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Abstract

This paper is an experience report on the results of an
industry-led collaborative project aimed at automating the
control of traffic flow within a large city centre. A major focus
of the automation was to deal with abnormal or unexpected
events such as roadworks, road closures or excessive demand,
resulting in periods of saturation of the network within some
region of the city. We describe the resulting system which
works by sourcing and semantically enriching urban traffic
data, and uses the derived knowledge as input to an auto-
mated planning component to generate light signal control
strategies in real time. This paper reports on the development
surrounding the planning component, and in particular the
engineering, configuration and validation issues that arose in
the application. It discusses a range of lessons learned from
the experience of deploying automated planning in the road
transport area, under the direction of transport operators and
technology developers.

Introduction

Traffic Operators use traffic control systems in large urban
areas to perform the crucial role of tackling road congestion
and minimising traffic related environmental effects. Con-
ventional road traffic signal management techniques, such
as traffic-responsive systems like SCOOT (Taale, Fransen,
and Dibbits 1998) and SCATS (Chong-White, Millar, and
Shaw 2012), or fixed time light strategies optimised using
historical data, work reasonably well in normal or expected
conditions. Currently, software systems in the urban traffic
management area tend to be based around a syntactic, prod-
uct specific integration of data, which at best share data ex-
ternally at a relational database level. They have a vertical
systems design, and though eminently configurable within
the range of their function, they are not integrated at a hor-
izontal level with the overall function of the urban manage-
ment centre where they operate. Within urban traffic man-
agement and control (UTMC) operations this perpetuates
the status quo of recurrent system replacement, rather than
system evolution. The context of the novel application of
planning we describe in this paper is developing semantic
technology in order to better capture and exploit real-time
and historical urban data sources, while pursuing a higher
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level of data integration. We aim to make UTMC systems
less brittle and more adaptable by raising the level of traffic
control software integration via semantic component inter-
operability. In doing this we have the longer-time aim of
utilising an autonomic approach to UTMC in particular, and
road transport support in general, as developed in the EU’s
transport network ARTS 1. Results of the Network supported
the idea of the construction of a semantic systems level for
UTMC, consistent with previous work on integrating deci-
sion support within semantic technologies(Blomqvist 2014;
Antunes, Freire, and Costa 2016). Among the benefits of a
higher level of information integration are a more joined up
UTMC capability, where the flexibility of a knowledge level
representation gives the opportunity to use general AI tech-
niques such as automated planning to provide a more intel-
ligent approach to tackle UTMC issues.

Within this context, we present a novel AI Planning ap-
plication addressing a well known functional drawback of
established UTMC tools referred to above: they do not work
adequately in the face of exceptional or unexpected condi-
tions affecting urban regions (containing many hundreds or
thousands of road vehicles). In these cases, Transport Op-
erators may struggle to find a strategy intervention tailored
to solve the unexpected situation. Creating such strategies
–which involves changes to traffic signal timings over a pe-
riod of time– is a manual task that may take several days
or weeks, and it is therefore infeasible to hand craft one in
real-time. For example, transport operators may want to re-
duce traffic concentrations in a targeted urban area to ame-
liorate effects of predicted road traffic pollution; or optimise
the flow of saturated road links due to an emergency road
closure; or produce a strategy to deal with a forthcoming
complex situation (e.g. optimising the light timings to deal
with the combination of a concert, a football match and some
emergency roadworks).

The planner used in the project was the domain indepen-
dent planner UPMurphi (Della Penna et al. 2009), which
inputs models in PDDL+ (Fox and Long 2006). To pro-
duce a working executable of UPMurphi which generated
UTM strategies in real-time, we had to perform several cy-
cles of iterations over the engineering of the PDDL+ mod-

1EU’s COST Action 1102 “Autonomic Road Transport Support
Systems” (ARTS) www.cost-arts.org
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els, starting from the model proposed in (Vallati et al. 2016).
The quality of the strategies output from the planner was
evaluated firstly by hand inspecting the strategies to check
that they were “sensible”. In this case the strategies were
inspected to check they embodied common sense plans in
them. Secondly, their effect was compared against optimised
strategies derived from historical data by simulating their
execution using both the AIMSUN micro-modelling soft-
ware2, and the off-the-shelf SUMO (“simulation of urban
mobility”) (Krajzewicz et al. 2012) micro-modelling soft-
ware. In each, transport engineers compared the results of
simulations using both automated planning generated strate-
gies, and optimised strategies derived from historical data.
In both these simulators, run by different members of the
consortium, the planner-generated strategies produced suf-
ficient savings to convince the consortium to aim to adopt
AI planning within a product to generate strategies for ex-
ceptional events in busy urban areas. On the other hand, the
study highlighted several challenges to be overcome before a
fielded implementation could be achieved, and resulted in a
range of lessons learned. The implications of taking this ap-
proach are, we believe, of a step changing nature for UTM.
Currently we are engaged in the adaptation of the system
to deal with a wider range of effector actions (rather than
only control signal change) and a more sophisticated, flexi-
ble goal language.

Context

The work reported was one of the deliverables of a funded
project within a consortium consisting of the University
of Huddersfield, a major transport authority (Transport for
Greater Manchester – TfGM), a large technology supplier
(BT), and two SMEs: KAM Futures and Infohub Ltd. KAM
Futures performed the project management, Infohub per-
formed independent validation of the results, TfGM sup-
plied the area, the problem and raw data, and BT’s systems
were used to integrate the data. The overall aims were in the
context of developing smart city technology, taking advan-
tage of the wide range of data available in a modern urban
area. In particular the project focussed on exploiting real-
time data sources to pursue better congestion control and air
quality management. The consortium represented the diver-
sity of the data using semantic technologies, to enable the in-
tegration into a unified form through a common, high-level
vocabulary. Semantic technologies enable the enrichment of
data sources, linking them with additional information, thus
providing context and aiding data cleansing. Within the con-
text of this development, we targeted the better control of
traffic in exceptional circumstances as an area where we
could show the benefit of semantically-enriched data.

Approaches to Region-wide Traffic Control

Generating a detailed strategy of interventions, such as
changes to traffic signal timings over a period of time, to
manage an emergency situation in in real time is consid-
ered to be beyond the capacity of human operators. Trans-

2https://www.aimsun.com/

port operators need the ability to produce regional strate-
gies in real time which will deal with abnormal or unex-
pected events such as road closures. These cause huge de-
lays and decreased air quality because of excessive conges-
tion and stationary traffic. The existing conditions and set
of corrective goals required to deal with these events are so
varied that detailed strategies are impossible to draw up a
priori in a large, dense urban area. Approaches to region-
wide traffic control has been trialled using model predic-
tive control (MPC) strategies and optimisation (Lin 2011;
Dotoli, Fanti, and Meloni 2006; van den Berg et al. 2004).
This line of research uses a control theory approach which,
given an adequate dynamical model, can be used to derive a
solution that can give continuous responses to changing in-
puts. Under changing state conditions, researchers have de-
signed MPC algorithms which can continuously adjust the
controlled features (here signal timings) to optimise some
goal in real time. This approach tends to be less flexible than
a goal-directed AI approach, however, as a solution needs to
be designed, implemented and tuned using a specific model
of traffic flow and a specific objective function. Additionally
it is less scrutable, as it generates strategies over a restricted
time horizon. For instance, there is a need in UTM to be
able to achieve more focussed or detailed goals than simply
minimising delay - in particular operators may want to gen-
erate strategies that avoid problems with air quality caused
by traffic congestion.

While there are several examples of the application of
general AI techniques to road traffic monitoring and man-
agement (Various 2007; Miles and Walker 2006), the trial
of UTM systems embodying an AI planning engine within a
real urban traffic management centre, with an evaluation per-
formed by transport operators and technology developers,
is novel. On the scheduling side, however, the SURTRAC
project utilises a distributed scheduling system which con-
trols traffic signals in urban areas (Xie, Smith, and Barlow
2012). In SURTRAC, each intersection is controlled by a
scheduling agent that communicates with connected neigh-
bours to predict future traffic demand, and to minimise pre-
dicted vehicles waiting time at the traffic signal. It is cur-
rently being trialled in Pittsburgh, USA, with its distributed
approach suggesting good scale-up but less goal flexibility
than if utilising a centralised AI planner. Two recent lines
of research showed the feasibility of using AI planning to
generate actions to deal with unexpected circumstances in
complex urban traffic control situations3. Gulic et al’s sys-
tem (Gulić, Olivares, and Borrajo 2016) involves joining to-
gether a SUMO simulator (Krajzewicz et al. 2012) to an AI
Planner, via a monitoring and execution module called the
“Intelligent Autonomic System”. The planning representa-
tion was done using PDDL 2.1 (Fox and Long 2003b), with
no explicit representation of vehicles in the planner. Instead,
traffic concentrations on road links are represented by rela-
tive density descriptors, such as very-low, low, medium and
high. Traffic light change actions are enumerated to cover all

3These two achievements were recognised in October 2015 as
they were joint winners of the the Second COST ARTS Competi-
tion. https://helios.hud.ac.uk/cost/comp2.php
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the ways that a particular configuration would effect the ar-
rangements of road links. By abstracting away from explicit
counts of vehicles, the system can deal with regions con-
taining thousands of vehicles. Also, the close coupling with
SUMO demonstrates the use of monitoring and replanning
very effectively, and allows exhaustive testing of the system
under sets of disturbances (vehicle influx, road closures).

The second work (Vallati et al. 2016) was inspired by
works such as (Lin 2011; van den Berg et al. 2004), where
traffic is modelled using “flows”, and then analysed through
model-predictive controllers. Vallati et al. exploit PDDL+
for encoding a flow model of vehicles through traffic-light
controlled junctions. The length of traffic light phases are
under the control of the planner, that can decide to prioritise
some traffic flows, in order to reach specified goals (a phase
determines which of the flows through that junction are on
and have traffic flowing). Goals are specified in terms of
numbers of vehicles desired on some critical road links. En-
coded problems are then solved using the UPMurphi solver,
extended with domain-specific heuristics. Their experimen-
tal analysis demonstrated that UPMurphi could solve traf-
fic problems containing thousands of vehicles, in response
to exceptional conditions. They showed the efficacy of the
resulting strategy by comparing its execution against fixed
time and reactive approaches, using SUMO.

Description of the Project

The initial phase of our collaborative project concentrated on
the semantic enrichment of the data. The raw data was taken
from transport and environment sources and integrated into a
Data Hub, using the RDF triple format and a data ontology.
The method was to take real time feeds and process them un-
til they produced logical facts about a traffic scenario, which
could serve at part of an initial sate of a AI planner. Fig-
ure 1 depicts the abstract system architecture used to test the
generation and operation of the control strategies. To work
towards that, however, the data enrichment and strategy gen-
eration had to be tested in a real scenario, hence rather than
taking in real-time current data, we adjusted the system so
that what would be translated into the current state would be
from historical data. This would allow checking the perfor-
mance of the system against the observed performance from
historical data, in order to evaluate it off-line.

The Main Data Sources

As a basis for exploring exceptional or emergency traf-
fic conditions, we chose to use historically averaged traffic
data from a time/day when the road links were most con-
gested: morning rush hour, between 8am and 9am on a non-
holiday weekday. The main data source was the Saturn sys-
tem (Simulation and Assignment of Traffic to Urban Road
Networks4). From this and other transport engineer docu-
mentation records our partners extracted, for the selected re-
gion within the urban area, the following:

1. the topology of the road links (a link is a uni-directional
part of a road between two junctions).

4http://www.saturnsoftware.co.uk/saturnmanual

Figure 1: An Abstract View of the System Test Architecture

2. The vehicle capacity of all the road links. This is given in
numbers of “passenger car units” –PCU– which takes into
account the differing size of vehicles.

3. The average traffic flows between links in number of
PCU’s per second. This number represents the number of
vehicles flowing through a particular junction at a certain
time of day, when the corresponding traffic signal phase
is green. A special case of this are flows in and out of
boundary junctions.

4. The traffic signal position, phases of signals, minimum
and maximum time that a signal phase can be set for.

5. Intergreen timings between each of the phases of the sig-
nals. Intergreen intervals are used between two traffic
light phases for clearing the intersection from vehicles,
and allowing pedestrian crossings. Their duration is de-
pendent on the phase and junction, and varies between 0
and 25 seconds. Such length is calculated accordingly to
the size and shape of the intersection, the expected speed
of vehicles, and the expected time needed by turning ve-
hicles for clearing the junction. All flows are considered
off during the intergreen.

6. The state of the network at a certain instance, that the
strategy is expected to start from: number of vehicles on
each link, and the settings of each signal phase.

These data items made up the initial state of a problem file in
planning terms. The goal language of the planner is what the
actions in the domain model can effect. In this case the goals
are made up of numerical constraints denoting predicates on
the occupancy levels of road links.

Choice of Technology

The previous work on using AI planning for traffic control
established that the representation of traffic through the Net-
work needs to be performed at a macroscopic level to cope
with large volumes of traffic. Our main choice was between
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using a fixed discretization of the link density (using a se-
quence of density descriptors) with a discrete PDDL rep-
resentation of actions (Gulić, Olivares, and Borrajo 2016),
or using a numeric representation of link density and ex-
plicit continuous flow processes in PDDL+. The length of
the project constrained us to recent work that had proved it-
self in a similar scenario: an alternative choice, in the longer
term, might be to investigate the use of non-PDDL models,
such as timelines (Cesta, Fratini, and Pecora 2008).

An advantage in using the continuous PDDL+ - based
approach over the classical PDDL approach was its accu-
racy, i.e. the representation contained exact counts of vehi-
cles, and modelled continuous change of vehicle numbers
on road links during green times. Although a planner rea-
soning with PDDL+ would in the end need to discretize, the
advantage of PDDL+ is that this discretization level does
not need to be decided on in advance. We made the deci-
sion to follow the PDDL+ approach on the basis of the ac-
curacy and granularity of its continuous representation: the
PDDL+ encoding was closer to the representation used in
traffic simulation as shown by the data sources above. Also,
PDDL+’s representational accuracy supports the extension
of the system to incorporate other available “interventions”
(such as variable speed limits). Typically these interventions
are specified by their impact on the traffic in terms of flows
of vehicles that are affected. One drawback is that there are
very few PDDL+ planners available because of the higher
complexity of mixed discrete / continuous planning.

Engineering the PDDL+ Model

Populating the initial state and goal for the planning tasks
required by our collaborators using the PDDL+ model in-
herited from the earlier research (Vallati et al. 2016) proved
infeasible 5. As well as using UPMurphi, we tried other plan-
ners capable of inputting a form of PDDL+, such as DReal
(Bryce et al. 2015) and Popf (Coles and Coles 2014), but
with no success. Given the provided output, it looked rea-
sonable to assume they had memory related issues, due to
the large number of PDDL+ processes and events involved.
To overcome this problem, we also experimented with UP-
Murphi using larger RAM, by using HPC cluster facilities.
This provided no significant scale up. The input scenarios
contained hundreds of road links and vehicle flows through
complex junctions, which was clearly beyond the capabil-
ity of the available planning technology using our existing
model. For instance, junction 1202 in Figure 2, contains a
cycle of seven traffic signal phases, where each phase is de-
fined by a different set of traffic flows being active.

Hence, we re-engineered the PDDL+ model in a more ef-
ficient way. This entailed minimising the size of groundings
produced by the planner at compile time, in particular the
number of processes that were grounded. We had sufficient
success with the re-engineered PDDL+ that we were able to
represent features that made the model more realistic, such
as the addition of intergreen processes to all phases of all
the junctions, and the introduction of processes representing

5UPMurphi’s compilation resulted in a segmentation fault, as
the grounding of the problem proved too large

Figure 2: The Modelled Area (large picture) and the position
of the modelled area with regards to the city centre (small
picture, red-limited area). Blue points indicate the sources
(destinations) of incoming (outgoing) vehicles.

roadworks.
We adopted a systematic approach, starting from a simple

network, and proceeded to expand the network while iter-
atively testing the function of the plan generation capabil-
ity. The final modelled region, which was judged to be large
enough for trialling purposes by the consortium, is shown in
Figure 2, and abstracted in Figure 3. Junctions are identified
by “Saturn” numbering. Directed links are identified by the
concatenation of the names of their start and end junctions.
• The model consists of 15 junctions and 34 road links:

7 junctions are controllable junctions (in red) and the 8
outer junctions are not modelled as controllable, but act
as a boundary to the region.

• The controllable junctions have 69 controllable flows in
total between them. For instance, junction “1349” has 12
flows, as a vehicle has a choice of 3 exits when entering
from any of the 4 directions.

• Each controllable junction has between 2 and 7 variable-
time signal phases.

• Each traffic signal phase has a fixed intergreen period be-
tween its end and the start of the next phase.

• Roadworks could be placed in links as follows: they were
modelled as simple junctions with 2 flows, one off and
one on at any point in time. The intergreen would vary
in size depending on the size of the roadworks. A simi-
lar model could be used for pedestrian crossings. In both
cases, however, the introduction would add two extra links
and two extra process flows to the total.

• Boundaries to the region are modelled as a single vertex.
Each road section connected with the boundary has an as-
signed traffic flow, which corresponds to the number of
vehicles entering or leaving the region per time unit.

This configuration was at the edge of the limit for the final
version of the planning system (engineered PDDL+ model
and UPMurphi) –to add extra roadworks, for example, we
would need to abstract outgoing process flows (this would
abstract any limit on the volume of traffic leaving via an
“out” link) leading from the region. Where the abstracted
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Figure 3: Modelled Flows and Links in the Target Region:
Abstracted View. Blue vertices are modelled as part of the
outside region.

outgoing process flows were not near road links involved in
goals, this would have little or no effect on the result.

As a comparison, beside all the extensions needed for
modelling intergreens, in/out-flows, etc., the largest test pre-
sented in previous work(Vallati et al. 2016) involved 9 junc-
tions with between 2–3 light phases, 21 links, and 27 con-
trollable flows.

A Description of the PDDL+ Model

A region of the road network can be represented by a di-
rected graph, where edges stand for road sections and ver-
tices stand for intersections. One vertex is used for repre-
senting the outside of the modelled region. Intuitively, vehi-
cles enter (leave) the network from road sections connected
with the outside. Each road section has a given maximum
capacity, i.e. the maximum number of vehicles that can be,
at the same time, in the road, and the current number of ve-
hicles of a road section, which is denoted as a queue. In
our formulation, we consider only intersections that are con-
trolled by traffic lights, as they are those under the control of
traffic controllers.

Traffic in intersections is distributed by flow rates that are
defined between each couple of road sections. Given two
road sections rx, ry , an intersection i, and a traffic signal
phase p such that rx is an incoming road section to the inter-
section i, ry is an outgoing road section from i, and the flow
is active (i.e., has green light) during phase p. Flow rates
stand for the maximum number of vehicles that can leave
rx, pass through i and enter ry per time unit. For the sake
of simplicity, we assume that vehicles going in the same di-
rection move into the correct lane, thus not blocking other
vehicles going in the different directions.

Intersections are described in terms of a sequence of traf-
fic signal phases. Specifically, intersections contain a sig-
nal phase, and phases are connected using a next predicate.
According to the active traffic phase, one (or more) flow

rates are activated, corresponding to the traffic lights that are
turned green. For each phase, the minimum and maximum
phase length is specified. Within this range, the planner can
decide whether to stop the phase currently active, or not. Be-
tween two subsequent signal phases, an intergreen interval is
specified. The model was encoded so that some intersections
can be declared as not under the control of the planner, by
introducing a controllable predicate. Intersections are regu-
lated using the following PDDL+ constructs:

• An action switchPhase(p,i) is used by the planner for
stopping the currently active phase p in intersection i,
if the intersection i is controllable, and minimum phase
time of p (increased by the keepPhase process) has been
reached. This action is the “tool” allowing the planner to
affect the traffic flows. The only effect of this action is of
activating a trigger for the intersection i.

• An event triggerCatcher(p,i) is activated when the trigger
of intersection i is activated, during the traffic phase p.
The event stops the current traffic phase, resets the phase-
Time to zero, and turns on the next intergreen phase.

• A process keepPhase(p,i) is used for “keeping” the traffic
phase p on intersection i active, and measuring the time
the phase is kept on. This process is started when the ac-
tivePhase predicate of p is set to true, and automatically
stops when the phase time has reached the maximum al-
lowed value, or the phase has been de-activated by the
planner. Similarly, a keepIntergreen(p,i) process is used
for keeping the intergreen, after traffic phase p, active.

• An event maxPhaseTimeReached(p,i) is triggered when
the phase p of intersection i reaches the maximum al-
lowed time (the keepPhase process). The event acti-
vates the trigger predicate of i (in the same way as
the switchPhase action does). A corresponding maxInter-
greenTimeReached(p,i) is used for stopping an intergreen
phase when the maximum time has been reached.

• A process flowPhase(p,r1,r2) is activated when the keep-
Phase(p,i) process is active. It is used for moving vehicles
from road r1 to road r2 at the given flow rate. If there is
no vehicle on r1, or r2 is full (the number of the vehicles
is the same as the capacity of r2), the process is stopped.

Figure 4 shows the PDDL+ encoding of the switchPhase ac-
tion, the triggerCatcher event and the keepInterGreen pro-
cess. A road section connected with the outside area can ei-
ther have incoming or outgoing flows of vehicles. In the first
case, vehicles from the outside region are entering the mod-
elled area through the section, otherwise the road section is
used by vehicles that are leaving the modelled area. Each
road section connected with the outside has a corresponding
entering (leaving) rate, that indicates the maximum flows of
vehicles, in either direction, that can be served by the sec-
tion. Vehicles that are going to enter the network are queued
in the corresponding incoming road section, unless the road
section is full. Flows of vehicles entering the network can be
activated, or deactivated, using Timed Initial Literals (Fox
and Long 2003a).
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(:action switchPhase

:parameters (?p - phase ?i - intersection)

:precondition (and

(controllable ?i)

(activePhase ?p)

(contains ?i ?p)

(> (phaseTime ?i) (minPhaseTime ?p) ))

:effect (and

(trigger ?i) ))

(:event triggerCatcher

:parameters (?p - phase ?i - intersection)

:precondition (and

(trigger ?i)

(activePhase ?p)

(contains ?i ?p))

:effect (and

(not (trigger ?i))

(not (activePhase ?p))

(activeIntergreenAfter ?p)

(assign (phaseTime ?i) 0) ))

(:process keepInterGreen

:parameters (?p - phase ?i - intersection)

:precondition (and

(activeIntergreenAfter ?p)

(contains ?i ?p)

(< (interGreenTime ?i) (interGreenLimit ?p)) )

:effect (and

(increase (interGreenTime ?i) (* #t 1 )) ))

Figure 4: Part of the developed PDDL+ model.

Evaluation

The consortium tested the software configuration on a range
of classes of problems: to clear saturated road link(s) as soon
as possible; to clear a region as soon as possible; and to clear
a saturated road link with nearby road works. The idea be-
hind the tests was that, when a problem was spotted, the nor-
mal fixed time strategy would be turned off, and replaced by
the planner-generated strategy. When the plan achieved the
goal, the fixed time strategy would be turned back on. All the
goals in the tests below have the format: X1 < N1 & X2
< N2 ... , where Xi is the road link occupancy, and Ni
is the desired occupancy level. Hence, in this context, clear-
ing road links equates to lowering the occupancy to less than
a certain –predefined– value.

UPMurphi is configurable using two types of heuristics
(as described in (Vallati et al. 2016)). One allows certain pre-
conditions to be put on action choices, and another specifies
the goal heuristic. In a nutshell, the first heuristic gives some
guidance about when it is more promising to apply avail-
able actions, while the goal heuristic provides an estimation
of the distance of the current state from a goal state. For all
the tests with the configuration below, we specified only the
goal heuristic, as the other heuristic did not seem to play
a clear role in the success of the tests. The goal heuristic
amounted to minimising the values of link occupancy in the
goal expression (X1, X2, ...). The tests that completed gen-
erated strategies composed of between around 30 to several

hundred actions with a makespan of several minutes, in less
than 30 seconds, on a 2.5 Ghz Intel Core 2 Quad processors
with 4GB of memory made available and a Linux operat-
ing system. The strategies were composed of sequences of
the instantiation of the single action in the PDDL+ model: to
move on a traffic a signal phase on to the next phase (respect-
ing intergreen intervals, of course). As the simulators AIM-
SUN and SUMO rely on non-deterministic components for
simulating traffic evolution, simulations were run five times.

Validation of generated strategies consisted of:

1. Comparison with what would be expected in a “common
sense” solution, by the visual inspection of the planner-
generated strategies.

2. Validation that the planner’s internal simulator (the VAL
tool(Howey, Long, and Fox 2004)), the micro simula-
tor SUMO and the micro simulator AIMSUN give sim-
ilar and consistent results to each other when run with
the fixed and planner-generated strategies. If the PDDL+
model was correct/sufficiently accurate, then the planner’s
generated strategy was guaranteed to solve the goal when
executed; and if the independent simulation tests showed
that it does not, then we would conclude that the planner’s
PDDL+ model was not correct or sufficiently accurate.

3. Comparison of the effects of the planner-generated strate-
gies with a fixed strategy which had been optimised for
the time of day by Transport Engineers. Clearly, this fixed
strategy was not generated to deal with the exceptional
event, but this was assumed a good comparison as that
strategy would be operational when an event occurred.

4. Estimates of savings in terms of tail-pipe emissions.

Results

The initial test scenario was used to investigate the connec-
tion between the planner’s internal traffic model (based on
flow values), and the models encoded in the SUMO and
AIMSUN microsimulation packages. It was inspired by a
possible scenario. Assume there was an extreme vehicle
build upon a link (in our case 3966 1202) entering into the
region, and the consequent air quality implications around
the link were unacceptable. This problem would be to clear
the link as soon as possible. It is formalised by assuming the
link contains at the initial state an unexpectedly large num-
ber of vehicles (in this case, 300), and the goal state is to
reduce the number to less than 10.

The common sense, approximate strategy to solve this
kind of problem would be as follows. At the junction that
the link leads to (in this case 1202) called the “primary junc-
tion”: give maximum green time to those light phases which
allow vehicles to leave the link, and minimise those phases
which do not, so that the lights will quickly cycle back to
the phases letting out traffic. At the junctions that lead off
from the primary junction (in this case 6013 and 1349): give
at least enough green time to the links leading in from the
primary junction to make sure that the links do not get con-
gested and the increased level of traffic can go through them
smoothly. This strategy may have to be repeated through
junctions further away if necessary. To visually inspect the
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Config. Initial Test 3 Links Saturated Roadworks
Fixed 430 2845 1985 815
Planned 370 1500 1400 630

Table 1: Planned vs Optimised Configurations

quality of the strategy, members of the consortium (includ-
ing transport operators) checked the generated solution to
the first test: it was indeed close to this common sense solu-
tion, showing the repeating loop of green-lighting referred to
above, as one would expect from a hand-generated solution.

Considering the simulation, the traffic models (AIMSUN
and SUMO) were run independently by the transport author-
ity and the SME Infohub, respectively, using the planner-
output strategy and the fixed optimised strategy. In the first
test, after validating that the simulations were fairly con-
sistent, the reduction in time to clear a junction using the
planner-output strategy was approximately 20% using the
simulations. AIMSUM and SUMO gave similar results to
each other, but tended to produce slightly longer times to
clear congestion than the planner’s own simulation, and
tended to give better results for the planner-generated strat-
egy than the planner’s own simulation. Videos of the AIM-
SUN planner-generated6 and fixed optimised7 strategies are
online. This comparison shows a slightly longer makespan
than the planner’s internal simulator on both configurations
(compare with results in Table 1, first column).

The results of the full range of tests are shown in Table
1: “3 Links” is to clear congestion from 3 road links leading
into the junctions 1867, 1349 and 1202 shown in Figure 3,
where an extra 600 vehicles are entering as a result of a dis-
turbance in another region; ”Saturated” is where all the links
in the region of Figure 3 are at capacity, ”Roadworks” is
the same configuration as the initial test, but with roadworks
severely limiting flow between junctions 1202 an 1349. In
each case the figures in Table 1 are the times in seconds to
decongest the roads involved using the optimised fixed strat-
egy (first row) or the planner-produced strategy (second row)
using the planner’s simulator. All show a marked reduction
in the case of the planner-generated strategies. A common
sense, approximate strategy to solve the more complex prob-
lems (columns 2-4 in Table 1) is much more difficult to for-
mulate than for the initial test (and hence one of the rea-
sons for automation). However, a sensible pattern appeared
to exist in the planner-generated strategies, to green light the
correct junctions.

Reductions in Tail-pipe emissions

The consortium investigated a simple approximation to the
amount of emissions that the vehicles produced in both the
planner-generated strategies and the default ones. The as-
sumption we use is that clearing a junction (in particular,
reducing it from a level of saturation as quickly as possi-
ble) will lead to a reduction in tail-pipe emissions, and hence
overall pollution. We illustrate this by deriving the expected
emission reduction along the strategic link 3966 1202 of our

6https://goo.gl/st149L
7https://goo.gl/dNzByU

first test. The potential emission reduction achieved by the
strategy has been calculated, approximately, as follows:

Emissions Reduction = (Y - X) * (E1 - E2)
• Y = Time taken for the goal to be reached by the normal

strategy provided that the link is congested;
• X = Time taken for the goal to be reached by the planned

strategy provided that the link is congested;
• E1 = The Emission expected given that the model is con-

gested and the normal strategy is being used;
• E2 = The Emission expected given that the model is not

congested and the normal strategy is being used.
E1 and E2 emissions have been provided from a “capacity”
case (E1) and a normal case (E2). For both, default fixed tim-
ings were used in the AIMSUN model. In the ’normal’ case,
Saturn demand for the 3966 1202 link was used. The overall
effect of applying the planner-generated strategy was mea-
sured using the TRACI (Bare 2011) environmental impact
assessment tool built into SUMO.

As well as estimating the emissions reduction in the link
referred to in the goal, the emissions reduction from the
overall effect of applying the strategy to the model given
that certain links carry more weight (e.g. those that are in
an air quality management zone) was calculated. The emis-
sions around the link to be cleared were calculated to drop
by 5%, whereas the overall drop over the region was 2.5%.
It is worth stressing that these results are preliminary, how-
ever, with more testing to be done to accurately determine
the effect on air quality levels.

Discussion

At the end of the project, the consortium was convinced
enough by the results of using AI planning as to want to
pursue field trials and potentially a software product. Using
a domain independent planning engine was, in the end, ade-
quate for showing the proof of concept of a planning-driven
approach to the solution of a real problem. The method
of implementation would incorporate monitoring and re-
planning if needed, as the plan generation speeds during the
trials made re-planning in real time feasible.

The main advantage of the AI planning approach appears
to be its ability to generate a useful, readable strategy in real
time to meet the needs of a new unexpected situation. This
relies on the flexibility of the PDDL+ approach, as well as
the speed of a planner in dealing with the specified goals.
The ability to generate complete initial states and triggered
goals in real time (and so be responsive to a detected event)
was also a persuasive factor for the consortium. Also, new
effectors such as the exploitation of variable speed limits or
variable message signs (affecting traffic flows) can be added
to the planner’s domain model modularly, meaning that new
strategies generated will contain instances of those effectors
if they help achieve a goal.

In contrast, demand driven, traffic responsive controls
such as SCOOT (Taale, Fransen, and Dibbits 1998) are
aimed at handling cycle-to-cycle changes in demand. In re-
sponse to large changes in traffic flows, SCOOT would grad-
ually adapt and adjust the traffic signal timings, as compared
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to the immediate adjustment made by the planner-generated
strategies. SCOOT is dependent on its own local data sen-
sors –the inductive loops embedded in the road surface– and
it cannot respond to varied, regional goals. In contrast, Sim-
plyfAI’s planning system has the benefit of enriched and in-
tegrated sources of data, which gives it the immediate ad-
vantage of higher quality data and a wider data view.

There were many lesson learned from the challenges we
had to overcome and those still outstanding: we summarise
the main ones below.

• Problems with the data: the “meaning” of the flow val-
ues obtained from Saturn were not as we had anticipated
them. While we expected these values to be the maximum
number of vehicles (in PCU) that could flow assuming a
queue was formed in the oncoming link, in fact they de-
noted the flow averaged for the particular time of day.

• Problems with adequacy of our representation: the
PDDL+ model embodied several assumptions that made
it inaccurate. Firstly, it assumed that as soon as vehicles
enter into a link, they are queued at the next. Secondly,
there were breaks in links that we did not model, such as
roundabouts and pedestrian crossings.

• Problems in complexity measures: the field trial demon-
strates the crucial importance of estimating accurately
measures of the trial (region) size a priori, and acquir-
ing planning machinery which would cope with that. In
our case the measure of “number of vehicles in a region”
was not as relevant for determining limits as other factors
such as the total number of links, and consequently we
were over optimistic in our expectations.

• Problems with understanding the chosen planning en-
gine: several classes of scenarios when input to UPMur-
phi would not yield results. For example in the first class
of tests, instead of raising the occupancy of a road link to
300 (well above its maximum value), the normal approach
would be to increase greatly the flow-in value. In such a
scenario we were unable to obtain an output. From exten-
sive tests it appeared that if the goal was one in which ac-
tions could make immediate progress towards, then an an-
swer would be extracted. On the other hand, if UPMurphi
was initiated in a heuristic “canyon” it was likely that no
result would be output. Given a fixed number of vehicles
to start, however, the path to the goal heuristic (minimise
occupancy on 3966 1202) was monotonic, which seemed
to guarantee a resulting plan.

• Problems with a purely goal directed strategy: while the
effect of a generated plan was successful for solving the
goal, other junctions through the region were not opti-
mised. In fact the light signals in other junctions in the
region were all left to run to maximum (actions to move
them on a phase would not be taken unless it helped to-
wards solving the specific goal). Also, goals such as the
maintenance of a value are desirable in some situations.
For a future system, a richer goal language is needed.

• Problems in joining up the technology: when engineer-
ing a planning component into a larger application we

naturally use the high level interface input language –
in this case PDDL+. Components of the initial state are
assembled automatically from the Data Hub. In our ap-
plication, a different team had responsibility for produc-
ing the tool which assembles PDDL+ elements. As this
work was chronologically scheduled first, there was an
over-commitment to a particular target representation.
The work following on from this involved configuring the
planner, and required changing the PDDL+ models many
times. Hence the coding of a PDDL+ assembling tool, and
any work on the end to end effectiveness of the system,
would need to be completed only after a final PDDL+ rep-
resentation had been agreed upon.

Conclusions

In this paper we described the operation and results of a col-
laboration between a transport authority, academics, a large
technology provider and two SMEs, which included in its
remit the use of AI Planning to generate strategies of traf-
fic light changes to achieve desired goals in the presence of
exceptional events. The trials involved using historical data
describing the traffic in the region of a large city. The strate-
gies (timing changes of traffic signals) output were judged to
be useful for dealing with exceptional situations, using both
visual inspection to check that they were sensible and sim-
ulating their execution using two different traffic modelling
software packages AIMSUN and SUMO. We believe that
this is the first successful demonstration of AI Planning tech-
nology to create useful strategies for UTC where the overall
control for the region chosen, the nature of the data feeds
and the validation of the end result was largely in the hands
of non-academic stakeholders. On the other hand, the suc-
cess is limited by several factors discussed above. While the
results of the plan generation component seem acceptable to
the stakeholders, a certain amount of scale-up is required in
terms of traffic area covered, and granularity of representa-
tion, before the project enters its next phase.
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