
Augmenting Decisions of Taxi Drivers through
Reinforcement Learning for Improving Revenues

Tanvi Verma, Pradeep Varakantham, Sarit Kraus,† Hoong Chuin Lau
School of Information Systems, Singapore Management University, Singapore

†Department of Computer Science, Bar-Ilan University, Israel
tanviverma.2015@phdis.smu.edu.sg, pradeepv@smu.edu.sg, sarit@cs.biu.ac.il, hclau@smu.edu.sg

Abstract

Taxis (which include cars working with car aggregation sys-
tems such as Uber, Grab, Lyft etc.) have become a critical
component in the urban transportation. While most research
and applications in the context of taxis have focused on im-
proving performance from a customer perspective, in this pa-
per, we focus on improving performance from a taxi driver
perspective. Higher revenues for taxi drivers can help bring
more drivers into the system thereby improving availability
for customers in dense urban cities.
Typically, when there is no customer on board, taxi drivers
will cruise around to find customers either directly (on the
street) or indirectly (due to a request from a nearby customer
on phone or on aggregation systems). For such cruising taxis,
we develop a Reinforcement Learning (RL) based system to
learn from real trajectory logs of drivers to advise them on
the right locations to find customers which maximize their
revenue. There are multiple translational challenges involved
in building this RL system based on real data, such as anno-
tating the activities (e.g., roaming, going to a taxi stand, etc.)
observed in trajectory logs, identifying the right features for
a state, action space and evaluating against real driver perfor-
mance observed in the dataset. We also provide a dynamic
abstraction mechanism to improve the basic learning mech-
anism. Finally, we provide a thorough evaluation on a real
world data set from a developed Asian city and demonstrate
that an RL based system can provide significant benefits to
the drivers.

1 Introduction

Taxis are an important part of urban transportation. With the
rapid development of information technology, sensing and
networking technologies are widely used in transportation
systems. Each taxi’s status and its Global Positioning Sys-
tem (GPS) location can be collected in real time. In fact, re-
lying on these advances, aggregation systems such as Uber,
Grab, Lyft etc. have been able to activate more cars that act
like taxis thereby significantly improved customer experi-
ence by reducing wait times and increasing availability. In
this paper, we focus on further improving performance (in
terms of revenues earned) from a driver’s perspective by us-
ing current and past movement trajectories and trips.

Recently, driver-less taxis (Reuters 2016; Straitstimes
2016) have been introduced for public trials in the US and
several Asian cities. The vision is to have self-driving taxi

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fleets. This also serves as another motivation for pursuing
this research from the perspective of taxis, as there would
be no human intuition to continuously adapt to changing de-
mand patterns.

Generally taxis roam around when they do not have a
customer on board and this is referred to as ”cruising”. A
cruising taxi can potentially find customers either directly
(on streets) or indirectly (due to being in close proximity to
customers who put in a call/request to taxi companies or taxi
aggregation systems). In both cases, it is imperative for the
taxi to be in the ”right” location at the ”right” time to reduce
cruising time and increase revenue. Our focus in this paper is
on developing a Reinforcement Learning (RL) approach that
will provide guidance to cruising taxi drivers on the ”right”
locations to be at different times of the day on different days
of the week so as to maximize long-term revenue.

RL is an ideal approach for this problem because: (a)
Maximizing the long term revenue by finding customers dur-
ing cruising requires making a sequence of decisions (ex:
wait in current zone for 5 minutes, if no customer found,
wait for 5 more minutes and if you cannot still find a cus-
tomer move to zone B) ; (b) Reinforcements are well de-
fined, i.e., the sum of revenue earned from a customer (if
customer on board) and cost from travelling between loca-
tions; (c) Customer demand is uncertain and RL approaches
can capture such uncertainty quite well; and finally (d) Be-
cause of its learning focus, RL can adapt to any changes in
demand patterns.

However, employing an RL approach that learns from tra-
jectory data of taxis requires the presence of well defined
state and action spaces. Furthermore, those state and action
spaces should be populated directly from reading the data.
Because of these requirements, there are multiple transla-
tional challenges involved in applying RL for this problem
at city scale:
• Typically in spatio-temporal problems, an abstraction

(grouping) of locations and time is employed as the state
space. For the problem of interest in this paper, such
an abstraction can work for representing the state space;
however, the ”goodness” of the selected abstraction is not
easy to ascertain. The effectiveness of abstraction is de-
pendent on value of learned policy and learned policy is
dependent on abstraction.

• Another challenge is with respect to understanding ac-
tions of drivers from the data, specifically when they are
cruising. There can be multiple data points that are com-

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

409



bined to retrieve one action and in many cases there can be
multiple interpretations to drivers’ action during ”cruis-
ing”, such as wandering around in circles, going to a taxi
stand, going to a specific street, etc.

• RL relies on learning not just from single decisions but
from a sequence of decisions. Therefore, the data needs
to be annotated appropriately (with states, actions and re-
inforcements) and then condensed into learning episodes.

• The final challenge is evaluation. While performing hu-
man experiments with actual drivers would be the ideal
case, due to the capital intensive nature of such experi-
ments, it is not feasible to consider many drivers. There-
fore, we provide a detailed simulator that allows perfor-
mance comparison of actual drivers (using human intu-
ition) and our agent that uses RL.

This paper addresses the above mentioned challenges by
making the following contributions:

• We provide an annotation procedure that annotates the tra-
jectory data with the decision taken by the taxi driver. This
procedure also compactly represents annotated data as an
activity graph for each cruising trajectory.

• We first employ a Monte Carlo RL method to learn from
the activity graphs by computing a static abstraction ob-
tained by using clustering.

• To account for the cyclic dependence between state ab-
straction and learned policy, we provide an iterative ab-
straction approach that continually improves abstraction
based on the learned information.

• Finally, we propose an evaluation method and use real
data set to evaluate our policy. We also compare our policy
with an experimental heuristic policy to represent simple
policies that can be employed by taxi drivers.

Experimentally, we found that RL is effective and except
in one time interval (evening peak hour), the average rev-
enue earned by the learned policy is better than the top 10
percentile revenue among all the drivers. For some time in-
tervals the agent performance is better than top 1 percentile
revenue among all the drivers. Though we employ the rev-
enue maximization objective, we show that taxi utilization
also increases significantly.

2 Related Work

There are two categories of research relevant to the work
presented in the paper: (a) Taxi guidance; and (b) Reinforce-
ment Learning.

Taxi Guidance Taxi guidance has been studied exten-
sively in the literature. Qu et al. (Qu et al. 2014) employs
pick-up probability to recommend a driving route to driver
for profit maximization. Similarly, Hou et al. (Hou et al.
2013) suggests cruising route to vacant taxis such that the
overall vacancy time is minimized. (Yuan et al. 2011b) use
driver’s experience to find parking spots for a cruising taxi.
Yuan et al. (Yuan et al. 2011a) employ taxi trajectories to
learn traffic patterns and estimate travel time. (Powell et al.
2011) recommends locations for taxi drivers by constructing

a spatio-temporal profitability map of surrounding regions
of the driver and computing potential profit using historical
data.

While all these approaches are closely relevant, there are
multiple key differentiating aspects to this paper:

• Unlike many of the existing approaches which rely on
heuristics (e.g., low profitability regions, low vacancy
rates) to myopically optimize revenue, we provide a for-
mal learning approach that considers long term revenue.

• Taxi driver behaviour is inherently represented within the
RL approach, so any preferences (with respect to areas)
are inherently captured.

• Unlike existing approaches, RL approach relies on past
experiences and not just on aggregate statistics from the
data.

Wang et el. (Wang and Lampert 2014) also employed an
RL approach to improve taxi revenue but only from taxi trip
data (and not from taxi trajectory data). Due to learning from
trip data, they are forced to make many approximations on
movement between trip end and trip start events. In addition,
our abstraction method is a key differentiator.

Reinforcement Learning RL can be broadly divided into
two classes, model-based learning and model-free learn-
ing. Model-based methods require a model of transition
probabilities and the reward function to compute values
of states. There are many existing works which deal with
learning transition and reward models (Schneider 1997;
Chakraborty and Stone 2011; Hester and Stone 2009). How-
ever, as we obtain samples of experience from the dataset,
a model-free learning is more suitable. Temporal Difference
(Tesauro 1995) and Monte Carlo (Sutton and Barto 1998)
methods are well known model-free learning methods. We
use Monte Carlo method to estimate our state-action values.

The problem of dynamically abstracting states has been
studied by a number of researchers. Li et al. (Li, Walsh,
and Littman 2006) provides a list of abstraction techniques
and classify them into five different types of abstraction. Bu-
litko et al. (Bulitko, Sturtevant, and Kazakevich 2005) build
a hierarchy of abstraction levels, explores at each level and
repairs the abstraction during exploration. Andre and Rus-
sell (Andre and Russell 2002) provide a method of safe state
abstraction while maintaining hierarchical optimality. Man-
nor et al.(Mannor et al. 2004) employ a clustering algorithm
to cluster the state space based on computing utility of merg-
ing two neighbors. Jong and Stone (Jong and Stone 2005)
encapsulate states based on policy irrelevance, states with
same optimal action are aggregated.

All the approaches are closely relevant and our iter-
ative dynamic abstraction approach builds on these ap-
proaches. There are two key differences: (a) In all the above-
mentioned works, action space remains constant. However,
in our problem setting, our action space is correlated to the
state space, as actions correspond to ”moving to a certain lo-
cation or state”. When state space is altered during abstrac-
tion, action space also changes. (b) Secondly, our abstraction
approach employs multiple iterations to modify abstractions
based on learned information.

410



Recently, DeepRL has been popular because of its suc-
cess in playing games(Mnih et al. 2013; Silver et al. 2016).
Such approaches are extremely interesting and provide ex-
tremely good results. However, there are two key issues with
respect to applying DeepRL for taxi problem. While this
may change in the future, at present, it seems that Deep RL
is ideally suited for environments where tens of millions of
learning episodes can be obtained on demand. Unfortunately
in the taxi case, we do not have access to a simulator that can
generate many learning episodes quickly and instead has to
follow demand patterns. Also, deep learning is ideally suited
for problem domains where state space has hundreds of fea-
tures (like with image pixels). In our case, the number of
features within the state space is too small (in the order of
10 even if we include other aspects such as revenue earned
so far and other drivers) for deep learning on state space to
be useful.

3 Taxi Dataset
We consider a taxi dataset from a major company in Singa-
pore. Apart from trip1 information, the major component of
the data is the movement logs. Each log entry captures the
following information:

〈
Latitude, Longitude, Taxi ID, Driver ID, Taxi Status

〉

Latitude and longitude provide the GPS coordinates. Since
multiple drivers can drive a single taxi (typically one person
drives the morning shift and one person drives the evening
shift), we have two IDs (Taxi ID and Driver ID) to uniquely
determine the log entry. The log entry also contains differ-
ent states of taxis - free (meter off, actively looking for next
passenger), busy (not accepting bookings), POB(Passenger
On Board) and off-line.

When there is no customer on board a taxi, there is a log
entry for that taxi every 30 seconds. On the other hand if
there is a customer on board a taxi, then there is a log entry
for that taxi every 1 minute. We have this distinction because
there is more important information to be captured about a
cruising taxi than a hired taxi. With more than 20000 unique
drivers, this dataset provides a wealth of information about
cruising taxis.

4 From Taxi Dataset to Driver Activity

Graphs

Before we can learn using RL, we need a representation of
the decisions taken by taxi drivers during cruising. Since
dataset only contains log entries, we have to annotate groups
of log entries as high level decisions (e.g., going to a certain
location). In this section, we describe details on converting
from log entries in data to high level activities.

A ”cruising trajectory” starts when a taxi goes to ”free”
state and ends when it goes to a ”non-free” state (passen-
ger on board, busy, break, off-line, on call etc.). We mine
cruising trajectories of drivers from the dataset and annotate
the trajectories with the decisions made during the course of

1A trip corresponds to movement of taxi from a source to des-
tination with customer on board.

Figure 1: A cruising trajectory which starts at A and termi-
nates at E. B, C and D are intermediate decision coordinates.

trajectory. To explain the details, let us consider the example
trajectory shown in Figure 1, where a taxi driver’s cruising
trajectory started at A and ended at E.

Initially, we start out by assuming that the driver made the
decision to go to E at A itself. Intuitively, if the driver had
made a decision to go to E at A, then he/she would have
chosen a route that is close2 to the shortest path distance
between the two points. In this case, E is not close to the
shortest path distance. So we identify the point on the cruis-
ing trajectory which is close to the shortest path distance to
E. This point is D. We then evaluate if the driver could have
made the decision to go to D at A itself. If not, we identify
the point where the driver decided to go to D, which in this
case happens to be C. We repeat the computation and the
final trajectory is A, B, C, D, E.

As can be noted, this process requires extensive shortest
path computations between different points. In order to per-
form this efficiently, we had to create special data structures
to pre-store shortest path information between points. A typ-
ical cruising trajectory contains 50-100 coordinates in the
real data.

Figure 2: Activity graph for the cruising trajectory displayed
in Figure 1. d1, d2, d3 and d4 are intermediate distances trav-
elled. Nodes contain information about decision time epoch
and GPS coordinate of the node. Terminating node E addi-
tionally stores trip information started there, if any.

Once the data is annotated, we then convert each cruis-
ing trajectory into an activity graph to get a summary view
of driver activities. The activity graph can be viewed as a
directed graph with decision coordinates as nodes. Distance
travelled between the coordinates is treated as weight of the
edge between them. The terminating node of the activity
graph also contains information about revenue earned. If the
trajectory ended with getting a trip, the revenue earned is
equivalent to the fare of the trip minus the cost of travel for

2We allow for a 30% gap from shortest path.

411



the trip. The revenue earned is treated as zero if the trajec-
tory ended without finding a passenger (taxi state changing
to break, busy etc.).

5 RL for Taxi Driver Guidance
We now formulate the problem of assisting a cruising taxi
as an RL problem. In this RL representation, we capture
spatio-temporal aspects in the state space. Specifically, state
is given as follows:

〈
day-of-week, zone, time-interval

〉
(1)

We divide the entire map of Singapore into several zones and
zone division procedures are described in later parts of this
section. Based on traffic intensity, time is divided into 6 time
intervals: 0-6 hours, 6-9 hours, 9-12 hours, 12-17 hours, 17-
20 hours and 20-24 hours. If there are n zones, there are n
actions available to a cruising taxi, i.e., stay in the current
zone or move to remaining n− 1 zones.

5.1 Episodes

For RL to be applied, we convert activity graphs into
episodes. Each node in the activity graph represents a state
and the subsequent node represents the action taken. We use
the zone structure of the map and spatio-temporal informa-
tion present in each node to convert activity graphs into a se-
ries of state-action pairs. The last node of the activity graph
is always considered as terminal state of the episode. The
cost of travel between nodes is determined by applying a
fixed cost per km to the weight of the edge. If the cruising
trajectory ends with finding a passenger, a positive reward
(equivalent to the fare of the trip minus cost to travel the
trip) is awarded.

Equation 2 represents an episode for activity graph shown
in Figure 2. Sx is the state and Zx is the zone of node X ,
Sterm is the terminal state.

(Sa, Zb)
c1−→ (Sb, Zc)

c2−→ (Sc, Zd)
c3−→ (Sd, Ze)

c4,R−−−→ Sterm

(2)

R = fare of trip − cost to travel the trip
ci = di ∗ travelling cost per km

We learn Q values of state-action pairs from episodes.

5.2 Monte Carlo Estimation of Q Values

Monte Carlo (MC) method is a way of solving the reinforce-
ment learning problem based on averaging sample returns.
We use first-visit MC method to estimate the value of a state-
action (s,a) pair (Sutton and Barto 1998). Algorithm 1 pro-
vides the detailed algorithm to compute Q-values and the
best action in each state.

Return of (s,a) pair (Ret(s, a)) in an episode is the cu-
mulative reward accumulated till the end of the episode. For
example in episode mentioned in equation 2, Ret(Sc, Zd) is
(R− c4 − c3). Q(s, a), the value of (s, a) pair, is estimated
as the average of the returns following the first time that the
state s was visited and action a was taken in each episode.
Value of s is defined as maxa Q(s, a). Line 9 computes the
return for each (s, a) pair over all episodes and line 13 com-
putes the average Q value for every (s, a) pair.

During learning, there might be a few (s, a) pairs which
are visited rarely. Estimation of Q(s, a) will not be accu-
rate if very few number of episodes are used to estimate
the value. To avoid such inaccuracies, we introduce a vari-
able min-count and estimate values for only those (s, a)
pairs which have been visited in atleast min-count num-
ber of episodes. Count(s, a) is the total number of training
episodes in which (s, a) was visited. Policy π(s) maps state
s to its optimal action. S is the set of states and A is set of
actions. Slearned is the set of states for which we could learn
optimal policy.

Algorithm 1 MC state-action value estimation
1: Initialize, for all s ∈ S, a ∈ A
2: Q(s, a) ← 0
3: Count(s, a) ← 0
4: Ret(s, a) ← empty list
5: Slearned ← empty set
6: for every episode in training episodes do
7: for each (s, a) pair in the episode do
8: G ← return after first occurrence of (s, a)
9: Ret(s, a) ← Ret(s, a) +G

10: Count(s, a) ← Count(s, a) + 1
11: for all s ∈ S, a ∈ A do
12: if Count(s, a) ≥ min-count then

13: Q(s, a) ← Ret(s, a)

Count(s, a)
14: if s not in Slearned then
15: add s to Slearned

16: for all s ∈ Slearned do
17: π(s) ← argmax

a
Q(s, a)

5.3 Zone Structure

In our RL model, states rely on the zone of the taxi and ac-
tions correspond to the zone the driver should move to if
he/she does not find a customer. Therefore, to learn effec-
tively from the data, we need to have the ”right” set of zones.
”Right” in the previous statement refers to having a set of
zones which yield high Q-values while having enough data
points for each (s,a) pair. More specifically, if zones are too
big, it would increase uncertainty in outcome for actions (as
taxi can be anywhere in a big zone). Similarly, if zones are
too small, we may not have sufficient training data to learn
something meaningful. We explore ways to find a balance
between uncertainty and granularity. In this section we pro-
pose two ways to learn zone structure of the map:

Static Zones In this method, we learn zone structure by
merging zones to neighbour zones based on the training data
available in each zone. A zone z maps to a state s and vice
versa if z is the zone of s as mentioned in equation 1. An
episode is said to be relevant to z if there is any state s in
the state-action pairs of the episode, which maps to z . We
start with a large number of uniformly distributed zones and
check how many relevant episodes are present in each zone,
if the number is less than min-count, we merge the zone to
its nearest zone. We repeat merging zones till each zone has
sufficient data to learn from. In our experiment we started
with 500 zones and the final zone structure had 111 zones.

412



Dynamic Zones We now describe an iterative method to
learn zone structure dynamically based on Q-values of a
state. As environment dynamics are different for different
time-intervals, we have different zone structures for different
combinations of time-interval and day-of-the-week to im-
prove the performance. In this method, we fix time-interval
and day-of-the-week so that each zone maps to a unique state
and a unique action. We learn separate zone structures for
different combinations of time-interval and day-of-the-week.

At a high level, at each iteration of this method, we learn
Q-values for the current zone structure based on a good part
of the data (about a month of data in our case). Then, based
on insights explained later in this section, we decide whether
certain low valued zones needs to be split into smaller zones.
Once certain zones are split, we learn Q-values for the new
set of zones from another part of the data. We then again
check if certain zones can be split. This process is continued
until our data is exhausted.
Q(s, a) is expected revenue earned till the end of cruising

if action a was taken in state s. Suppose action a is optimal
action for a state which maps to a large zone z. As zone is
large the uncertainty in outcome of taking a is also high. If
the large zone is split into smaller zones, it is possible that a
is not optimal any more for states mapping to smaller zones
as the uncertainty is reduced. To decrease the uncertainty in
outcome of optimal action, we split larger zones into smaller
zones if smaller zones have adequate data and if it results in
increasing the overall value of the bigger zone.

Suppose s and a are state and action that map to zone z.
If z is split, it affects Q-values of s as well as Q-values of
all the other states s′ in which action a was taken. We term
these other states as incoming states. Let z1 and z2 are new
smaller zones. s1, s2 are states and a1, a2 are actions which
map to new zones. a′ represents rest of the actions.
Theorem 1 The value of an incoming state s′ either in-
creases or remains same after the zone split.
Proof 1 Suppose as per algorithm 1, Ret(s′, a) = x
and Count(s′, a) = n. After split all the (s′, a) pair
will either map to (s′, a1) or (s′, a2). Let, Ret(s′, a1) =
x1, Ret(s′, a2) = x2, Count(s′, a1) = n1 and
Count(s′, a2) = n2. We can see that

x = x1 + x2, n = n1 + n2

Q(s′, a) =
x

n
, Q(s′, a1) =

x1

n1
, Q(s′, a2) =

x2

n2

There are two possibilities for state-action values of the new
actions
1. Q(s′, a1) = Q(s′, a2)

Q(s,′ a1) = Q(s′, a2) ⇒ x1

n1
=

x2

n2
⇒ x1

n1
=

x− x1

n− n1

⇒ x1

n1
(n− n1) + x1 = x ⇒ x1

n1
(n− n1 + n1) = x

⇒ x1

n1
=

x

n
⇒ Q(s1, a) = Q(s, a)

Therefore: Q(s′, a1) = Q(s′, a) = Q(s′, a2) (3)

2. Q(s′, a1) �= Q(s′, a2)

Without loss of generality, let us assume Q(s′, a1) >
Q(s′, a2)

Q(s′, a1) > Q(s′, a2)

⇒x1

n1
>

x2

n2

⇒x1

n1
>

x− x1

n− n1

⇒x1

n1
(n− n1) + x1 > x

⇒x1

n1
(n− n1 + n1) > x

⇒x1

n1
>

x

n

⇒Q(s′, a1) > Q(s′, a)

Q(s′, a1) > Q(s′, a2)

⇒x1

n1
>

x2

n2

⇒x− x2

n− n2
>

x2

n2

⇒x >
x2

n2
(n− n2) + x2

⇒x >
x2

n2
(n− n2 + n2)

⇒x

n
>

x2

n2

⇒Q(s′, a) > Q(s′, a2)

Therefore: Q(s′, a1) > Q(s′, a) > Q(s′, a2) (4)
If a was the optimal action of state s′ before the split, a1
becomes the new optimal action and its value increases to
Q(s′, a1). If any other action a′ was the optimal action
then max(Q(s′, a′), Q(s′, a1)) becomes the new value of s′.
Hence, the value of s′ either remains same or increases after
the split. �
Thus we do not worry about the values of incoming states
and only consider the value of s to decide if it is good to
split.

To learn zone structure dynamically, instead of construct-
ing episodes, we use activity graph to construct a list of <
start-point, end-point, return > tuples. Tuple < A,B, ret >
can be read as ”at point A, it was decided to move to point
B and ret was the cumulative reward accumulated till the
end of the activity graph”. A tuple can be easily mapped to
an (s, a) pair by determining zones of start-point (maps to
state) and end-point (maps to action). Tuple < A,B, ret >
maps to zone z if point A is in zone z. We construct a tuple
list (TListz) for each zone. The Q-values of a state can be
easily estimated by mapping tuples to (s, a) pairs and aver-
aging the corresponding returns.

We use k-means clustering algorithm to split a zone into
two zones. start-point of all the tuples present in TListz
are divided into two clusters. The tuple list of parent zone
can easily be divided into tuple lists of children zones by
simply checking if start-point of a tuple maps to z1 or z2.
As our objective is to increase the granularity at the same
time maintaining meaningful learning, we split the zone if
overall value of parent state increases after split and optimal
action of children state are different than the optimal action
of parent state. To avoid a zone structure which is too dense,
we define a threshold value of minimum zone size. We split
only if children zones have sufficient training data and they
are larger than the threshold value.

Algorithm 2 provides the pseudo code for learning zone
structure dynamically. We start with dividing the map of
Singapore into four large uniform zones and then split the
zones repeatedly until further split is not possible. If tuples
are from N months of data, Tn represents group of tuples
which are from nth month.

As after split there are new zone centres, it is possible that
tuples which are mapped to a nearby zone now maps to new

413



Algorithm 2 Dynamic zoning
1: Preprocessing - Construct Tn from activity graphs
2: Initialize zone-structure with 4 large uniform zones
3: for n ∈ N do
4: for each tuple ∈ Tn do
5: Append the tuple to appropriate TListz
6: repeat
7: converged ← true
8: sort zone-structure in descending order of size of zones
9: for z ∈ zone-structure do

10: if WorthSplitting(z) then
11: converged ← false
12: Split z into z1 and z2
13: Re-align any affected tuple
14: Update zone-structure
15: until converged

zones. We construct a list of affected tuples and realign them
after we have split a zone. Algorithm 3 provides steps to

Algorithm 3 WorthSplitting(z)
1: Divide z into z1 and z2 using k-means clustering
2: if size of children zones ≤ min-size then
3: return false
4: Construct tuple lists and Q-values for children zones
5: if max

a
Q(s, a) ≥ max

a
Q(s1, a) +max

a
Q(s2, a) then

6: return false
7: if argmax

a
Q(s, a) == argmax

a
Q(s1, a)

and argmax
a

Q(s, a) == argmax
a

Q(s2, a) then

8: return false
9: return true

decide if it is favourable to split a zone. Table 1 displays the
learned number of zones for each time-interval on weekdays
and weekends.

Table 1: Number of Dynamic Zones
Day 0-6 6-9 9-12 12-17 17-20 20-24

Weekdays 54 48 51 53 86 75
Weekends 63 58 66 64 97 86

6 Experiments

We now describe the set up and results to compare the per-
formance of our RL agent with actual drivers.

6.1 Evaluation Method

In this section ”driver” means real world taxi drivers for
whom we have historical data and ”agent” means our learn-
ing agent which follows the learned policy. To evaluate the
quality of policies learned by our approaches, we compare
average revenue earned by our learning agent with the top
percentile revenue of drivers. We also compare against rev-
enue earned by greedy heuristics typically employed by
drivers during cruising. For our experiments, we simulate
the agent movements on real data. Since, we only advise

one driver, we can assume that rest of the data about other
drivers’ movements does not change. Table 2 describes the
terms and notation used in this section.

Simulation of Agent Movements A key aspect of the
agent movement simulation is assigning the available trips to
the agent while considering competition from active drivers.
To accurately simulate the agent movements according to
the real data, we look at the trip data and trajectories of all
active drivers during a given date and time-interval. We find
the relevant available trips (non pre-booked trips) that orig-
inated from each state during that date and time. Revenue
earned, duration and distance also stored for each trip.

When the agent visits state s at time t, we try to assign an
available trip which originated from that state. As the agent
is competing with other drivers present in the state at that
time, we compute an assignment probability (pstassign) with
which a trip can be assigned to the agent. The probability
can be computed as the number of trips available divided
by the number of cruising drivers present in the state at that
time. To compute pstassign, we consider durations of γ min-
utes. We maintain a list of trips available in every γ minute
interval and the number of cruising drivers available in the
corresponding interval. This way we have multiple assign-
ment probabilities for a single state, and a trip is assigned
based on when (time of day, t) the agent visits the state.

Table 2: Notations
Notation Description Value

travelling-cost travelling cost per km 15 c / km

cruising-cost travelling cost per minute 10 c / min

δ decision interval 2 minutes

γ
duration used to compute
pstassign

2 minutes

min-count min number of training data
needed to learn Q-values 10

min-size min width of a zone 500m

pstassign taxi assignment probability from data

pstay
probability to stay in current
zone 0.5

A second aspect of the agent movement simulation is
identifying the cost while ”cruising”. To estimate the travel
time between zones, we compute the average time taken to
travel between zones based on trip information present in the
data. We maintain a list of average travel time between zones
for every hour of the day. This information is used when the
agent cruises from one zone to another zone.

Driver revenue Driver’s earning is computed from the trip
data. It is difficult to estimate the exact cruising distance of
our agent. Hence for fair comparison, instead of applying
a cost of travel per km, we apply cost of travel per cruis-
ing minute. To estimate cruising cost of drivers, we compute
time duration for which the driver was not hired in the time-
interval. Then a cruising-cost per minute is applied for this
duration. Thus, a driver’s revenue in a time interval is com-

414



Table 3: Weekdays (revenues in SGD)
Strategy 0-6 hours 6-9 hours 9-12 hours 12-17 hours 17-20 hours 20-24 hours

Average of top 1% drivers 143.26 91.86 70.81 107.75 97.09 126.97
Average of top 5% drivers 112.82 77.85 60.09 91.97 82.52 110.27
Average of top 10% drivers 97.09 69.71 54.26 83.13 74.89 101.55
Average of top 20% drivers 78.66 59.71 47.24 72.20 65.59 90.97
Heuristic 147.4 72.42 52.7 85.13 66.3 93.59
Static zone 164.77 84.98 57.71 93.32 74.76 100.99
Dynamic zone 186.52 88.37 58.3 91.43 75.25 110.95

Table 4: Weekends (revenues in SGD)
Strategy 0-6 hours 6-9 hours 9-12 hours 12-17 hours 17-20 hours 20-24 hours

Average of top 1% drivers 188.21 76.35 76.68 117.69 102.29 136.93
Average of top 5% drivers 161.27 63.74 66.22 102.44 89.31 121.35
Average of top 10% drivers 145.95 56.79 60.35 93.41 82.07 112.67
Average of top 20% drivers 126.69 48.15 52.94 81.86 72.89 102.01
Heuristic 175.92 60.48 55.43 95.23 70.31 99.94
Static zone 189.35 69.67 59.91 108.13 79.24 104.81
Dynamic zone 195.35 74.37 69.77 111.54 79.75 114.96

puted as the revenue from all the trips of the driver in the
time interval minus cost of travelling all trip distances mi-
nus cost of all cruising.

Heuristic strategy Another benchmark we employ to
evaluate performance of our learning approach is a heuris-
tic strategy that is typically employed by drivers. When a
cruising driver is in a locality, he generally takes one of two
options - stay in the current locality or move to a nearby
locality. When the agent follows the heuristic strategy, it
stays in the current zone with a probability equal to pstay
and with the remaining probability moves to a nearby zone.
Since pstay = 0.5 worked the best, we employ this strategy.

Agent revenue We compute the agent’s revenue for each
time-interval for a given date. The actual time (t) of the day
is also maintained. t is initialized with a start time of the in-
terval. The evaluation ends when the value of t reaches the
end of the time-interval. We observe the top earning drivers
of the given date and time-interval and find their GPS lo-
cation at the start of the interval. The corresponding state
of the GPS location is used to initialize the agent’s start-
ing state. Following are the steps employed to compute the
agent’s revenue:
(1) We use pstassign to assign a trip originated from state s.
One random trip is assigned from the list of available trips.
(2) If a trip was assigned to the agent, its next state becomes
end zone of the trip and time t is updated. The fare of the
trip (in the data) is considered as the revenue of the agent.
(3) If trip was not assigned, the agent waits for decision-
interval (δ) minutes in the current zone before again taking
decision based on learned policy.
(4) After taking action, the agent moves to the suggested
zone and t is updated based on precomputed travel time be-
tween zones for the given hour of the day.
(5) After the agent reaches the next state s’, it tries to assign
a trip to the agent based on the ps

′t
assign.

(6) If the action was to stay in the same zone, a trip assign-
ment is attempted after δ minutes. The assignment strategy
remains same as explained in step 1.
(7) Steps 1-6 are repeated until t is equal to the end time of
the time-interval.
(8) If a policy is not available for state s, the agent takes ac-
tion based on heuristic strategy.
(9) The agent’s revenue is equivalent to the fare of all the as-
signed trips during the time interval minus cost of travelling
associated with all the trips minus cost of cruising during the
time interval.

Algorithm 4 Agent’s Revenue
1: Initialize the agent’s initial state s
2: tstart = start time of the time-interval
3: tend = end time of the time-interval
4: t ← tstart, rev ← 0
5: fare ← 0, cost ← 0, cruising time ← 0
6: while t ≤ tend do
7: assign trip with pstassign probability
8: if trip was assigned then
9: s ← end state of trip

10: fare ← fare+ trip fare
11: cost ← cost+ cost of travelling the trip distance
12: t ← t+ trip duration
13: else
14: t ← t+ δ
15: if s ∈ Slearned then
16: use learned strategy
17: else
18: use heuristic strategy
19: go to advised zone
20: t ← t+ time to travel to advised zone
21: cruising time ← cruising time+time to travel to

the advised zone
22: rev ← fare− cost− cruising time ∗ cruising cost
23: return rev

415



Figure 3: Revenue comparison for various time-intervals and taxi utilization comparison for weekdays and weekends

We use approximately 2 million episodes extracted from
around 1% of movement trajectories over a period of 8
months to learn a policy for our agent. Total number of GPS
coordinates present in experimental dataset were 197 million
and there were total 84 million decision points.

6.2 Experimental Results

To evaluate the learning, we selected one month (not used
for learning) and compared average agent revenue against
average of top percentile revenues earned by drivers during
that month. There were 20 weekdays and 10 weekends in the
evaluation month. We find starting state of top 500 drivers
in each time interval and use those states as initial state of
the agent for evaluation. For each initial state, the revenue
is averaged over 1000 executions. Hence for a given time
interval and day, the agent revenue is averaged over 500,000
executions (500 different initial states * 1000 executions).

It should be noted that we are comparing average revenue
of the agent against average of top percentile revenues of the
drivers. Since we take best cases for the drivers (in terms of
always finding customers) and average case for the agent,
this provides a huge advantage to the driver revenues. This
advantage is provided so as to offset any errors in cruising
costs (which typically have a minor impact). Also, if the
agent performs on par with top 10 percentile revenues, then
this comparison allows us to claim extremely good perfor-
mance for the agent.

Tables 3 and 4 present the evaluation results for week-
days and weekends respectively. We see that early morning
hours when drivers mostly roam to find passengers, the agent
performs much better than the other drivers. During morn-
ing time interval on weekdays, the agent’s revenue is 14.7%
higher for static zones and 30% higher for dynamic zones.
Apart from peak-hour in the evening, the agent always fares
better than top 10 percentile revenue of drivers. We believe
the slightly lower performance during 17-20 hours time-
interval is due to traffic congestion. The agent always fol-

lows the shortest distance route while cruising, and there
might be longer routes which take less time. As time taken to
travel is taken from the real data, the agent might be wasting
time while following the shortest route during peak hours.

To get a better sense of the revenue earned by the agent
with other drivers, we select a weekday and a weekend from
the test data set. For the selected days we generate a list
of top 500 drivers during each interval in terms of their
revenues. We then find the corresponding starting state of
drivers from their GPS logs. We use these starting states as
the initial state of the agent during our evaluation. Figure 3
compares revenues of samples of an individual agent (a sam-
ple corresponds to one instantiation of trip allocation to the
agent) with the top 500 drivers over different time intervals.
The X-axis represents driver IDs of the best 500 drivers or
500 samples for the agent.

We also evaluate utilization of the agent, which is com-
puted as the percentage of time the agent is occupied dur-
ing a given time-interval. Figure 3 compares utilization on
weekdays and weekend. We observe that though maximiz-
ing taxi utilization is not the learning objective, the agent’s
taxi utilization is always high (always better than 20 per-
centile and slightly worse than 1 percentile value of driver
utilizations).

7 Conclusion and Future Work

In this paper, we show that an RL agent, with no knowledge
of the environment or taxi demand scenario, is capable of ob-
taining revenue which is comparable to (and in some cases
higher than) revenue earned by top 10 percentile of drivers.
One fundamental assumption is that there is one single learn-
ing agent in the environment and the rest of the drivers in
the environment do not learn. We recognize that the envi-
ronment dynamics would be drastically different if there are
multiple learning agents. Hence, an immediate future direc-
tion of this work is to explore when there are cooperative or
selfish agents who are also learning.

416



8 Acknowledgements

This research project was partially supported by National
Research Foundation Singapore under its Corp Lab @ Uni-
versity scheme and Fujitsu Limited. Sarit Kraus was sup-
ported in part by the the Israeli Ministry of Science grant
No. 3-13564.

References

Andre, D., and Russell, S. J. 2002. State abstraction for
programmable reinforcement learning agents. In AAAI/IAAI,
119–125.
Bulitko, V.; Sturtevant, N.; and Kazakevich, M. 2005.
Speeding up learning in real-time search via automatic state
abstraction. In AAAI, volume 214, 1349–1354.
Chakraborty, D., and Stone, P. 2011. Structure learning in
ergodic factored mdps without knowledge of the transition
function’s in-degree. In Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML-11), 737–
744.
Hester, T., and Stone, P. 2009. Generalized model learning
for reinforcement learning in factored domains. In Proceed-
ings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, 717–724. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.
Hou, Y.; Li, X.; Zhao, Y.; Jia, X.; Sadek, A. W.; Hulme, K.;
and Qiao, C. 2013. Towards efficient vacant taxis cruising
guidance. In 2013 IEEE Global Communications Confer-
ence (GLOBECOM), 54–59. IEEE.
Jong, N. K., and Stone, P. 2005. State abstraction discovery
from irrelevant state variables. In IJCAI, 752–757. Citeseer.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for mdps. In ISAIM.
Mannor, S.; Menache, I.; Hoze, A.; and Klein, U. 2004. Dy-
namic abstraction in reinforcement learning via clustering.
In Proceedings of the twenty-first international conference
on Machine learning, 71. ACM.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Powell, J. W.; Huang, Y.; Bastani, F.; and Ji, M. 2011. To-
wards reducing taxicab cruising time using spatio-temporal
profitability maps. In Advances in Spatial and Temporal
Databases. Springer. 242–260.
Qu, M.; Zhu, H.; Liu, J.; Liu, G.; and Xiong, H. 2014. A
cost-effective recommender system for taxi drivers. In Pro-
ceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 45–54. ACM.
Reuters. 2016. Uber debuts self-driving vehicles
in landmark pittsburgh trial. Reuters, 14 September
2016. Available: http://www.reuters.com/article/us-uber-
autonomous-idUSKCN11K12Y [Last accessed: November
2016].

Schneider, J. G. 1997. Exploiting model uncertainty esti-
mates for safe dynamic control learning. Advances in neural
information processing systems 1047–1053.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Straitstimes. 2016. World’s first driverless taxi trial kicks off
in singapore. The Straits Times, 26 August 2016. Available:
http://www.straitstimes.com/singapore/transport/worlds-
first-driverless-taxi-trial-kicks-off-in-singapore [Last
accessed: November 2016].
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Tesauro, G. 1995. Temporal difference learning and td-
gammon. Communications of the ACM 38(3):58–68.
Wang, J., and Lampert, B. 2014. Improving taxi revenue
with reinforcement learning.
Yuan, J.; Zheng, Y.; Xie, X.; and Sun, G. 2011a. Driving
with knowledge from the physical world. In Proceedings of
the 17th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 316–324. ACM.
Yuan, J.; Zheng, Y.; Zhang, L.; Xie, X.; and Sun, G. 2011b.
Where to find my next passenger. In Proceedings of the 13th
international conference on Ubiquitous computing, 109–
118. ACM.

417




