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Abstract

A challenging Earth-observing satellite scheduling problem
was recently studied in (Frank, Do and Tran 2016) for
which the best resolution approach so far on the proposed
benchmark is a time-indexed Mixed Integer Linear Program
(MILP) formulation. This MILP formulation produces feasi-
ble solutions but is not able to prove optimality or to provide
tight optimality gaps, making it difficult to assess the quality
of existing solutions. In this paper, we first introduce an al-
ternative disjunctive MILP formulation that manages to close
more than half of the instances of the benchmark. This MILP
formulation is then relaxed to provide good bounds on op-
timal values for the unsolved instances. We then propose a
CP Optimizer model that consistently outperforms the orig-
inal time-indexed MILP formulation, reducing the optimal-
ity gap by more than 4 times. This Constraint Programming
(CP) formulation is very concise: we give its complete OPL
implementation in the paper. Some improvements of this CP
model are reported resulting in an approach that produces op-
timal or near-optimal solutions (optimality gap smaller than
1%) for about 80% of the instances. Unlike the MILP formu-
lations, it is able to quickly produce good quality schedules
and it is expected to be flexible enough to handle the changing
requirements of the application.

1 Introduction

A challenging Earth-observing satellite scheduling problem
was recently proposed in (Frank, Do, and Tran 2016). The
problem consists of scheduling observations of a set of dif-
ferent scenes which are parts of oceans bordering the United
States. Those observations are processed by a single dedi-
cated imaging instrument present on the satellite in order to
perform ocean color remote sensing. To achieve this goal,
observations of a given scene must occur multiple times
during the schedule horizon. Different classes of scientific
objectives are considered where ideal temporal separations
between consecutive observations of a given scene are de-
fined depending on the type of instrument used. Times dur-
ing which scenes can be observed are constrained by the
available daylight and by the cloud coverage which changes
throughout the day. In addition, the instrument can scan only
one scene at a time. Scheduling consists of choosing which

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scene to be observed at each time of the day, maximizing the
gains that result from temporal separations lengths, while
satisfying all the constraints.

In (Frank, Do, and Tran 2016), the authors proposed a
Mixed Integer Linear Program (MILP) and a Constraint
Programming (CP) model to tackle this problem. The two
formulations were applied on realistic instances (with real
cloud coverage data). The reported results show that the
MILP model performs better than the CP model in terms of
total gain (objective function). Both MILP and CP models
were solved using CPLEX and CP Optimizer respectively
within a one hour time limit. The authors noticed that the
addressed problems are too large and complex to be solved
to optimality. Another analysis was performed to compare
the quality of the two instruments (FR and COEDI) which
showed that schedules for FR instrument have in general bet-
ter quality than those for COEDI.

In the present paper, we first introduce some concepts
and properties of the problem that will be exploited by our
models. We then present a MILP disjunctive model that is
able to solve more than half of the instances of the GEO-
CAPE scheduling benchmark to optimality. Unfortunately,
this model produces poor quality solutions for the problems
that cannot be solved to optimality. We show how the model
can be relaxed to produce upper bounds for the remaining
challenging problems. These upper bounds are used to eval-
uate and compare the quality of the different solutions. Next,
we describe a new CP model based on the scheduling con-
cepts of CP Optimizer (Laborie 2009). This model is very
concise: we give its complete OPL formulation in the pa-
per. Experiments using the automatic search of IBM ILOG
CP Optimizer 12.7 show that this model consistently outper-
forms the original MILP formulation on the most challeng-
ing instances (optimality gap is divided by a factor greater
than 4) while it produces near-optimal solutions for the other
instances. Building up this basic CP formulation, we present
some improvements that result in a reduction of the opti-
mality gap by a factor greater than 6 compared to the orig-
inal MILP and an approach that produces optimal or near-
optimal solutions (optimality gap smaller than 1%) for about
80% of the instances. Beside pure performance, another ad-
vantage of the CP models is that they can be easily adapted
to handle the changing requirements of the actual applica-
tion.
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2 The GEO-CAPE Scheduling Problem

In this section, we recap the GEO-CAPE observation
scheduling problem originally described in (Frank, Do, and
Tran 2016). We are given a set Ψ of scenes to be observed
and a set of timeslots H representing the schedule horizon.
Each observation of a given scene takes one timeslot. Each
scene i ∈ Ψ is characterized by a baseline (Si

B) and a thresh-
old separation value (Si

T ), together with the schedule quality
values V i

B and V i
T when the separation between two con-

secutive observations of scene i is equal to Si
B and Si

T re-
spectively. This separation value must be always greater or
equal to the minimum baseline separation. More formally,
the value V (d) of two consecutive observations of the same
scene i separated by a duration d such that Si

B ≤ d ≤ Si
T is

defined as:

V (d) = αi · d+ βi (1)

Where:

αi =
V i
T − V i

B

Si
T − Si

B

and βi = V i
B −

(
Si
B ·

V i
T − V i

B

Si
T − Si

B

)

The value V (d) is zero when d > Si
T . Function V (d) is

illustrated in Figure 1.

d0 Si
B Si

T

V (d)
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V i
B

V i
T

Figure 1: Objective value gain V (d) between two consecu-
tive observations as a function of separation time d

The objective considered in the GEO-CAPE scheduling
problem is to maximize the total gain generated from con-
secutive observations. Note that the first observation of a
scene does not provide any gain by itself.

Scenes are not always observable. The available daylight
and the cloud coverage of a scene i ∈ Ψ are translated into
a set of observable timeslots Ci ⊂ H . Each observation of
scene i must be scheduled at a timeslot belonging to Ci.

Finally, the instrument can observe only one scene at a
time so all observations must be scheduled at different times-
lot.

An example solution for an instance of the GEO-CAPE
scheduling problem is shown in Figure 8 where each scene
is represented by an horizontal line. The scheduled obser-
vations appear as solid squares whereas empty squares rep-
resent the possible timeslots. In this instance [Si

B , S
i
T ] =

[8, 16] and [V i
B , V

i
T ] = [0.6, 1.0], so for example the separa-

tion time between the first two observations of the first scene
on the top is 16 (equal to Si

T ) so it contributes with a value
V i
T = 1.0 to the total gain. The very last line represents the

union of all scheduled (non-overlapping) observations.

3 Problem Properties
In a solution, for a given scene with n observations, let aj
denote the timeslot of the jth observation (1 ≤ j ≤ n). For
1 ≤ s ≤ e ≤ n, we denote a[s,e] = [as, as+1, ..., ae] the
ordered set of successive observations between as and ae.

Informally speaking, we say that a set of successive ob-
servations a[s,e] is a train of observations if all separation
times between successive observations in the set contribute
with a strictly positive value. We say that a[s,e] is a block of
observations if it is a maximal train in the sense of inclusion.
A block of cardinality 1 is called an isolated observation.
Definition 1 (Train of observations) Given a schedule of
consecutive observations (aj)j∈[1,n] for a given scene, a
subset of consecutive observations a[s,e] with 1 ≤ s ≤ e ≤
n is said to be a train if and only if:

(s = e) ∨ (∀j ∈ [s+ 1, e], SB ≤ aj − aj−1 ≤ ST )

Definition 2 (Block of observations) Given a schedule of
consecutive observations (aj)j∈[1,n] for a given scene, a
train of observations a[s,e] with 1 ≤ s ≤ e ≤ n is said to be
a block if and only if it satisfies the 2 following conditions:

(s = 1) ∨ (as − as−1 > ST )

(e = n) ∨ (ae+1 − ae > ST )

Definition 3 (Isolated observation) An isolated observa-
tion is a block of observations of cardinality 1.

Isolated observations and blocks are illustrated in Figure
2 for a scene with ST = 5. Observations are depicted with
squares, the number under each observation represents its
date. In this solution, a5 is an isolated observation as its sep-
aration times with the previous observation (19-13=6) and
with the next observation (26-19=7) are both greater than
ST = 5. Besides the isolated observation a[5], this solution
has 2 observation blocks of cardinality greater than 1: a[1,4]
and a[6,7]

a1 a2 a3 a4 a5 a6 a7

0 5 9 13 19 26 30

Figure 2: Isolated observations and blocks in a solution for
a given scene

Proposition 1 (Isolated observations uselessness) Let
S be a feasible solution of the GEO-CAPE scheduling
problem. Removing all isolated observations from S results
in a feasible solution with the same objective value.

The proof is trivial. A corollary of this proposition is that
a constraint forbidding the presence of isolated observations
can be added as a dominance rule in the model (Jouglet
and Carlier 2011). In the sequel of the paper we suppose all
trains and blocks of observations have a cardinality greater
than 1.
Proposition 2 (Value of a train of observations) Let a[s,e]
with s ≤ e be a train of observations for scene i. The total
value of the train only depends on its duration d = ae − as
and its cardinality c = e− s+ 1 :

V (a[s,e]) = αi · d+ βi · (c− 1)
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The proof is a direct consequence of the linearity of the
formula for V(d) in Equation 1. In particular, the proposition
shows that the total value of the train does not depend on the
position of the observations aj with s < j < e inside the
train.

For a scene i, we can notice that if there exist some non-
observability time window of length greater than Si

T , then
the scene can be decomposed into two different sub-scenes
without impacting the solutions of the problem. This corre-
sponds to the notion of pseudo-scene formalized below. Fur-
thermore, any scene i such that max(Ci)−min(Ci) < Si

B
can clearly be ignored as it does not provide enough separa-
tion time to accommodate more than an isolated observation.

If C is a non-empty ordered set of integers, we denote:
|C| its cardinality and for all k in [1, |C|], C[k] denotes the
kth element of C.

Definition 4 (Pseudo-scene) Let Ci be the ordered set of
timeslots of scene i and Πi = (Ci

1, ..., C
i
p) the unique parti-

tion of Ci such that:

∀j ∈ [1, p], ∀k ∈ [1, |Ci
j | − 1], Ci

j [k + 1]− Ci
j [k] ≤ Si

T

∀j ∈ [1, p− 1], Ci
j+1[1]− Ci

j [|Ci
j |] > Si

T

Each element Ci
j of the partition Πi such that max(Ci

j) −
min(Ci

j) ≥ Si
B defines a pseudo-scene (i, j) where the set

of timeslots Ci of the original scene i is replaced by Ci
j .

Proposition 3 (Decomposition in pseudo-scenes) The
original problem is equivalent to the problem where each
scene i is replaced by the set of pseudo-scenes (i, j) derived
from scene i.

The proof relies on the fact that a gap of length greater
than Si

T between consecutive timeslots of a given scene i
cannot be overlapped by any train of observations: any fea-
sible solution to the original problem is a feasible solution
to the decomposed problem and vice-versa. Furthermore as
separation times greater than Si

T do not bring any gain, the
decomposition does not impact the objective value.

As an illustrative example, if we consider the third
last scene depicted in Figure 8, looking at the ac-
tual data we would see that the original timeslots
for this scene are the four observability intervals
{[13, 24], [33, 88], [122, 185], [210, 218]}. For this scene
we have [Si

B , S
i
T ] = [8, 16]. The non-observability

gaps between possible observation intervals [33, 88] and
[122, 185] (gap=33) and between possible observation
intervals [122, 185] and [210, 218] (gap=24) are both larger
than Si

T thus the scene would be decomposed into three
pseudo-scenes with respective observability windows:
{[13, 24], [33, 88]}, {[122, 185]} and {[210, 218]}. None of
these pseudo-scenes can be eliminated because they all span
an interval larger than Si

B = 8. In the depicted solution, no
observations are scheduled for this scene.

4 Optimal solutions and Upper bounds

In the original paper, the authors mention the possibility of
modeling the problem as a disjunctive MILP (Ku and Beck

2016). We present such a model in the first part of this sec-
tion. As we will see, this MILP turns out to be efficient
enough to solve the easiest instances to optimality (mainly,
the ones related with the FR instrument) but it provides poor
quality solutions for the other problems. In the second part
of the section we show how this model can be exploited to
compute upper bounds for the unsolved instances.

4.1 A disjunctive MILP model

The model exploits proposition 3: the original scenes of the
problem are decomposed into a set of pseudo-scenes. By
abuse of notation, we denote Ψ the set of all the pseudo-
scenes and, for a pseudo-scene i ∈ Ψ, Ci denotes the times-
lots within the schedule horizon H where pseudo-scene i is
observable.

The set of non-observable timeslots of a pseudo-scene i is
the set C̄i defined as:

C̄i =
[
min(Ci),max(Ci)

] \ Ci

This set can be expressed as a set of maximal contiguous
intervals of non-observability NoObsi.
Ai denotes the set of possible observations of pseudo-

scene i. As in the original MILP, the bound we use for the
number of observations is :

|Ai| =
⌊
max(Ci)−min(Ci)

Si
B

⌋

A∗i denotes the set of all possible observations of pseudo-
scene i except the last one.

The following decision variables are used in the disjunc-
tive MILP formulation:

• oi,j : A binary variable indicating that the j th observation
of pseudo-scene i is processed.

• bi1,j1;i2,j2 : A binary variable indicating that observation
j1 of pseudo-scene i1 occurs before observation j2 of
pseudo-scene i2.

• bi,j;k: A binary variable indicating that observation j of
pseudo-scene i occurs before1 the kth interval of non-
observability in NoObsi.

• ti,j : An integer variable indicating the timeslot value of
the jth observation of pseudo-scene i.

• di,j : An integer variable indicating the separation time
between the j th and the j + 1th observation of pseudo-
scene i.

• zi,j : A binary variable indicating that di,j ≤ Si
T .

• vi,j : The gain variable resulting from separation di,j .

Figure 3 shows the disjunctive MILP model for the GEO-
CAPE scheduling problem. The objective is to maximize the
sum of total gains of observations on each pseudo-scene.
Non-overlapping of observations between scenes is formu-
lated by the disjunctive constraints (1) and (2) for each pair
of observations belonging to different pseudo-scenes that

1The two variables bi1,j1;i2,j2 and bi,j;k have been chosen with
the same name because of their similar semantics.
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max
∑

i∈Ψ

∑

j∈A∗
i

vi,j

ti1,j1 ≥ ti2,j2 + oi2,j2
− |H| bi1,j1;i2,j2 ∀i1, i2 ∈ Ψ, i1 �= i2,

Ci1 ∩ Ci2 �= ∅,
∀j1 ∈ Ai1 , ∀j2 ∈ Ai2 (1)

ti2,j2 ≥ ti1,j1 + oi1,j1
− |H| (1− bi1,j1;i2,j2) ∀i1, i2 ∈ Ψ, i1 �= i2,

Ci1 ∩ Ci2 �= ∅,
∀j1 ∈ Ai1 , ∀j2 ∈ Ai2 (2)

ti,j ≥ min(Ci) ∀i ∈ Ψ, ∀j ∈ Ai (3)

ti,j ≤ max(Ci) ∀i ∈ Ψ, ∀j ∈ Ai (4)

ti,j > max(NoObsi [k])(1− bi,j;k) ∀i ∈ Ψ, ∀j ∈ Ai,

∀k ∈ NoObsi (5)

ti,j < min(NoObsi [k])bi,j;k
+ |H| (1− bi,j;k) ∀i ∈ Ψ, ∀j ∈ Ai,

∀k ∈ NoObsi (6)

ti,j+1 ≥ ti,j + Si
B · oi,j+1 ∀i ∈ Ψ, ∀j ∈ A∗

i (7)

oi,j ≥ oi,j+1 ∀i ∈ Ψ, ∀j ∈ A∗
i (8)

di,j ≥ 0 ∀i ∈ Ψ, ∀j ∈ A∗
i (9)

di,j ≤ |H| oi,j+1 ∀i ∈ Ψ, ∀j ∈ A∗
i (10)

di,j = ti,j+1 − ti,j ∀i ∈ Ψ, ∀j ∈ A∗
i (11)

di,j ≤ Si
T · zi,j + |H| (1− zi,j) ∀i ∈ Ψ, ∀j ∈ A∗

i (12)

di,j ≥ Si
T · (1− zi,j) ∀i ∈ Ψ, ∀j ∈ A∗

i (13)

vi,j ≤ V i
T · zi,j ∀i ∈ Ψ, ∀j ∈ A∗

i (14)

vi,j ≤ V i
T · oi,j+1 ∀i ∈ Ψ, ∀j ∈ A∗

i (15)

vi,j ≤ V i
B + |H| (1− zi,j)

+ (di,j − Si
B) · V

i
T − V i

B

Si
T − Si

B

∀i ∈ Ψ, ∀j ∈ A∗
i (16)

Figure 3: A disjunctive MILP model for the GEO-CAPE
scheduling problem

have some common timeslots. Remark that if one of the two
observations is not scheduled (for instance oi2,j2 = 0), the
constraints make it possible to select a value for bi1,j1;i2,j2
that permit simultaneity ti1,j1 = ti2,j2 . Constraints (3) and
(4) state the time window for each pseudo-scene i. Dis-
junctive constraints (5) and (6) forbid observations to oc-
cur within non-observability intervals. Constraint (7) guar-
antees the minimum baseline separation between two con-
secutive observations when both are executed. Constraint (8)
enforces that observation oi,j will be executed if at least j
observations of pseudo-scene i are made. Possible values of
separation time are stated in constraints (9) and (10), and
its expression is defined by constraint (11). Note that con-
straint (10) enforces that the time value of all absent obser-
vations for a given pseudo-scene is equal to the time of the

last executed observation. Constraints (12) and (13) are used
to calculate zi,j corresponding to its definition. Constraints
(14-16) calculate the vi,j values.

Disjunctive MILP evaluation: The performance of this
model was evaluated on the GEO-CAPE benchmark (NASA
2016) using CPLEX V12.7. It could solve to optimality 25
out of the 44 instances of the benchmark within the 1 hour
time limit (20/22 on the FR instrument, 5/22 on the COEDI
one). The disjunctive formulation works well when the non-
overlapping constraint between the observations is not the
main bottleneck. This is not the case for the instances us-
ing the COEDI instrument and for these problems we ob-
served that except for the five ones that are solved to op-
timality, very poor solutions are produced by the disjunc-
tive MILP (usually worse than the ones of the original time-
indexed MILP). Furthermore, the disjunctive formulation is
not straightforward and would be hard to adapt to the chang-
ing requirements of the real-life application. Even if this dis-
junctive formulation cannot be considered as an efficient and
robust enough candidate for producing good quality sched-
ules, it still can be relaxed to produce tight upper bounds for
all problems as described below.

4.2 Upper bounds derived from the disjunctive
MILP model

The major source of complexity of the disjunctive MILP
model is related with constraints (1) and (2). These non-
overlapping constraints can be relaxed by using some form
of energetic reasoning (Lopez and Esquirol 1996). If we
know an upper bound NbMaxObs on the number of obser-
vations that can be scheduled in the time horizon, we can
replace constraints (1) and (2) by this relaxation:

∑
i∈Ψ

∑
j∈Ai

oi,j ≤ NbMaxObs (17)

For computing such an upper bound NbMaxObs, we
adapted the original time-indexed MILP model with the two
following changes:

• Change the objective function so as to maximize the num-
ber of scheduled observations

• Add a constraint that forbids isolated observations (see
proposition 1)2

The optimal solution to this adapted formulation is clearly
an upper bound on the number of schedulable observations.
It turns out that this adapted formulation can be solved to
optimality for all instances in reasonable time. The value for
NbMaxObs is then used by the relaxed disjunctive MILP
consisting of constraints (3-17). These relaxed disjunctive
formulations can also all be solved in reasonable time (less
than 2 mn), producing the upper bounds shown in Figure 6.

2We experimented with a version of the original time-indexed
MILP (using the original objective function) with this additional
dominance rule but it did not result in significant improvements.
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5 CP Optimizer model

In this section we describe a CP Optimizer model for the
GEO-CAPE scheduling problem. This model is seldom able
to produce optimality proofs but we will show that it con-
sistently provides solutions of excellent quality. Another ad-
vantage of this model is that it can be easily adapted to han-
dle the changing requirements of the actual application.

5.1 Basic model

Figure 4 shows a complete CP Optimizer model for the
GEO-CAPE scheduling problem written in OPL (Van Hen-
tenryck 1999), version 12.7. This model has some similar-
ities with the CP formulation used in (Frank, Do, and Tran
2016) but it also has some important differences that we will
highlight after presenting the model and its results.

1 using CP;
2 int SB = ...; int ST = ...;
3 float VB = ...; float VT = ...;
4 float A = (VT-VB) / (ST-SB);
5 int n = ...;
6 {int} T[1..n] = ...;
7 int TL = min(i in 1..n, t in T[i]) t;
8 int TU = max(i in 1..n, t in T[i]) t;
9 int m = (TU-TL) div SB;
10
11 pwlFunction V = piecewise{ A->ST; -VT->ST+1; 0 } (SB,VB);
12 stepFunction NoObs[i in 1..n] =
13 stepwise(t in TL-1..TU) { (t in T[i]) -> t+1; 0 };
14
15 dvar interval a [1..n, 1..m+1] optional size 1;
16 dvar interval s [1..n, 1..m] optional;
17 dvar interval sv[1..n, 1..m] optional size SB..ST;
18 dvar interval s0[1..n, 1..m] optional size ST+1..TU;
19
20 maximize sum(i in 1..n, j in 1..m) lengthEval(s[i,j], V);
21 subject to {
22 forall(i in 1..n, j in 1..m+1) {
23 if (j < m+1) {
24 presenceOf(a[i,j+1]) == presenceOf(s[i,j]);
25 startAtStart(a[i,j], s[i,j]);
26 endAtStart(s[i,j], a[i,j+1]);
27 alternative(s[i,j], append(sv[i,j], s0[i,j]));
28 if (j == 1) {
29 presenceOf(a[i,j+1]) == presenceOf(a[i,j]);
30 !presenceOf(s0[i,j]);
31 } else {
32 presenceOf(a[i,j+1]) => presenceOf(a[i,j]);
33 presenceOf(s0[i,j-1]) => presenceOf(sv[i,j]);
34 }
35 }
36 forbidExtent(a[i,j], NoObs[i]);
37 }
38 noOverlap(a);
39 }

Figure 4: Complete CP Optimizer model for the GEO-CAPE
scheduling problem

The model at line 1 states that it is a CP model. Lines 2-
9 read data and compute the value slope (A) and an upper
bound on the number of observations per scene (m). It is to
be noted that in the instances of the benchmark, the param-
eters Si

B , Si
T , V i

B and V i
T do not depend on the scene i, they

are the same for all scenes of the instance. The value gain

0 SB ST

s[i,j]

s0[i,j]

sv[i,j]

A
lt

er
na

ti
ve

s

s[i,j+1]

s0[i,j+1]

sv[i,j+1]
A

lternatives

a[i,j] a[i,j+1]

startAt Start end AtStart

Figure 5: Constraints between consecutive observations in
the CP Optimizer model

function V of Equation 1 and Figure 1 is defined at Line 11
as a piecewise linear function. Lines 12-13 define, for each
scene i, a step function NoObs[i] with value 0 when the
scene is not observable and value 1 otherwise.

Decision variables of the problem are defined in Lines
15-18. Most of the constraints between these variables are
illustrated in Figure 5. For a scene i, the jth observation is
modeled by an optional interval variable a[i,j] (Line 15).
The separation time between the jth and j+1th observation
is represented by an optional interval variable s[i,j] (Line
16) that is constrained to start at the start date of a[i,j]
(Line 25) and end at the start date of a[i,j+1] (Line 26).
Two situations are possible for this separation time: it ei-
ther lasts for less than ST and in this case it will produce
some gain or, it lasts for more and will not produce any gain.
These two situations are modeled by two interval variables
sv[i,j] and s0[i,j]: the possible length of sv[i,j] is in
[SB,ST] (Line 17) while the possible length of s0[i,j] is
greater than ST (Line 18). The alternative choice between the
two intervals is posted as an alternative constraint (Line
27). Constraint at Line 32 states that a[i,j] is present if at
least j observations are made on scene i while constraint at
Line 24 enforces that the separation intervals s[i,j] before
the last observation are all present. Constraints at lines 29,
30 and 33 enforce the dominance rule that forbid the pres-
ence of isolated observations. Line 33 says that a separation
interval that does not produce any gain (s0[i,j-1]) must
be followed by a separation interval that produces some gain
(sv[i,j]) as otherwise, observation a[i,j] would be iso-
lated. Line 29 says that it is not allowed to have a scene with
a unique (necessarily isolated) observation and Line 30 tells
that the first observation cannot be isolated. Finally, con-
straint at Line 36 enforces that if an observation is made,
it must be made at a timeslot where the scene is observable
and Line 38 ensures that none of the observations are per-
formed at the same time. The objective function (Line 20)
is to maximize the total gain, that is the sum of the value of
piecewise linear function V evaluated on the length of sepa-
ration intervals s[i,j].
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Model evaluation: The performance of this model was
evaluated on the GEO-CAPE benchmark using the auto-
matic search of CP Optimizer V12.7 (no parameter change)
in similar conditions as the empirical evaluation in the origi-
nal paper: one hour time limit on a similar (although slightly
slower) machine. The instances involve between 932 and
5511 interval variables. Figure 6 shows the average gain ob-
tained by the model of Figure 4 (Basic CPO), when run on
each instance with 10 different random seeds3, compared to
the gain of the original MILP model proposed in (Frank, Do,
and Tran 2016) (Original MILP). Except for the FR instru-
ment where all the methods, including the original MILP,
find optimal or very good solutions, one sees that the ba-
sic CP Optimizer model consistently outperforms the origi-
nal MILP. On the COEDI instrument, the average optimality
gap of the basic CP Optimizer model is 3.78% compared to
a gap of 18.42% for the original MILP. On this instrument,
the improvement is particularly important for the months
4,5,6,8,9,10. Furthermore, the model is robust as the aver-
age ratio of the standard deviation of the gain (among the
10 random seeds) to the upper-bound is about 1% only for
the COEDI instrument. Another advantage of this model is
its capability to quickly produce good quality solutions as
illustrated on a representative instance in Figure 7. We tried
the same model without enforcing the property of useless-
ness of isolated observations (lines 29, 30 and 33): the re-
sults were slightly worse but still clearly better than the ones
of the original time-indexed formulation.

Discussion: In the original paper, a CP formulation was
proposed that did not work as well as the original MILP. The
basic CP Optimizer model described in the present paper dif-
fers from this original CP formulation in that it exploits es-
sential features of the CP Optimizer modeling concepts for
scheduling. In particular optional interval variables are used
for representing the separation times. Direct constraints can
be posted on these optional interval variables instead of com-
posite constraints4 or constraints à-la MILP involving “big
M’s”. Looking at the model of Figure 4, the only composite
constraints are the ones of Lines 24, 29, 32 and 33. These
constraints are logical binary constraints between presence
status of interval variables that are efficiently handled by the
logical network of CP Optimizer and exploited to perform
propagation on conditional domains (start, end) of interval
variables even when the presence status is still unfixed (La-
borie and Rogerie 2008). The objective function is also di-
rectly formulated on the interval variables thanks to the eval-
uation of the interval length on a piecewise linear function
(Line 20); this type of function is efficiently exploited by the
temporal linear relaxation used to guide the search (Laborie

3CP Optimizer uses a stochastic search algorithm. We measure
the robustness of the engine on an instance by running the search
with different random seeds and analyzing the distribution of the
objective function value.

4Composite constraints are logical or arithmetical combinations
of constraints like ct1 ∨ ct2. In CP these constraints are known
to result in quite loose constraint propagation unless specifically
handled by the CP engine (Barták, Salido, and Rossi 2010).

and Rogerie 2016). One last difference5 is that the original
CP formulation seems to over-constrain the problem by en-
forcing a single block of observations per scene (constraint
16 in the model) but it does not prevent isolated observa-
tion. On the contrary, our formulation allows for more than
one block but, as a legal dominance rule, prevents isolated
observations. Compared to the MILP models (both the orig-
inal model and the disjunctive one described in this paper),
the CP formulation is more flexible due to the expressivity
of CP and can for instance be easily extended to handle ob-
servations with non-unit durations (change the unit size at
Line 15) or observations that can be performed according to
several alternative modes (create some alternative between
the observations variables a[i,j] and a set of additional
optional variables am[i,j,k] for each mode k). Sequence-
dependent setup times between observations could easily be
modeled by adding a transition matrix in the noOverlap
constraint at line 38. In the context of rescheduling, freezing
some decisions of the current schedule (like keeping some
scheduled observations and preventing the degradation of
their gain) is easy to model as additional constraints.

5.2 Advanced model

While the basic CP Optimizer model of Figure 4 performs
remarkably well compared to the original MILP, we investi-
gated the following additional improvements.

Decomposition in pseudo-scenes: Following proposition
3, we automatically decompose the scenes of the original
problem into a set of pseudo-scenes. This decomposition re-
duces the length of the implication chains (produced by the
constraints at Line 32) which is an element contributing to
the complexity of the model.

Maximal number of observations per pseudo-scene:
For simplicity reasons, the basic model computes a maxi-
mal number of observations that is global to all the scenes
(Line 9). In the advanced model, this maximal number of
observation is computed individually for each pseudo-scene.
This results in a smaller number of defined interval variables
(about half less variables in the benchmark).

A two-stage resolution approach: The objective function
of the basic model (Line 20) clearly is not convex due to the
shape of function V . The temporal linear relaxation will au-
tomatically convexify it (Laborie and Rogerie 2016) but this
will result in some loose relaxations that may impact the per-
formance of the search. Instead, the advanced CP Optimizer
model solves the problem in two stages:

1. In a first stage, a surrogate convex objective function is
used in place of the original objective. Proposition 2 sug-
gests that the total length of the productive separation
times (so the total length of the trains of observations) can
be considered as a good approximation of the gain value
(specially when βi is small). So the original objective
function is replaced by sum(i,j) lengthOf(sv[i,j]).

5The impact of this last difference in terms of performance is
less significant according to our experiments
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Figure 6: Schedule quality comparisons of the different approaches for Survey (left graphs) and Targeted science (right graphs)
instances. Top graphs are instances using the FR instrument while bottom graphs are the ones using COEDI.
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Figure 7: Typical convergence of the basic CP Optimizer
model on an instance (here: COEDI Targeted, Month=4)

2. The second stage uses the original objective function. The
best solution found in the first stage is re-injected as warm
start into the second stage by using the CP Optimizer con-
cept of a starting point (IBM 2016).

Advanced model evaluation: In the evaluation of the ad-
vanced approach we split the one hour time limit into 30
minutes for the first stage and 30 minutes for the second.
Both stages are solved using the automatic search of CP Op-
timizer V12.7. In a preliminary study, we noticed that all
three modifications of the basic CP model contribute to the
performance improvements. We summarize in Figure 6 the
results using the conjunction of the three modifications, av-
eraged over 10 random seeds. We see that the advanced CP

Optimizer approach generally improves the results of the ba-
sic CP Optimizer model. On the COEDI instrument, the av-
erage optimality gap of the advanced CPO model is 2.72%
compared to a gap of 3.78% for the basic model and 18.42%
for the original MILP. Globally, this advanced model finds
optimal or near-optimal solutions (optimality gap smaller
than 1%) for about 80% of the instances (35 out of 44).

Schedule efficiency: In the original paper, besides the to-
tal gain, the authors also analyze the solutions in terms of
efficiency which is defined as the ratio between the num-
ber of scheduled observations and the number of available
timeslots. This indicator is particularly relevant in case we
forbid non-isolated observations in the solution as these ob-
servations do not bring any gain6. Intuitively, good quality
solutions will tend to schedule as many non-isolated obser-
vations as possible. Interestingly, we know for each instance
the maximal number of schedulable non-isolated observa-
tions (see subsection on upper bounds) so we can compute
the ratio between the number of scheduled observations and
this theoretical maximum. For instance on the solution of
Figure 8, 233 observations are scheduled whereas the the-
oretical maximal number of schedulable non-isolated ob-
servations is 235 and the number of timeslots is 263. This

6We conjecture that this is a reason why some solutions of the
original MILP with a good efficiency turn out to be rather poor
in terms of gain as they contain many isolated observations. For
example the efficiency of COEDI Targeted Month=6 exceeds 90%
for a gain of 144.2 whereas we can produce a much better solution
of gain 209.3.
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Figure 8: Example of a solution produced by CP Optimizer for instance COEDI Targeted, Month=9

means that most of the timeslots where no observation is
performed (last line of the figure) are unavoidable. For in-
stance, it is not possible to schedule two observations at the
two first timeslots of the schedule: they belong to a unique
scene and the two observations on this scene would not re-
spect the minimal separation time. Similarly, the gaps in the
very end of the schedule are due to the fact there are only
two scenes in this region. For all the instances of the bench-
mark, our solutions always schedule more than 99% of the
maximal number of schedulable non-isolated observations.

6 Conclusion

This paper presents new results on the GEO-CAPE Obser-
vation Scheduling Problem introduced in (Frank, Do, and
Tran 2016). In order to estimate and compare the quality of
existing and new solutions, we first presented a disjunctive
MILP model. This formulation solves more than half of the
instances of the benchmark and can be relaxed to provide
interesting upper bounds for the other problems. We then
described a concise and efficient CP formulation. This for-
mulation is a very good example of how to leverage the CP
Optimizer concepts for scheduling, in particular the central
one of optional interval variables. It results in a model with-
out reified constraints that gives the CP engine a direct grip
on the structure of the problem. A slightly improved ver-
sion of this basic CP model is able to produce optimal or
near-optimal solutions (optimality gap smaller than 1%) for
about 80% of the instances. On the most challenging family
of problems (COEDI instrument), the average gap is reduced
to 2.72% compared to 18.42% for the existing solutions. In-
terestingly, because of the better quality schedules produced
for the COEDI instrument, the difference of performance be-
tween the two instruments reported in (Frank, Do, and Tran
2016) is slightly re-equilibrated in favor of COEDI. Even
if FR still dominates COEDI for the Targeted science prob-
lems, we see in Figure 9 that the two instruments are equiv-
alent for the Survey science ones.

An advantage of the CP model is its flexibility to cope
with the changing requirements and possible changes of
the scope of the application: different observation durations,
multi-mode (Weglarz et al. 2011), sequence-dependent setup
times (Allahverdi et al. 2008), rescheduling, etc. In the fu-
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Figure 9: Comparison of schedule scores for FR and COEDI
instruments

ture it would be interesting to study these developments.
Another extension would be to improve the upper bounds
by considering the interactions between the separation times
and the non-overlapping of observations, for instance it is
not possible to have more than ST trains of observations si-
multaneously executing in the schedule. We conjecture that a
non-negligible part of the optimality gap is due to the weak-
ness of the upper bounds and that the solutions of the CP Op-
timizer model are closer to the optimal value than the current
gap would suggest.
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