above
intersection scheduling framework, one straightforward way
of achieving this behavior is to assign higher weights (i.e.,
higher priority) to these input clusters and compute phase
schedules that minimize weighted cumulative delay. To bal-
ance the emphasis placed on queue management as a func-
tion of network saturation, we propose to use queue-length
information (both local to the intersection and non-local
from neighbors) to establish the weights. In situations where
queue lengths are small, cluster priority will continue to be
a function of the cluster size (number of vehicles) as before;
however as the network becomes saturated and queues be-
come longer, clusters associated with longer queues will be-
gin to dominate cluster priority. To ensure scalability, queue
information is only exchanged between direct neighbors and
the asynchronous nature of local intersection scheduling is
preserved.

To derive an appropriate set of weights, the signal phases
of a given intersection are viewed as different states of an
Ising model (Suzuki, Imura, and Aihara 2013) and the prob-
abilistic distribution of this model, whose parameters quan-
tify transitions between phases and strength of interactions
in terms of queue-length information, is calculated. How-
ever, computing the exact distribution is a hard problem
(Cipra 2000). Hence we turn to approximation through mean
field methods originating in statistical physics and the graph-
ical model literature (Wainwright and Jordan 2008). The
marginal distribution derived for each phase is then used as
the weight of that phase’s clusters. We show formally that
the proposed composite approach prevents queues from in-
creasing without bound and therefore achieves network sta-
bility. We also present simulation results on a real-world
traffic network that demonstrate the ability of our approach
to effectively integrate queue management into schedule-
driven traffic control. The approach is shown to reduce aver-
age waiting times by 60% in heavy traffic scenarios. Finally,
we report the results from some initial experiments in the
field, which verify the ability to reduce queues during heavy
traffic periods.

The remainder of the paper is organized as follows. We
first summarize the baseline schedule-driven approach and
how we propose to extend it. Next, the mechanisms nec-
essary to achieve decentralized queue management are dis-
cussed. Then, we review related work in queue manage-
ment approaches to network congestion. Finally, an empiri-
cal analysis of the composite approach is presented, and con-
clusions are drawn.

Schedule-Driven Traffic Control

As indicated above, the key to the single machine schedul-
ing problem formulation of the schedule-driven approach of
(Xie, Smith, and Barlow 2012; Xie et al. 2012) is an ag-
gregate representation of traffic flows as sequences of clus-
ters c over the planning (or prediction) horizon. The clusters
become the jobs that must be sequenced through the inter-
section (the single machine). The cluster sequences provide
short-term variability of traffic flows at each intersection and
preserve the non-uniform nature of real-time flows. Specif-
ically, the input is an ordered sequence of (|c|, arr, dep)
triples reflecting each approaching or queued vehicle on
each road segment, where |c|, arr and dep are number of
vehicles, arrival time and departure time respectively. The
vehicles are sensed through the intersection’s detectors.

Once the cluster sequences of each approaching road seg-
ments are represented, each cluster is viewed as a non-
divisible job and a forward-recursion dynamic programming
search is performed to generate a phase schedule that mini-
mizes the cumulative delay of all clusters in the current pre-
diction horizon. The process constructs an optimal sequence
of clusters that maintains the ordering of clusters along each
road segment, and each time a phase change is implied by
the sequence, then a delay corresponding to the intersec-
tion’s yellow/all-red changeover time constraints is inserted.
If the resulting schedule is found to violate the maximum
green time constraints for any phase (introduced to ensure
fairness), then the first offending cluster in the schedule is
split, and the problem is re-solved.

More precisely, the delay that each cluster contributes to
the cumulative delay

∑
c d(c) is defined as

d(c) = |c| · (ast− arr(c)), (1)

where ast is the actual start time determined by the process
through a forward recursion. The optimal sequence (sched-
ule) is the one that incurs minimal delay for all vehicles.

As mentioned earlier, our hypothesis is that the effective-
ness of this schedule-driven process degrades as congestion
increases near saturation, due to the fact that it becomes
more and more difficult to accurately predict when incoming
clusters are going to arrive at the intersection when queues
become large. Note that a queueing network is considered to
be stable if the queues do not tend to increase without bound.
To boost the performance of this schedule-driven process in
a network that is experiencing high congestion, we intro-
duce a weight into this delay computation. The basic idea
is to bias the scheduling search more toward stabilizing lo-
cal queues (both at the local intersection and at its neighbor
intersections) as the level of local congestion increases. To
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measure the level of congestion, we rely on queue-length in-
formation associated with various phases. To provide a low
complexity scheme for queue management, we propose to
weight each cluster of a given phase equally. The delay in-
curred by each cluster is thus rewritten as

d(c) = |c| · (ast− arr(c)) · w(p), (2)

where w(p) is the weight assigned to the phase p that cluster
c belongs to. The important question then becomes: how to
set the weights for competing phases.

Queue Management Using Mean Field

Methods

In this section, we introduce a decentralized method for cal-
culating the weights to assign to each phase of a given in-
tersection, so that its queues are locally stabilized in co-
ordination with the queues at neighboring intersections. In
brief, we propose a special Ising model in which the phases
of a given traffic signal are viewed as different states, and
their respective queue lengths are its parameters. Then, the
intractable marginal distribution of the phases in each in-
tersection is approximated by appealing to the use of mean
field methods. We use the marginal distribution as the weight
(priority) of each phase.

Weight in a Form of Probability Function

To stabilize queues in the network, the clusters associated
with longer queues should be served with higher priority.
Hence, the weight function representing priority should be a
function of queue length. The goal is to find a proper func-
tion that can reflect such queue dynamics and is suitable for
integration with schedule-driven traffic control. Let us as-
sume that the sum of weights of all phases is equal to one,

P∑
p=1

w(Qp) = 1, (3)

where Qp is the queue length at the corresponding phase p
and P is number of phases for a single intersection.

A probability function is a reasonable choice as the phase
of each intersection is viewed as a random variable. A larger
weight for a specific phase implies a higher probability of
that phase occurring. Furthermore, the probability function
is a continuous function of queue length matching the con-
tinuous variability of vehicular cluster size. In the following
sections, we apply techniques from statistical physics and
graphical models to derive this probability function.

Boltzmann Distribution for Traffic Signal

The green and red lights of a traffic signal can be viewed
as two states of an Ising particle spin. Moreover, intersec-
tions in urban environments are interconnected and interact
with each other. In statistical physics, a Boltzmann distribu-
tion is a probability distribution that assigns probability that
an interacting system is in a certain configuration of states
described by an energy function of states. A standard form

of Boltzmann distribution that has binary states and energy
function E(·) is defined as follows:

p(σ; θ) =
1

Z(θ)
e−βE(σ;θ), (4)

where σ ∈ {1, 0}n are state variables, and T = 1
β , and

Z(θ) are temperature and normalization constants. We as-
sume that β is assimilated into the θ parameters. Consider
a graph G = (V,E), where s ∈ V and t ∈ V are two ad-
jacent nodes (intersections) in G. Then the energy function
incorporating interaction takes the following form,

E(σ; θ) = −
∑

(s,t)∈E
θstσsσt −

∑
s∈V

θsσs, (5)

where the first term defines the interaction between two in-
tersections and the second term specifies the external field
of each intersection. With this form of energy function, a
Boltzmann distribution can also be expressed by the follow-
ing general form of exponential family:

p(σ; θ) = exp(〈σ, θ〉)−A(θ)), (6)

where 〈·〉 is Euclidean inner product of two vectors and
logZ(θ) = A(θ). After getting the distribution, the
marginal probability of phase p at intersection i is calcu-
lated, and we set the weight for phase schedule generation
to this probability,

W (Qip) = P (σi = p). (7)

Queue-based Energy Function

In an interconnected queueing network, the strength of in-
teraction θst and external potential θs are related to queue
length, which corresponds to different phases (states). Sup-
pose that we have two phases: {1} represents East-West
phase, and {0} represents North-South phase. Taking the
East-West phase as an example, the external field θs > 0
is the pressure that ”pushes” vehicles along with East-West
direction. The stronger the external field, the greater the ten-
dency of the vehicles to keep moving East-West. θs < 0
is analogous to a repulsive field that prevents vehicles from
approaching further. Moreover, the queues of neighbor in-
tersections contributing to East-West phase will be summed
up together and used to measure the interaction strength θst.
Specifically, θst is a measure of repulsion or attraction faced
by intersections as they synchronize with another intersec-
tion. The sign of θst corresponding to North-South phase
is opposite to that of the East-West phase, since the traffic
flows in both directions compete with each other. The energy
function of a two-phased signalized transportation network
is given by

E(σ; θ) = −
∑

(s,t)∈E
θstσsσt −

∑
s∈V

θsσs (8)

= −
∑

(s,t)∈E
L(Qt→s, Qs→t)σsσw −

∑
s∈V

(Qs,h −Qs,v)σs,

156



where L(Qt→s, Qs→t) is the interaction strength and de-
pends on which phase these queues are contributing to. It
is defined as

L(Qt→s, Qs→t) =

{
Qt→s −Qs→t, if (s, t) ∈ Eh

Qs→t −Qt→s, if (s, t) ∈ Ev,
(9)

where h,v denote the East-West and North-South directions.
Eh and Ev are the sets of the East-West and North-South
road segments respectively. Specifically, the queues served
during the East-West phase contribute to positive terms of
the energy function, while those served during the North-
South phase contribute to negative terms. The intersection of
the signalized transportation network is depicted in Figure 1.

Calculation of the Weights

For a distribution associated with a complex graph, espe-
cially with loops that typify grid networks, it is intractable
to perform probabilistic inference, e.g., compute the exact
marginal distribution of all random variables. The varia-
tional approach to the probabilistic inference involves con-
verting the inference problem into an optimization problem,
by approximating the feasible set, and solving the relaxed
problem.

A Boltzmann distribution is one of the exponential fam-
ilies (Wainwright and Jordan 2008). An appealing feature
of the exponential family is that moments of the distribution
are obtained by the derivatives of log normalization function
A(θ). For a given tractable subgraph F , mean field methods
are based on optimizing over the subset of realizable mean
parameters μ that can be obtained by the subset of exponen-
tial family distribution. With the subsetMF (G) of μ and the
corresponding conjugate dual function A∗F (μ), the A(θ) can
be computed by solving the following optimization problem

Figure 1: The two-phased signalized intersection associated
with a two-state Ising model

A(θ) = max
μ∈MF (G)

〈μ, θ〉 −A∗F (μ) (10)

and the resulting mean parameter is

μs = Eθ[σs] = P (σs = 1; θ) (11)

In this work, the approximation is based on choosing
product distribution

p(σ1, σ2, · · · , σn; θ) =
∏
s∈V

p(σs; θ) (12)

as the tractable approximation. It is also referred to as the
naive mean field approach. According to this approximation,
the optimization problem is rewritten as

A(θ) = max
μ∈[0,1]

∑
s∈V

∑
t∈Ns

L(Qt→s, Qs→t)μsμt

+
∑
s∈V

(Qs,h −Qs,v)μs

−
∑
s∈V

[μs log(μs)− (1− μs) log(1− μs)] (13)

Solving the problem yields a specific form of the mean
parameter update

μs ←{1 + exp[−(Qs,h −Qs,v)−
∑

t∈Ns

L(Qt→s, Qs→t)μt]}−1

=S
(
Qs,h +

∑

t∈Ns,h

(Qt→s −Qs→t)μt

−Qs,v −
∑

t∈Ns,v

(Qt→s −Qs→t)μt

)
, (14)

where S(x) is sigmoid function 1
1+exp(−x) . Ns,h and Ns,v

are sets of neighbor intersections corresponding to East-
West and North-South phases. From (14), the two terms in
the sigmoid function denote effective queues for each phase,
which are defined as

Q̂s,h = Qs,h +
∑

t∈Ns,h

(Qt→s −Qs→t)μt

Q̂s,v = Qs,v +
∑

t∈Ns,v

(Qt→s −Qs→t)μt (15)

With the effective queues, the marginal distribution is ex-
pressed concisely as

P (σs = 1) = S
(
Q̂s,h − Q̂s,v)

P (σs = 0) = 1− S
(
Q̂s,h − Q̂s,v). (16)

Note that the marginal distribution is a Bernoulli distribu-
tion whose parameter is only related to the difference be-
tween the effective queues. In other words, the weight func-
tion used in scheduling is a function of queue difference.

Theoretical Guarantees of Stability

In this section, we prove that by applying this weight func-
tion to clusters, an upper bound on the expected queue length
is achieved. According to Little’s law (Little 1961), the delay
is bounded as well.

The weight formulas (15) and (16) specify that each actual
queue has an effective queue associated with it. Upstream
queue length can be viewed as a prediction of future traffic
flow. Most importantly, the contribution of the downstream
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queue prevents the intersection from spillover effects (Da-
ganzo 1998) by reducing the effective queue to a negative
value. It is equivalent to decreasing the service rate when the
road segment has insufficient capacity. Building upon these
results as well as (Tassiulas and Ephremides 1992), we state
the following property of our algorithm.
Theorem 1. Consider a network has n queues with arrival
rates π1, · · · , πn. Under the proposed schedule-driven traf-
fic control, expected queue length is bounded

lim sup
t

E[

n∑
i=1

Qi(t)] ≤ n2

2ε
(17)

if for any queues the arrival rates satisfy πi ≤ si − ε with
ε > 0 and service rate si.

Proof. To establish the upper bound for any scheduling al-
gorithm, it is sufficient to consider a multi-hop network
model. Let Qd(i) designate the downstream queue of Qi. Us-
ing Lyapunov-Foster theory and separating all queues into
two cases: 1) Qi(t) < Qd(i)(t) and 2) Qi(t) ≥ Qd(i)(t), we
have

n∑
i=1

Qi(t) ≤ n2

2ε

+
( n

2ε

∑
i:Qi(t)<Qd(i)(t)

(πi(t)− si(t))[Qi(t)−Qd(i)(t)]
)

(18)
In (18), si(t) will be close to zero when Qi(t) − Qd(i)(t)
contributes a negative value according to (15). Therefore,
the bound can be rewritten as

E[
n∑

i=1

Qi(t)] <
n2

2ε

Coordination Mechanisms
In this section, we propose a message-passing protocol for
coordinating use of queue-length information based on the
mean field method. Basically, the protocol aims to balance
the queues of different phases through exchanging queue
and mean parameter information. To deal with practical
considerations, two modifications to accommodate multiple
phases and turning proportions are first proposed.

Multiple Phases

Until now we have assumed that each traffic signal has
two phases respectively. Practically speaking, urban inter-
sections frequently have more than two phases, e.g, left turn
phases at a four-way intersection, to provide more degrees
of freedom to vehicles. According to the previous sections,
the final result of weight formula is a softmax function, with
only two exponential terms in denominator. We can gener-
alize the Ising model to adapt to multiple phases by defin-
ing parameters associating with multiple phases. If (16) is
rewritten as

S
(
Q̂s,h − Q̂s,v) =

exp(Q̂s,h)

exp(Q̂s,h) + exp(Q̂s,v)

and

1− S
(
Q̂s,h − Q̂s,v) =

exp(Q̂s,v)

exp(Q̂s,h) + exp(Q̂s,v)
,

it shows that the probability of a specific phase is propor-
tional to exponential function of the corresponding effective
queue. Therefore, we can derive the probability of phase p
in P -phased signals

P (σs = p) =
exp(Q̂s,p)∑P
i=1 exp(Q̂s,i)

. (19)

Consideration of Turning Proportions

Considering turning proportions at each intersection is im-
portant for improving performance of adaptive traffic signal
systems. In the baseline schedule-driven approach, the turn-
ing movement proportion is estimated by taking moving av-
erages of traffic flow rate for different phases respectively.
The lane detectors detect the numbers of turning vehicles,
compute the moving average and then normalize these flow
rates. After getting these proportions, the scheduled flow is
able to reflect the realistic traffic flow by proportioning the
add-on flow and evacuated flow. For a grid-like network, the
three input queues (east, north, and west) of the upstream
intersection multiplied by the corresponding turning propor-
tions are summed up together to obtain the upstream effec-
tive queue Qu→s to downstream input queue (north). Simi-
larly, the three proportioned output queues of three down-
stream intersections (east, south, and west) constitute the
downstream effective queue Qs→d.

Qu→s =

E∑
k=1

ζkQ
(k)
u→s

Qs→d =

E∑
k=1

ηkQ
(k)
s→d, (20)

where ζk and ηk are the turning proportions of input and
output queues and E is the number of input or output flows.

Message-passing Protocol

We now introduce a practical protocol to manage the queues
of schedule-driven traffic control. The protocol realizes the
solution (15) and (16) of the mean field method in a fully
decentralized manner. Moreover, it takes the multiple phase
case and turning proportions into consideration. We assume
that each intersection knows its neighbor intersections and
is able to communicate with them. First, the scheduling
agent collects its local queue-length information. Once the
queue-length information and the calculated mean parame-
ter are received from the neighbor intersections, the agent
then computes its mean parameters and applies them as its
cluster weights for generating the phase schedule. The pro-
tocol is summarized as follows
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Message-passing Protocol Steps that intersection s com-
municates with each other to stabilize queues of the network

1: For each intersection s, let Qs,p denote estimated local
queue length of phase p.

2: Send proportioned Qs→down to downstream neighbors
and non-proportioned Qs→up to upstream neighbors.

3: Receive proportioned Qup→s and μup from upstream
intersections.

4: Receive Qdown→s and μdown from 3 downstream con-
necting intersections. Calculate proportioned Qdown→s

with estimated turning proportions.

5: Update Q̂s,p and P (σs = p) = μs based on (15) and
(16). Share μs with neighbors.

This protocol only requires communication with direct
neighbors and queue-length information. It is more robust
than methods that use estimated arrival rates, since the lat-
ter are vulnerable to traffic variability. Furthermore, the ap-
proach is fully distributed to ensure scalability.

Performance Evaluation

To evaluate our approach, we simulate performance on a
real world network with 2-way, multiple lane, and multi-
directional traffic flow. The network model is based on the
Baum-Centre neighborhood of Pittsburgh, Pennsylvania as
shown in Figure 2. The network consists mainly of 2-phased
intersections, with just three 3-phased intersections. All sim-
ulation runs were carried out according to a realistic traffic
pattern from late afternoon through PM rush (4-6 PM). The
traffic pattern ramps up volumes over the simulation interval
as follows: (0-30mins: 236 cars/hr, 30min-1hr: 354 cars/hr,
1hr-2hrs: 528 cars/hr ). This simulation model presents a
complex practical application for verifying the effectiveness
of the proposed approach.

Figure 2: Map of the 24 intersections in the Baum-Centre
neighborhood of Pittsburgh, Pennsylvania

The simulation model was developed in VISSIM, a com-
mercial microscopic traffic simulation software package that
is well known in the transportation research community.
To assess the performance boost provided by integrating
the proposed queue management scheme with the original
schedule-driven approach, we measure the average waiting
time of all vehicles over 5 runs and take the performance
of the original schedule-driven traffic control system as our

Table 1: Avg. delay of Baum Centre Model
Mean (s) Std. deviation

Benchmark 124.27 103.87
Local queue 106.72 83.56
Local + Upstream 95.31 72.10
Downstream queue

benchmark (referred to as the baseline system below).
Table 1 shows the results of combining schedule-driven

traffic control with two queue management schemes. The
first scheme only uses local queue-length information to
weight vehicle clusters. It is equivalent to the first term of
right-hand side of (15). The second scheme uses (15) to de-
rive weights. Compared to the benchmark, use of just local
queue-length information reduces delay by 15% and halves
the standard deviation. The gain comes from the control-
ling the lengths of queues and decreasing cluster size. With
the queue-length information and weights (mean parame-
ters) from neighbors, delay is reduced by 24%. Use of this
additional information achieves better performance since it
avoids the spillover effect (Daganzo 1998) by stopping ve-
hicles further away from entry into a road segment with
insufficient capacity. In addition, when upstream intersec-
tions send more traffic, the corresponding phase in the down-
stream intersection wills have longer green time to deal with
it.

Since our approach focuses on highly congested scenar-
ios, knowing the distribution of delay to vehicles helps us
verify the effectiveness of the proposed queue management
protocol. As shown in Figure 3, the queue management
scheme that applies local queue-length information only
shifts the CDF leftward and provides 20% improvement over
benchmark for 90% of the vehicles. Furthermore, with the
addition of neighbor queue-length information, the improve-
ment could be up to 30% for 90% of the vehicles. It should
be noted that the queue management reduces average de-
lay by 70s. However, for the congested vehicles the reduc-
tion is more than 100s. In other words, minimizing queue
length is especially effective for high congestion scenarios.
Likewise, we can also observe a similar phenomenon if we
categorize traffic demand into three different groups: high
(528 cars/hr), medium (354 cars/hr), and low (236 cars/hr).
Figure 4, shows that improvement in delay can reach 60%
for the high traffic demand case. On the other hand, the
performance of the medium and low traffic are comparable
with the benchmark. Under medium and low traffic demand
conditions, schedule-driven traffic control dominates perfor-
mance, and the benefit of queue management is marginal.

Table 2 provides another perspective on performance, us-
ing measurements of queue length and cluster size. We list
the measurements of all intersections whose average queue
length is greater than 2 vehicles in the high traffic demand
scenarios. The average queue length and cluster size of the
composite queue management scheme is less than those of
the benchmark, and thus delay is lower according to Little’s
law (Little 1961) of queueing theory. For the heaviest loaded
intersections, e.g., Baum-Aiken and Centre-Aiken, the re-
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Queue length (no.) Cluster size (msec)

Benchmark Local+up+down Benchmark Local+up+down
mean std. mean std. mean std. mean std.

Baum-Aiken 33.60 25.40 6.42 7.18 24640 30218 7174 9601
Baum-Craig 3.40 3.13 2.98 2.91 7279 13448 4818 5907

Baum-Cypress 3.02 3.90 2.79 3.41 5940 8115 5412 7252
Baum-Graham 47.15 58.59 2.60 3.13 23775 35934 4680 5331
Baum-Millvale 10.80 11.72 6.72 5.30 8446 12951 5618 6043
Baum-Liberty 18.96 12.84 15.97 11.72 14071 21687 7423 10857

Baum-Melwood 10.88 13.97 5.75 5.44 9193 15175 5708 6278
Baum-Negley 21.01 21.96 7.10 5.79 18593 29677 6142 7762
Baum-Roup 38.32 48.48 4.18 4.53 26550 42747 5494 6414

Centre-Aiken 32.97 43.07 3.30 3.00 9886 20864 3949 6003
Centre-Craig 8.09 14.87 5.75 7.22 4453 8387 3566 5223

Centre-Cypress 2.68 2.74 2.83 2.78 6446 12992 4252 5115
Centre-Millvale 6.17 13.61 2.23 2.36 7238 12848 4588 5813

Centre-Morewood 4.89 4.72 4.89 4.54 6054 8231 5228 6410
Centre-Negley 5.55 5.14 5.68 4.14 10306 24704 3881 4066
Centre-Neville 5.80 13.29 2.73 4.78 7974 15888 4515 6522

Table 2: Queue length and cluster size of the intersections under high demand traffic
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Figure 3: The CDF of delay on two different queue manage-
ment schemes.

duction of queue length could be up to 10 times. In addition,
the proposed queue management also leads to smaller vari-
ance of cluster size, which can be seen as the service time of
queueing systems. In the queueing literature, the variance of
the service time plays a major role in queueing performance.
For example, it is well-known that, for a M/G/1 queue,
the variance in service time solely determines the average
queueing delay if the average service time is kept the same.
Similarly, even for G/G/1 queues, more ‘variable’ service
time leads to larger queueing delay. Although our system is
far more complicated than these standard queueing systems,
we observe that reducing variance of cluster size is still ben-
eficial to scheduling systems.

In addition to overall performance, we differentiate the
performance between the multinomial extension (19) of the
multiple phases and the 2-phased cases. The average de-
lay and queue length between 2-phased and 3-phased in-
tersections are plotted in Figure 5. Figure 5(a) shows that
the multiple phase formulation improves delay by balancing
the three different phases, and the performance is compara-
ble to the original 2-phased model. Also, the queue length
is nearly half compared to the benchmark as shown in the
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Figure 4: Comparison of high, medium, low traffic demand.

Figure 5(b). Since the realistic urban network is comprised
of intersections with different numbers of phases, this exten-
sion makes the original two-state Ising model fit in the real
world.

Initial Field Experiment

To further evaluate the performance potential of our pro-
posed composite adaptive signal control system, an exper-
iment was conducted in the field, using the 23 intersec-
tions that make up the Baum-Centre neighborhood corri-
dors. This experiment focused exclusively on traffic control
performance during the PM Rush hour (4:00PM - 6:00PM),
the heaviest traffic flow period of the day. It entailed first
running the baseline schedule-driven approach to control
these intersections for 3 consecutive weekdays (July 12 to
14, 2016) and then installing and running the proposed ap-
proach to control the same intersections for the PM Rush pe-
riod on 3 consecutive weekdays of the following week (July
19 to 21, 2016). During both sets of days, queue-length and
cluster size information was collected and computed from
intersection sensor data.

The queue-length information and cluster size were col-
lected through use of intersection sensor data, which con-
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tains estimated queue-length and cluster size measurement.
An analysis of those data showed that the proposed approach
reduced the average queue length by 15% and reduced the
average cluster size by 12% during the PM rush period, pro-
viding further evidence of the effectiveness of the proposed
approach. Figures 6 shows the averaged queue and cluster
information for both corridors and each corridor individu-
ally.
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Figure 5: The comparison of average delay and queue length
between 2-phased and 3-phased intersections

Related Work

Techniques that restrict queues from increasing in a network
is a problem of broad interest in computer network design
and manufacturing. Researchers from computer science, op-
eration research, and communication engineering have been
persistently working toward development of queue manage-
ment techniques, which is able to stabilize queues and pre-
serve performance. In the field of scheduling, however, this
and related problems are rarely discussed. One exception
is the recent research in coupling queueing theory concepts
with finite capacity scheduling (Terekhov, Down, and Beck
2014; Terekhov et al. 2014).

In (Tassiulas and Ephremides 1992), a “backpressure”
policy called the max-weight algorithm was introduced to
maximize the throughput of a network through stabilization
of queues. This approach has been applied mainly to com-
munication networks and but also recently to transportation
networks (Wongpiromsarn et al. 2012). However, there are
two complications with applying backpressure to the prob-
lem of real-time traffic control. First, although backpres-
sure is maximizing network throughput, the practical ver-
sion (Tassiulas 1998) still seems to induce large average de-
lay (Shah, David, and Tsitsiklis 2011), which is undesirable
in the case of traffic networks. Second, the approach does
not consider non-local influence from neighbors and is thus
susceptible to myopic decisions. Actually, the proposed ap-
proach can be seen as a soft version of backpressure policy,
so that the stability the queues is guaranteed. Furthermore,
delay performance is not sacrificed due to the scheduling
problem formulation.

Analytical network models based on queueing theory (Os-
orio and Bierlaire 2009) are another way to approach the
problem of network congestion. By solving a large-scale op-
timization problem (Osorio and Bierlaire 2013), signal tim-
ing plans can be derived for an urban road network. As men-
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Figure 6: Initial field comparison on Baum-Centre corridors
- average queue length and cluster size during PM rush hour.

tioned earlier, however, such an approach optimizes from a
snapshot of average traffic flow, which is typically quite dif-
ferent than actual traffic flow. Traffic flow prediction work
(Yin et al. 2002) has also concentrated in recent years on
dealing with urban congestion. However, the interconnected
queues increase the difficulty of predicting arrival rates of
coming vehicles.

To our knowledge, statistical physics or graphical models
have never been used to solve the network congestion prob-
lem. Previous work has focused on using statistical physics
to study traffic flow dynamics, although they have received
less attention than other approaches. Recently, these ap-
proaches have witnessed a resurgence. For instance, (Jerath
et al. 2015) recently studied the effect of driver algorithms
on traffic flow. (Suzuki, Imura, and Aihara 2013) applied the
Ising model to study chaotic dynamics and serve as a starting
point for considering statistical mechanics of traffic signals.
In the context of self-organized traffic flow, however, these
techniques have been less discussed due to the lack of suit-
able model.

Conclusions

In this work, we described a queue management scheme
designed to gracefully boost the performance of schedule-
driven traffic control as the level of congestion increases.
The approach stabilizes the queues through exchange and
use of queue-length information. This information is used to
establish weights for clusters appearing in a given phase, us-
ing an Ising model of the intersection and ultimately apply-
ing mean field methods to compute the weights. A decentral-
ized message-passing protocol was developed and the com-
posite system was evaluated on a simulation model of a real-
world urban road network. Results showed that the compos-
ite queue management enhanced scheme improves average
delay overall in comparison to the baseline schedule-driven
traffic control approach, and that solutions provide substan-
tial gain in highly congested scenarios. Future work will fo-
cus on the design of how to decompose the transportation
network into several independent sets for approaching the
optimality of network scheduling.
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