
Heuristic Search on Graphs with
Existence Priors for Expensive-to-Evaluate Edges

Venkatraman Narayanan, Maxim Likhachev
The Robotics Institute, Carnegie Mellon University

{venkatraman, maxim}@cs.cmu.edu

Abstract

We address the problem of finding shortest paths in graphs
where some edges have a prior probability of existence, and
their existence can be verified during planning with time-
consuming operations. Our work is motivated by real-world
robot motion planning, where edge existence is often expen-
sive to verify (typically involves time-consuming collision-
checking between the robot and world models), but edge ex-
istence probabilities are readily available. The goal then, is
to develop an anytime algorithm that can return good solu-
tions quickly by somehow leveraging the existence probabili-
ties, and continue to return better-quality solutions or provide
tighter suboptimality bounds with more time. While our mo-
tivation is fast and high-quality motion planning for robots,
this work presents two fundamental contributions applicable
to generic graphs with probabilistic edges. They are: a) an al-
gorithm for efficiently computing all relevant shortest paths
in a graph with probabilistic edges, and as a by-product the
expected shortest path cost, and b) an anytime algorithm for
evaluating (verifying existence of) edges in a collection of
paths, which is optimal in expectation under a chosen dis-
tribution of the algorithm interruption time. Finally, we pro-
vide a practical approach to integrate a) and b) in the con-
text of robot motion planning and demonstrate significant im-
provements in success rate and planning time for a 11 degree-
of-freedom mobile manipulation planning problem. We also
conduct additional evaluations on a 2D grid navigation do-
main to study our algorithm’s behavior.

1 Introduction

Many real world graph search problems involve expensive
computation for determining the cost or existence of an edge
in the graph. An example is that of robot motion planning,
where states in the graph correspond to full configurations of
the robot (e.g., a 7 degree-of-freedom manipulator’s graph
state would be a 7-dimensional vector) and edges between
two states exist if the robot can get from the first config-
uration to the second in a collision-free and kinematically
feasible fashion. This existence check requires expensive
collision checking between the robot mesh model and the
world representation, as well as kinematic feasibility checks,
which often turn out to be the most time-consuming parts of
the graph search.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In several scenarios however, we do have some prior prob-
abilistic information about the existence of an edge. In the
example of robot motion planning, a crude probabilistic
model could compute an approximate distance between the
robot and the world (without doing the full-blown collision
checking) and use that to compute edge existence proba-
bilities. Sophisticated schemes for learning edge existence
probabilities online during the graph search are also possi-
ble. In this work, we seek to exploit any such probabilis-
tic edge existence information to develop an anytime graph
search algorithm that can return feasible solutions quickly.
En route to this goal, we develop principled algorithms that
are applicable in a variety of related problems. Our contri-
butions are summarized below:

Contribution 1: Shortest Paths in Graphs with Proba-
bilistic Edges
Our problem setup requires finding the shortest path in a
graph where some edges have a prior probability of exis-
tence as well as a true state (measurable by evaluating those
edges). This can be viewed as solving the shortest path prob-
lem on a graph which is drawn from a distribution over
graphs defined by the edge existence probabilities. Our first
algorithm Expected Shortest Paths* (ESP*) efficiently com-
putes the set of all unique shortest paths that could result
from this distribution, and consequently the expected short-
est path cost. To our knowledge, this is the first algorithm
that can efficiently (defined more rigorously later) compute
the expected shortest path cost for a graph distribution de-
fined by independent Bernoulli edge existence priors.

Contribution 2: Optimal Anytime Edge Evaluation
Assume that we are presented with a set of candidate paths
from start to goal that include probabilistic edges. Now at
any time, we have the ability to query the true state of an
edge, albeit by a time-consuming process. Our second algo-
rithm, Anytime Edge Evaluation (AEE*) answers the ques-
tion of deciding how to evaluate these edges, so that the sub-
optimality bound we provide on the solution quality is min-
imum in expectation whenever the algorithm is interrupted.

Our experiments on an 11 DoF mobile manipulation plan-
ning problem for the PR2 robot, as well as evaluations on a
grid navigation domain demonstrate the strength of our pro-
posed approach in comparison to existing methods for alle-
viating the problem of time-consuming collision checking.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

522

2 Related Work

The problem of time-consuming edge evaluation in robot
motion planning has been touched upon in a number of re-
cent works. These works adopt one of the following strate-
gies to tackle slow collision-checking: i) lazily build the
search graph as in Lazy PRM (Bohlin and Kavraki 2000),
ii) use collision probabilities, which could be learnt online
during planning (Huh and Lee 2016) to bias sampling-based
motion planners, or heuristically guide search-based plan-
ners as in POMP (Choudhury, Dellin, and Srinivasa 2016),
or iii) use lazy search techniques to defer as many edge
evaluations as possible, as in LazySP (Dellin and Srinivasa
2016) or Lazy Weighted A* (Cohen, Phillips, and Likhachev
2014). Our work mostly falls under the last camp, where
we use edge existence probabilities and estimated evaluation
times to determine how to evaluate edges in a lazy fashion.

Other works related to minimizing edge evaluations in-
clude Partial Expansion A* (PEA*) (Yoshizumi, Miura, and
Ishida 2000) and its enhancement EPEA* (Felner et al.
2012), and BEAST (Kiesel and Ruml 2016). The former
methods minimize unnecessary node insertions (and hence
edge evaluations) when dealing with large branching fac-
tors, while the latter provides a method for online estimation
and utilization of edge-existence probabilities in the context
of abstraction-guided sampling-based motion planning. An-
other well-known problem that bears resemblance to ours is
the Canadian Traveler Problem (CTP) (Papadimitriou and
Yannakakis 1991). The major difference between the two is
that in CTP, the existence status of an edge is known only
when the agent physically moves to the location, as opposed
to being able to evaluate an edge at any point in our case.
Therefore, we deal with a deterministic shortest path prob-
lem (albeit with priors for edge existence), as opposed to the
CTP—a deterministic Partially Observable Markov Deci-
sion Process (POMDP) (Eyerich, Keller, and Helmert 2010).

In comparison to existing lazy search methods, ours pro-
vides the ability to compute an optimal edge-evaluation
strategy for a given set of candidate paths en masse (which
could also be partial paths to the goal), as opposed to just
one path. Moreover, our method provides greater flexibility
in terms of determining when to evaluate edges and when to
continue planning—either after a complete set of candidate
paths has been found, after a single candidate path has been
found, or using some other arbitrary interleaving strategy.

Finally, our approach has an attractive anytime property
in that it is provably optimal under expectation with respect
to stochasticity in both edge existences and the interruption
time, assuming all interruptions occur only after the candi-
date set of paths has been found. This is a novel definition
of optimal anytime behavior, distinct from the one proposed
in (Thayer, Benton, and Helmert 2012), where an ideal any-
time algorithm is defined as one that reduces the time be-
tween distinct solutions. On the other hand, our notion of
ideal anytime behavior in AEE* includes both solution qual-
ity and the expected interruption time.

In addition to the above distinguishing features, ESP* is
the first algorithm to our knowledge that can efficiently com-
pute the exact expected shortest path cost for a distribution
of graphs defined by Bernoulli edge existence probabilities.

Figure 1: Strategy for interleaving search and edge evalua-
tions. The search module provides a candidate set of paths
(not necessarily from start to goal) to the edge evaluator
whenever the meta-algorithm commands it to. The evaluated
statuses of the edges are then returned to the search algo-
rithm for future use. Also, the search algorithm may choose
to publish solutions in an anytime fashion as opposed to just
once. Search and evaluation meta-data could include statis-
tics such as time used, number of expansions made, number
of paths found, or number of edges evaluated.

3 Overview

The overarching goal of this work is to leverage edge exis-
tence probabilities to find solutions as quickly as possible.
Right away, this leads to two questions: a) do we care only
about the optimal solution or would we rather have an any-
time algorithm that returns a feasible path very fast and con-
tinues to improve it with time, and b) should the objective
be to minimize edge evaluations, or rather minimize the to-
tal planning time, in which case we also need to consider
the overhead of the search algorithm as well (i.e, operations
such as inserting and deleting from a data structure). If we
cared only about minimizing edge evaluations, we could find
all possible paths between the start and goal, and then use
an “optimal” edge evaluator on those paths for some notion
of optimality. The other extreme would be to evaluate every
edge that is being considered by the search algorithm, which
reduces to a typical search implementation.

Our strategy (shown in Fig. 1) is to interleave search and
edge evaluations, with flexibility in the choice of how to in-
terleave them. This is similar to the LazySP approach (Dellin
and Srinivasa 2016), but has two key novelties : i) the search
algorithm can present an arbitrary set of paths to the edge
evaluator rather than just 1 path from start to goal, and ii)
the search and edge evaluation modules are moderated by
a meta-algorithm that determines when each module should
be active, instead of using a fixed interleaving policy. The
intuition for the first is that the edge evaluator can make
more informed decisions by considering paths en masse
along with individual existence probabilities of edges. For
instance, it might be worthwhile jointly considering the time
required for evaluating a path and its probability of exis-
tence, if we are interested in an anytime setting. However,
a complicated edge evaluator might lead to another time-
consuming entity, and that motivates our meta-method. Fi-
nally, we assume that the run time of the meta-algorithm is

523

negligible compared to either of the other two modules, so
that the planning time is only a function of the search and
edge evaluation modules. In the following sections, we will
describe our contributions for each module.

4 Expected Shortest Paths* (ESP*)

The first algorithm, ESP*, is towards the search module
whose job is to generate a set of (possibly partial) paths for
the edge evaluator. Naturally, we would like these paths to
be a diverse sampling of shortest, likeliest, and fastest-to-
evaluate paths (which could all be different) so that the edge
evaluator can hedge its bets. ESP* answers the question:
what are all the paths we might care about in making the best
edge-evaluation decisions under uncertainty? This results in
the problem of finding the shortest paths in the graph under
all combinations of edge existences—any more information
would be unnecessary to the edge evaluator. Incidentally, an
algorithm that achieves this could also compute the expected
shortest path cost, as discussed next.

4.1 Problem Setup

Formally, we have
• Γ = (X,E), a finite graph with vertices X and possible

edges E. We use xstart and xgoal to denote the start and
goal vertices.

• c : X ×X → R
+, cost of an edge between two vertices

(∞ if an edge does not exist).
• p : E → [0, 1], Bernoulli prior for existence of e ∈ E.
• Eb = {e ∈ E|p(e) �= 1}, the set of all edges in Γ that are

stochastic (i.e, there is some chance that the edge might
not exist).

• k = |Eb|, the number of stochastic edges in Γ.
The Bernoulli prior p implicitly defines a distribution

P (G) over the graphs G that can be generated as sub-graphs
of Γ. The problem we consider is that of finding the set of
shortest paths across all (2k) samples drawn from P (G),
and consequently the expected shortest path cost c∗μ for this
graph distribution. If we let c∗(G) denote the cost of the
shortest path on graph G,

c∗μ = E
G∼P (G)

[c∗(G)] =
2k−1∑
i=0

c∗(Gi)P (Gi), (1)

where P (Gi) is the probability that graph Gi is drawn
from P (G) (product of the existence and non-existence
probabilities of the edges present and absent respectively).
Note that c∗μ is infinite if there is no deterministic path from
start to goal.

4.2 Algorithm

While a trivial algorithm to compute c∗μ would be to find
c∗(G) for every realization of G, it is impractical due to
the exponential cardinality of the sample space. The insight
we leverage here is that the set of unique shortest paths Sσ

across all the realizations has a much smaller cardinality
than 2k typically, and that it is sufficient to find this set to

Algorithm 1 ESP*
1: procedure COMPUTEEXPECTEDCOST(Sσ)
2: // #Graph instances where all edges traversed by si are existent

(augmented states si are paths in the original graph).
3: ν[1 . . . |Sσ |] = 0
4: // Probability of getting si as the shortest path.
5: ρ[1 . . . |Sσ |] = 0
6: for all i ∈ 1 : |Sσ | do

7: ν[i] = 2k−NUMNONZEROS(si.b)

8: ρ[i] = p(si) · ν[i]
9: for all j ∈ 1 : i− 1 do

10: if si.b ⊂ sj .b then

11: ρ[i] = ρ[i]− p(sj) · ν[j]
12: return

|Sσ|∑

i=1
g(si) · ρ[i]

13: procedure SUCC(s)
14: S = ∅
15: for all e ∈ OUTEDGES(s.x) do

16: s′ = [e.second, s.b]
17: p(s′) = p(e) · p(s)
18: if e ∈ Eb and s′.b[e.index] �= 1 then

19: s′.b[e.index] = 1 � Update s.b if the new edge is
stochastic.

20: S = S ∪ {s′}
21: return S
22: procedure EXPANDSTATE(s)
23: Remove s from OPEN
24: for all s′ ∈ SUCC(s) do

25: C = {z ∈ CLOSED|z.x = s′.x ∧ z.b ⊆ s′.b}
26: if |C| �= 0 then
27: continue � Prune path if it satisfies dominance condition
28: if s′ was not seen before then
29: g(s′) =∞
30: if g(s′) > g(s) + c̃(s, s′) then

31: g(s′) = g(s) + c̃(s, s′)
32: if s′ /∈ CLOSED then
33: Insert/Update s′ in OPEN with priority g(s′) + h̃(s′)
34: procedure MAIN()
35: bempty = [0, 0, . . . , 0] � Bit-vector representing stochastic

edges traversed
36: sstart = [xstart, bempty], sgoal = [xgoal, bempty]
37: p(sstart) = 1, p(sgoal) = 0
38: g(sstart) = 0, g(sgoal) =∞
39: OPEN = ∅,CLOSED = ∅
40: Sσ = ∅ � Set of paths from xstart to xgoal ordered by cost
41: Insert sstart in OPEN with priority h̃(sstart)
42: while g(sgoal) > OPEN.MINKEY() do

43: if OPEN.EMPTY() then return (Sσ ,∞)
44: s = OPEN.TOP()
45: CLOSED = CLOSED ∪ {s}
46: if s.x = xgoal then

47: Sσ = Sσ ∪ {s}
48: // Prune paths from OPEN which traverse
49: // all stochastic edges traversed by s
50: OPEN = OPEN \ {o ∈ OPEN|o.b ⊇ s.b}
51: continue
52: EXPANDSTATE(s)

53: Sσ = Sσ ∪ {sgoal}
54: return (Sσ , COMPUTEEXPECTEDCOST(Sσ))

compute c∗μ. Clearly, the shortest path amongst all paths in
Sσ is the one where all stochastic edges are extant, and the
longest path in the set is the one where all stochastic edges
are nonexistent. The problem now reduces to finding the in-
between paths.

Expected Shortest Paths* (ESP*) presented in Alg. 1
solves this task. At heart, it is very much simply A* search,
albeit with two modifications: i) it operates on an augmented
graph where every state s in the graph is the original graph

524

{ }

{}

Figure 2: Left: An undirected graph with 1 stochastic edge
a and unit costs on all edges. Right: The augmented graph
searched by ESP*. The upper layer corresponds to paths
that have not traversed a, and vice versa for the lower one.
The numbers next to the vertices represent their g-values
and the shaded vertices are those expanded by ESP*, as-
suming a zero heuristic. Notice how some states in the
augmented graph are “pruned” despite having smaller g-
values than g(sgoal) = 6, through the dominance rela-
tionships. For e.g., assuming (0, 0) is bottom-left, the state
[(2, 1), {a}] with a g-value of 3 is dominated by [(2, 1), {})
with a g-value of 1. Intuitively, this is because the path
(2, 0)—(1, 0)—(2, 0)—(2, 1) cannot be part of an optimal
solution in any instantiation of the graph (sampled edge
existences), given that we know the path (2, 0)—(2, 1) is
shorter and traverses only a subset (in this case empty set) of
stochastic edges in the other path.

node x augmented with a bit vector b of length k that repre-
sents which stochastic edges have been traversed by a path to
x, and ii) it applies a state dominance relationship to prune
partial paths that are guaranteed to not belong in Sσ . Intu-
itively, the augmented graph (Fig. 2) keeps track of partial
paths along with the set of probabilistic edges that are part
of those partial paths. This allows us to apply efficient dom-
inance relationships: given two partial paths to an original
graph vertex x each of which traverses probabilistic edges
a, b and a, b, c (in any order), and have costs 10 and 20 re-
spectively, the latter partial path definitely cannot belong to
Sσ . That is, the existence or non-existence of edge c is irrel-
evant to the shortest path from xstart to xgoal through state
x, for every G ∼ P (G) in which a and b are existent.

Notation. In the algorithm, g(s) represents the cost-to-
come to s from the start state sstart, c̃(s, s′) = c(s.x, s.x′)
is the cost of an edge between s and s′, and h̃(s) = h(s.x)
is a consistent heuristic for state s.x in Γ (and hence also
consistent for the augmented graph). In addition, p(s) is the
probability of arriving at state s from sstart, and OPEN is a
priority queue sorted by f(s) = g(s) + h̃(s). The methods
OPEN.TOP() and OPEN.MINKEY() return the best state in
OPEN and its f -value respectively, while OPEN.EMPTY()
returns true if the priority queue is empty. We will use the
subset notation b1 ⊂ b2 on bit vectors b1 and b2 to indicate

that the “set” (equal to 1) bits in b1 are also set in b2. The
method NUMNONZEROS(b) returns the number of set bits
in b. Finally, we use an edge struct e with three members:
the parent vertex e.first, the child vertex e.second, and the
index of the edge in Eb denoted by e.index.

The algorithm proceeds like usual A* except for two
main differences: Lines 25–27 codify the dominance prun-
ing through checking if the set of traversed edges in a path
to x is a superset of traversed edges in previously computed
paths to state x. Lines 47–51 save a newly found path to
xgoal, and prune any states in OPEN that cannot lead to a
better solution given the edges traversed by the newly saved
path. Note that the SUCC method not only generates the suc-
cessor states for an augmented graph state but also computes
the arrival probabilities p(s) to those successor states. Fi-
nally, the COMPUTEEXPECTEDCOST method processes the
set of saved paths and returns the expected shortest path cost.

4.3 Theoretical Analysis

Theorem 1 (Correctness). The expected shortest path cost
returned by the COMPUTEEXPECTEDCOST function in
ESP* (Line. 54) is equal to c∗μ (Eq. 1).

Proof. (Sketch) A*’s monotone property (Hart, Nilsson, and
Raphael 1968) guarantees that states are expanded in non-
decreasing order of f -values, which for states s where s.x =
xgoal, are simply g-values. Thus, if we terminate the search
either when OPEN is empty, or when we are about to ex-
pand the state s with s.x = xgoal and s.b = [0, 0, . . . , 0]
(i.e, corresponding to a deterministic path), we are guaran-
teed to have found (put in CLOSED) every path to the orig-
inal goal state xgoal that is shorter than the shortest fully
deterministic path. The pruning step only removes paths
which are longer than an existing path with a subset of tra-
versed stochastic edges, and is therefore admissible. Finally,
COMPUTEEXPECTEDCOST simply partitions the 2k possi-
ble graph instances into |Sσ| groups with distinct shortest
paths for each (in non-decreasing order of path costs) much
like a priority encoder, and computes the probabilities of oc-
currence for each group.

Theorem 2 (Efficiency). A vertex x in the underlying graph
Γ is expanded at most 2k · (1− 1

2l
) + 1 times, where l is the

number of stochastic edges in the shortest path from xstart

to x on Γ.

Proof. (Sketch) Again, by A*’s monotone property, the first
instance a state with underlying original vertex x is ex-
panded will be through a path with l stochastic edges. The
pruning step (Line 25) guarantees we will never expand a
path to x with a combination of stochastic edges that is a su-
perset of the l stochastic edges. The number of ways we can
get to x through a superset of those l edges is 2k−l, implying
that the maximum number of additional paths to x that may
not get pruned is 2k − 2k−l. Including the first path with l
stochastic edges, we arrive at 2k · (1− 1

2l
) + 1.

Corollary 1. If the shortest path from xstart to x on Γ is
deterministic (i.e, l = 0), ESP* expands at most one state
corresponding to each vertex x in the underlying graph.

525

Figure 3: An anytime algorithm must jointly consider the
edge costs, probabilities and evaluation times in deciding
what edges to evaluate, as well as define explicitly what its
desired “anytime” behavior is. In this example, evaluating
the shortest (c) or likeliest (p) path will be suboptimal for an
anytime algorithm that wants to return a feasible solution as
fast as possible. On the other hand, evaluating the path with
the smallest expected evaluation time (t) will be suboptimal
for an anytime algorithm that tries to minimize its expected
solution suboptimality at an arbitrary interruption time.

Finally, we note that these properties hold only when run-
ning optimal A* on the augmented graph. The investigation
of these properties when using bounded suboptimal versions
such as Weighted A*, as often the case in practice for large
graphs, is left for future work.

5 Optimal Policy for Edge Evaluation under

Anytime Interruption

Let us now assume we have a set of paths Sσ =
{σ1, σ2, . . . , σn} between xstart and xgoal produced by
ESP*, and c(σi) be the cost of path σi, assuming all stochas-

tic edges exist. Let E = {e ∈ n∪
i=1

σi|p(e) �= 1} be the

set of all probabilistic edges across the set of paths Sσ and
|E| = k. Let ti denote the (estimate of) time taken to evalu-
ate the probabilistic edge ei ∈ E. Clearly, there are multiple
ways (Fig. 3) one can go about evaluating these edges. If
all we care about is the optimal path, then we simply order
the paths by increasing cost and evaluate edges in each until
we find a path that is valid. If instead, we care only about a
feasible solution, we would order the paths by likelihood of
their existence.

Our next proposed algorithm, Anytime Edge Evaluation*
(AEE*) strives to find a balance between conflicting objec-
tives of finding good quality solutions and finding feasible
solutions quickly. We formulate the edge-evaluation prob-
lem as a Markov decision problem where the objective is to
minimize the expected suboptimality bound of the returned
solution at any given interruption time. Formally, let a state
s ∈ S (different from the s used in ESP*) be a ternary k-
vector {−1, 0, 1}k, where the element s[i] takes the value
1 if edge ei is valid, −1 if invalid and 0 if unknown (not
yet evaluated). In other words, state s captures information
about what edges have been evaluated and what the out-
comes were. An action ai ∈ A corresponds to evaluating
edge ei. Let Iσ = {i | ei ∈ σ ∧ p(ei) �= 1} denote the index

Time t

0 2 4 6 8 10 12 14 16 18 20

S
u
b
o
p
ti
m
a
li
ty

B
o
u
n
d
B
(t
)

0

5

10

15

20

Figure 4: Illustration of AEE*’s optimization objective.
Consider three hypothetical anytime profiles (the subopti-
mality bound as a function of time) corresponding to distinct
edge-evaluation policies. AEE* finds the policy correspond-
ing to the solid line, since it has the least area under its curve.
Note that each curve is only a possible realization dependent
on the edge existence probabilities, and that AEE*’s objec-
tive is to minimize the expected area under the curve.

set of stochastic edges in a path σ. For any state s, define
B(s) as:

B(s) =
B(s)

B(s)

B(s) = min
j

c(σj) s.t. s[i] = 1 ∀i ∈ Iσj

B(s) = min
j

c(σj) s.t. s[i] �= −1 ∀i ∈ Iσj ,

where we assume the minimum of an empty set is ∞
and ∞/∞ = 1. Here, B(s) represents the lowest path
cost amongst all paths which we know definitely exist (all
stochastic edges have been evaluated as valid), and B(s)
represents the lowest path cost amongst all paths that are
not yet proven to be invalid (i.e., those paths may or may
not exist based on the current edge evaluations). If the cost
of the optimal path is c∗, then we have B(s) ≤ c∗ ≤ B(s).
If the algorithm always returns the path corresponding to
the argmin of B(s) with cost c = B(s) whenever it is in-
terrupted, we have c ≤ B(s) · c∗, implying that B(s) is a
multiplicative suboptimality bound.

From the perspective of an anytime algorithm, we could
have the algorithm be interrupted at any time t, which for
simplicity is presently assumed to be drawn uniformly at
random from [0, T], with T exceeding the time taken to eval-
uate all stochastic edges. At any such time t, the algorithm
can provide a suboptimality bound corresponding to the last
published solution before being interrupted. This subopti-
mality bound is denoted B(t), with some abuse of notation.
We now define the decision making problem (i.e, a mapping
from state s to action a) as that of choosing actions in a
way to minimize the expected suboptimality bound, where
the expectation is over the interruption time, as well as the
inherent stochasticity in evaluating edges.

Let p(s′|s, a) denote the transition probability, and a pol-
icy be denoted by π : S → A. Then,

π∗ = argmin
π

E
t∼U(0,T)

[B(t)] = argmin
π

1

T

T∫
t=0

B(t)dt. (2)

526

Let sm represent the state at (discrete) step m obtained
by following the policy π, t(sm) represent the (continuous)
time at which sm is reached and t(am) represent the time
taken to execute action am = π(sm). Let us use sm+1 to
denote the outcome of action am.

Now, the bound at time t, B(t) is the suboptimality bound
for state sm, such that t(sm) ≤ t < t(sm+1). However
note that sm itself is a random variable drawn from the
distribution over states obtained at step m by following
the policy π. If [s0, s1, . . . , sm, . . . , sM] denotes a trajec-
tory obtained by following policy π, and Tπ(sm|sm−1) =
p(sm|sm−1, π(sm−1)) the transition probability between
states sm−1 and sm under policy π, we have,

B(t) = E
sm∼

Tπ(sm|sm−1)

[∞∑
m=0

B(sm) · 1(t(sm) ≤ t < t(sm+1))

]
,

where 1 is the indicator function which evaluates to 1 when
the conditional is true, and 0 otherwise. Using the above in
Eq. 2, and dropping the expectation distribution subscript,

π
∗
= argmin

π

1

T

T∫
t=0

E

[∞∑
m=0

B(sm) · 1(t(sm) ≤ t < t(sm+1))

]
dt

= argmin
π

1

T
E

⎡
⎣ ∞∑

m=0

B(sm)

T∫
t=0

1(t(sm) ≤ t < t(sm+1))dt

⎤
⎦

= argmin
π

1

T
E

⎡
⎢⎣ ∞∑

m=0

B(sm)

t(sm+1)∫
t=t(sm)

dt

⎤
⎥⎦

= argmin
π

1

T
E

[∞∑
m=0

B(sm)(t(sm+1)− t(sm))

]

= argmin
π

1

T
E

[∞∑
m=0

B(sm)t(am)

]
.

Defining

C(sm) =
1

T
B(sm)t(π(sm)), (3)

the optimal policy π∗ = argmin
π

E

[∞∑
m=0

C(sm)

]
.

Note that the expectation in this equation is only with re-
spect to transition uncertainty due to stochastic edges (the
one due to interruption time has been integrated out). There-
fore, the decision making problem has been reduced to a
stochastic shortest path (SSP) problem, where we minimize
the expected sum of future costs for the specific definition of
cost (Eq. 3), and goal states given by {s : B(s) = 1}1.

Intuitively, the term B(sm)t(π(sm)) is simply the area of
the rectangle with those two corresponding sides, and we
seek to find the policy that minimizes the area under the
piece-wise constant curve which represents the suboptimal-
ity bound as a function of time, with transition-points on
the curve corresponding to time-steps at which an edge was
evaluated. Figure 4 illustrates this intuition.

In our experiments, we use LAO* (Hansen and Zilber-
stein 2001) to solve the resulting SSP optimally when it is

1It is possible to generalize this result to arbitrary distributions
for the interruption time, however with the added complexity that
the cost function C(s) is now dependent on the arrival time to s.

tractable, or in an online fashion (with fixed time budget for
policy computation) when the number of stochastic edges is
intractably large. On a practical note, when the set of paths
Sσ are only partial paths from xstart (not all the way to
xgoal), we can still use AEE* on these paths by adding the
admissible heuristic estimate of the last node on every path
to its current cost.

6 Experiments

We evaluate our approach on two domains with distinct
properties: the first, a 11 degree-of-freedom mobile manipu-
lation planning problem with dense stochastic edges and the
second, a synthetic 2D grid navigation problem with sparse
stochasticity. For both domains, we use the augmented graph
construction of ESP*, AEE* for edge evaluation, and a
meta-algorithm described shortly. An added advantage of
using the augmented graph construction is that interleaved
search and evaluation can be done without an incremental
search algorithm—we only need to update the affected states
in OPEN whenever new edge validity information is pro-
vided by the evaluator.

Path-Set Selection. While ESP* is capable of produc-
ing every relevant path we might care about in theory, it is
impractical to wait until complete termination of ESP* be-
cause of the exponentially large state space. Consequently,
we present two methods to obtain a candidate set of paths
at any given time: a) select the set of distinct shortest paths
from OPEN corresponding to unique sets of stochastic edges
traversed, b) select the set of distinct shortest paths from
OPEN according to multiple searches, each with its own
heuristic (e.g, Fast Downward Stone Soup (Helmert, Röger,
and Karpas 2011) or Multi-Heuristic A* (Narayanan, Aine,
and Likhachev 2015)). We use the first strategy for the grid
navigation experiments, and the second for mobile manip-
ulation planning. In the latter case, we specifically add an
extra search with a heuristic that guides the search along the
likeliest path to the goal. Note that in both cases, the set of
paths are only partial paths to the goal, but can nevertheless
be used in conjunction with AEE* as discussed.

Meta-Algorithm. For both domains, we use a simple
meta-algorithm to switch between searching and edge eval-
uation. If tsearch and teval represent the cumulative times
used thus far for searching and edge evaluation, we pick the
operation with a smaller t at any given instant2. This natu-
rally balances time spent searching versus evaluating. More
sophisticated methods that try to estimate the time required
in the future for each operation might be possible, but as
mentioned earlier, the meta-algorithm’s run time needs to be
negligible compared to other modules.

6.1 Mobile Manipulation Planning

Our first domain is 11 degree-of-freedom (DoF) full-
body motion planning for the PR2 robot (a dual-arm
mobile manipulation robot). The planner’s task is to find
a collision free motion for the robot to approach and

2The resolution for switching is either one expansion, or one
complete run of the AEE* policy on the incumbent set of paths.

527

Figure 5: Left: The kitchen domain for 11 DoF mobile ma-
nipulation experiments with randomly positioned tables and
randomized clutter on top of the tables. Right: The distance
transform d(x, y) on the 2D map which is used to compute
edge existence probabilities for mobile manipulation.

pick up objects on cluttered tables in a kitchen environ-
ment (Narayanan, Aine, and Likhachev 2015), shown
in Fig. 5. Specifically, the planner controls the position
and orientation (x, y, θ) of the robot’s base, the height
of the prismatic spine which raises and lowers the torso,
the 6 DoF pose of the gripper in the robot’s body frame
(xhand, yhand, zhand, rollhand, pitchhand, yawhand), and
the arm’s “free angle” (which way the elbow is pointing).

Each vertex in the graph corresponds to a 11-dimensional
robot configuration, while edges correspond to small kine-
matically feasible motion primitives that the robot can exe-
cute (for e.g., one motion primitive changes rollhand by 4
degrees). These edges are valid (existent) only if the motion
is collision-free with the environment—which can be ver-
ified through expensive collision checking. The cost on an
edge is the time taken to execute the motion along that edge,
based on nominal velocities for base and joint angle move-
ments. The start state is fully specified in 11 DoF, while the
goal state is underspecified as a 6 DoF gripper configura-
tion to allow the robot to pick up the object from different
(x, y, θ) base locations around the object. We use 16 fixed
motion primitives, and 3 adaptive ones that allow the robot
to tuck its arm, untuck its arm, and snap the end-effector to
the goal end-effector pose when close to the goal region.

We compute the priors on edge existence as follows.
Let Rc denote the circumscribed radius of the robot at
its fully outstretched configuration and d(x, y) denote the
2D distance from the (x, y) location to the closest ob-
stacle. Let base(s) and ee(s) represent the 2D locations
of the base and end-effector corresponding to the full
robot state s. Define p(x, y) = min(d(x, y)/Rc, 1.0) and
p(s) = min(p(base(s)), p(ee(s))). Finally, the probabil-
ity of existence for edge (s, s′) is given by: p(s, s′) =
min(p(s), p(s′)). The estimate of edge-evaluation times was
set to be an identical constant for all edges. It is future work
to develop and integrate more sophisticated models of edge-
evaluation times.

For the search module, we use Focal-MHA* (Narayanan,
Aine, and Likhachev 2015) on the augmented graph with
three heuristics described in the same: a weighted version of

Table 1: Results for 11 DoF motion planning. Legend:
A1: Probability Heuristic+AEE*, A2: Probability Heuris-
tic+Lazy WA*, A3: Lazy WA* (all use Focal-MHA*). Base
and arm costs are in meters and radians respectively. Plan
times, expands and costs are averaged over instances on
which all algorithms succeeded.

Success (%) Plan Time (s) Expands Base Cost Arm Cost

A1 80 8.81 971.12 4.33 5.42
A2 77 12.79 1173.19 3.84 4.70
A3 65 10.22 1021.72 3.92 4.76

the admissible heuristic, a base-heuristic to guide the robot
to a location “behind” the goal with the correct gripper ori-
entation, and another one to guide the base to the same loca-
tion but with a tucked-arm configuration. We also introduce
an additional probability heuristic to guide the robot along
the most likely path to goal, which is computed by running
a 2D Dijkstra search outward from the goal on the probabil-
ity map p(x, y). Additionally, we prioritize expanding from
the probability heuristic queue3 when it is making progress
(measurable by monitoring h-values) rather than uniformly
alternating between the heuristics.

For evaluation, we generated 100 random trials in which
the tables are positioned differently every 10 trials, in addi-
tion to randomizing the clutter on the tables. For each trial,
we choose a random staring configuration (11 DoF) for the
robot, and a random pose (6 DoF) on one of the two tables
for the gripper to reach. A trial is counted as successful if the
planner returns a solution within a time limit of 2 minutes.

Table 1 compares AEE* and Lazy WA* (Cohen, Phillips,
and Likhachev 2014) edge evaluation schemes under differ-
ent configurations. Note that Lazy WA* is also edge equiv-
alent to LazySP with the forward edge selector (Dellin and
Srinivasa 2016). We use a suboptimality bound of w = 100
for all algorithms and report statistics only for the first solu-
tion found. The main observations are the significantly better
success rates (solution found within time limit) for the meth-
ods which produce a diverse path-set (using the probability
heuristic) for edge evaluation, and an improved performance
for AEE* due of its probabilistic edge-existence reasoning.

6.2 Synthetic Benchmarking

We evaluate our algorithm on a synthetic 2D grid naviga-
tion domain with artificially inflated evaluation times for
certain edges. Figure 6 shows the 2D map (with dimensions
564 × 507) used for the tests. The colored circles represent
distinct probabilistic edge groups that may or may not ex-
ist in the graph. Further, these edges also have an artificially
high evaluation time to verify their existence. To give an ex-
ample of its relevance, imagine planning in (x, y) state space
while doing edge evaluations through full 11-DoF planning
that is more expensive. This abstraction is similar to the
one used in BEAST (Kiesel and Ruml 2016), which focuses

3The probability queue also has restricted sharing—all other
queues can expand states generated by every other queue, but the
probability queue is only allowed to expand states it generated.

528

Figure 6: The 2D grid map used for benchmarking. The 15
colored circles represent regions (and consequently edges)
in the grid that exist with some probability, and are also time-
consuming to evaluate.

on online estimation of edge-existence probabilities, where
edge evaluations are done using a sampling-based motion
planner.

We compare ESP*+AEE* with Lazy WA* (Cohen,
Phillips, and Likhachev 2014) with W = 1 (i.e., the optimal
variant) under two control parameters: the time to evaluate
existence of an edge group (Te), and the probability of exis-
tence of an edge group (Pe). Both these parameters are held
constant across all edge groups. We setup the problem such
that the time to evaluate an edge in a specific group is large
only for the first time, with successive evaluations of other
edges in the group taking the same time as any deterministic
edge. The motivation for this is twofold: first, this could rep-
resent spatial correlation between edges in the configuration
space, and second, it simulates the abstraction described ear-
lier in which an expensive edge-group evaluation represents
solving a single subproblem. We chose Lazy WA* (with
W = 1) for comparison since it was shown to perform con-
sistently fast (with regard to total planning time) on differ-
ent problems (Dellin and Srinivasa 2016) and also requires
no expensive pre-computation. For both algorithms, we use
a 4-connected grid and compute an admissible heuristic by
running Dijkstra’s search outward from the goal on the op-
timistic map (where all edge groups are assumed to exist).
Both algorithms are guaranteed to eventually return the op-
timal solution if one exists, or report failure otherwise.

We run each algorithm on 100 trials (10 random sam-
plings of the graph and 10 random start-goal pairs), for each
parameter combination. Table 2 presents the average plan-
ning times and speedups obtained by Lazy ESP* over Lazy
WA*. We use geometric means (GM) to present speedups, as
they are better suited than the arithmetic mean (AM) when
“averaging” ratios. For instance, two speedup ratios of 2.0
and 0.5 have a GM of 1 and an AM of 1.25. Since the algo-
rithm was twice faster in one instance and twice slower in
the other, a mean of 1 is more desirable than 1.25.

Readily noticeable is how ESP* dominates Lazy WA*
for an edge-evaluation time of 500 ms and vice versa for
10 ms. This is expected: when the evaluation times are small

Table 2: Comparison between Lazy WA* and our algorithm,
ESP*+AEE* on the synthetic 2D grid navigation domain.
Each data point is averaged over 100 trials (10 graph sam-
plings × 10 random start-goal pairs) for the corresponding
settings of edge-evaluation time (TE) and edge existence
probability (PE). Legend: A1: ESP*+AEE*, A2: Lazy WA*
(W = 1). Speedup values are geometric means (arithmetic
means in parentheses).

PE TE = 500 ms TE = 100 ms TE = 10 ms

A1 A2 A1 A2 A1 A2

0.75 Time (s) 1.95 2.27 0.97 0.49 0.72 0.08
Speedup 1.78 (12.07) 0.83 (3.03) 0.18 (0.40)

0.5 Time (s) 2.53 2.7 1.25 0.58 0.89 0.11
Speedup 1.74 (13.5) 0.77 (2.45) 0.18 (0.38)

0.25 Time (s) 1.83 2.44 0.96 0.53 0.71 0.10
Speedup 2.22 (15.05) 0.91 (2.80) 0.20 (0.44)

compared to the overhead of just searching (specifically on
the augmented graph as done by ESP*), using a complicated
path generator or edge-evaluation strategy only hurts. How-
ever, the moment edge evaluation becomes a critical bot-
tleneck, using a sophisticated edge evaluation scheme does
provide benefits. The results are more balanced for an eval-
uation time of 100 ms, implying that the fewer edge eval-
uations just about pay for the search overhead. Another in-
teresting observation is how both methods take longer plan-
ning times with PE = 0.5 compared to 0.25 or 0.75, in some
sense confirming the intuition that it is easier to plan under
low-entropy distributions.

7 Summary and Discussion

In this work, we presented a) a general strategy for in-
terleaving planning and edge evaluation, b) a search al-
gorithm (ESP*) for finding expected shortest paths on a
graph with probabilistic edges, and c) a policy for edge
evaluation (AEE*) given a set of candidate paths (possibly
partial paths) with unevaluated edges and existence priors.
We proved that ESP* can efficiently compute the expected
shortest path cost, and that AEE* is optimal for edge eval-
uation in the anytime interruption sense. The experiments
showed how the choice of edge-evaluation scheme is de-
pendent on the problem setting at hand. Practically, we rec-
ommend using the ESP* + AEE* combination in domains
where edge evaluations are expensive enough to justify the
overhead of searching in the augmented graph. Typically,
these tend to be domains where stochasticity is sparsely dis-
tributed, and where edge evaluation dominates the total plan-
ning time. In domains with many stochastic edges, alter-
native schemes for multiple path generation work well in
conjunction with AEE*. Note that either of ESP* or AEE*
could be used independently of the other, with a suitable
complementary algorithm. For example, one could generate
a set of candidate paths (without collision checking) from
a sampling-based planner and use AEE* in an interleaved
fashion. In the future, we would like to develop a bounded
suboptimal version of ESP* to improve its tractability in do-
mains with several stochastic edges.

529

Acknowledgments

This work was supported by NSF grant IIS-1409549 and by
ARL under the Robotics CTA program grant W911NF-10-
2-0016. We would also like to thank the anonymous review-
ers for their valuable feedback and suggestions.

References

Bohlin, R., and Kavraki, L. E. 2000. Path Planning using
Lazy PRM. In International Conference on Robotics and
Automation (ICRA), volume 1, 521–528. IEEE.
Choudhury, S.; Dellin, C. M.; and Srinivasa, S. S. 2016.
Pareto-Optimal Search over Configuration Space Beliefs for
Anytime Motion Planning. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).
Cohen, B.; Phillips, M.; and Likhachev, M. 2014. Planning
Single-arm Manipulations with N-Arm Robots. In Proceed-
ings of Robotics: Science and Systems (RSS).
Dellin, C. M., and Srinivasa, S. S. 2016. A Unifying Formal-
ism for Shortest Path Problems with Expensive Edge Evalu-
ations via Lazy Best-First Search over Paths with Edge Se-
lectors. In International Conference on Automated Planning
and Scheduling (ICAPS).
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-quality
Policies for the Canadian Traveler’s Problem. In Third An-
nual Symposium on Combinatorial Search (SoCS).
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.;
Sturtevant, N. R.; Schaeffer, J.; and Holte, R. 2012. Partial-
Expansion A* with Selective Node Generation. In National
Conference on Artificial Intelligence (AAAI).
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A Heuristic
Search Algorithm that Finds Solutions with Loops. volume
129, 35–62. Elsevier.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. In ICAPS 2011 Workshop on Planning and Learning,
28–35.
Huh, J., and Lee, D. D. 2016. Learning High-dimensional
Mixture Models for Fast Collision Detection in Rapidly-
Exploring Random Trees. In International Conference on
Robotics and Automation (ICRA), 63–69. IEEE.
Kiesel, S., and Ruml, W. 2016. A Bayesian Effort Bias for
Sampling-based Motion Planning. In Planning and Robotics
Workshop (ICAPS-PlanRob16).
Narayanan, V.; Aine, S.; and Likhachev, M. 2015. Improved
Multi-Heuristic A* for Searching with Uncalibrated Heuris-
tics. In Eighth Annual Symposium on Combinatorial Search
(SoCS).
Papadimitriou, C. H., and Yannakakis, M. 1991. Short-
est Paths without a Map. Theoretical Computer Science
84(1):127–150.

Thayer, J. T.; Benton, J.; and Helmert, M. 2012. Better
Parameter-Free Anytime Search by Minimizing Time Be-
tween Solutions. In Fifth Annual Symposium on Combina-
torial Search (SoCS), 120–128.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
Partial Expansion for Large Branching Factor Problems. In
National Conference on Artificial Intelligence (AAAI), 923–
929.

530

