
Learning to Avoid Local Minima
in Planning for Static Environments

Shivam Vats
Indian Institute of Technology, Kharagpur

shivamvats@iitkgp.ac.in

Venkatraman Narayanan, Maxim Likhachev
The Robotics Institute, Carnegie Mellon University

{venkatraman, maxim}@cs.cmu.edu

Abstract

In many robot motion planning problems such as ma-
nipulation planning for a personal robot in a kitchen
or an industrial manipulator in a warehouse, all motion
planning queries are in an environment that is largely
static. Consequently, one should be able to improve
the performance of a planning algorithm by training
on this static environment ahead of operation time. In
this work, we propose a method to improve the per-
formance of heuristic search-based motion planners in
such environments. The first, learning, phase of our pro-
posed method analyzes search performance on multi-
ple planning episodes to infer local minima zones, i.e,
regions where the existing heuristic(s) are weakly cor-
related with the true cost-to-go. Then, in the planning
phase of the method, the learnt local minima are used to
modify the original search graph in a way that improves
search performance. We prove that our method pre-
serves guarantees on completeness and bounded subop-
timality with respect to the original search graph. Exper-
imentally, we observe significant improvements in suc-
cess rate and planning time for challenging 11 degree-
of-freedom mobile manipulation problems.

1 Introduction

A large number of robot motion planning problems occur in
unchanging environments. For example, planning for a ma-
nipulator in an automated warehouse always involves gen-
erating motions that move the arm from one shelf bin to an-
other, or to a drop-off region. Similarly, planning for a per-
sonal assistant robot involves generating paths with respect
to a 3D map of the home that is mostly constant. In such
scenarios, one naturally desires to exploit the static nature
of the environment to improve motion planning efficiency.
While memorizing all possible planning queries ahead of
time would be the ideal solution, it is clearly intractable
given the size of the configuration space—for example, even
for a 3D (x, y, yaw) planning problem in a 100 × 100 grid
with 10 discrete values for yaw, one would need to store
1010 possible plans. The challenge of learning a compact
generalization to improve planning efficiency in such envi-
ronments motivates this work.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We focus on heuristic-search based motion planning on
lattice graphs representing the configuration space. Our key
observation is that the efficiency of heuristic search meth-
ods is mainly affected by large “local minima” regions (re-
gions where the heuristic estimate is weakly correlated with
the true cost-to-go) in the environment, and that a post hoc
analysis of a heuristic search episode will reveal these re-
gions. Based on this insight, we propose a two-phase algo-
rithm: i) the first, learning phase, collects search statistics
(specifically, time at which every state was expanded during
the search) for several planning episodes to determine lo-
cal minima regions, ii) the second, planning phase, uses the
learnt local minima to construct a query-specific graph for
improving planning efficiency. We prove that our approach
preserves theoretical guarantees on completeness and solu-
tion quality with respect to the original lattice graph. Exper-
imentally, we show that our method significantly improves
success rate and planning time for 11 DoF mobile manipu-
lation planning problems.

2 Related Work

The idea of improving best-first search planning effi-
ciency by avoiding local minima has been explored in sev-
eral works. There are two approaches that are commonly
adopted. In the first, search algorithms are modified to de-
tect local minima or plateau regions and then use ran-
dom exploration (Valenzano and Xie 2016) or a sub-goal
search (Likhachev and Stentz 2008; Chakrabarti, Ghose, and
Desarkar 1986) to escape the local minima. The second ap-
proach focuses on learning a new heuristic based on prior
planning episodes to effectively circumvent local minima in
the future (Phillips et al. 2012; Xu, Fern, and Yoon 2007). In
contrast to both these approaches, our proposed algorithm
attempts to modify the search graph itself so that existing
heuristics can perform better on the new graph. The most
relevant prior work to our algorithm is Marvin (Coles and
Smith 2007), which learns new macro-actions for the graph
based on prior planning episodes. The key difference be-
tween Marvin and our algorithm is that the former modifies
the graph by introducing edges that are always a composi-
tion of existing edges, whereas we do not have that restric-
tion. This efficiency improvement is possible because of the
continuous state space specific to robot motion planning.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

572



3 Algorithm

We assume that the motion planning problem is represented
as a graph search problem on an implicit graph defined by
a successor function SUCC. The vertices of the graph are
states (denoted by s) in the robot configuration space and
edges between two states are motion primitives, which are
kinodynamically feasible motions between those states. In
addition to using a fixed set of precomputed motion primi-
tives to construct the graph, we will also allow for the use
of adaptive motion primitives (Cohen et al. 2011) for gener-
ating new motions/edges on the fly during graph construc-
tion. In kinematic planning for example, an adaptive motion
primitive can be generated by simply interpolating between
the source and target states and verifying that the motion is
collision-free and satisfies the robot’s kinematic constraints.

Overview. Our algorithm has two phases: a learning phase
and a planning phase. In the first phase, we run a heuris-
tic search planner on a number of training data points (ran-
domly selected start-goal pairs in the environment) and an-
alyze the results to learn a compact generalization named
“activation regions” to capture the local minima in the envi-
ronment. Next, the planning phase uses the learnt activation
regions to modify the graph on-the-fly to efficiently find a
solution for new test cases. One could also close the loop
and treat the new test cases as additional training data points,
to continuously improve performance.

Learning Phase. Assume that we run a heuristic search
planner such as A* or Weighted A* (Pohl 1970) on the lat-
tice graph. Admissible heuristics are often imperfect and can
mislead the search, causing it to expand states that will even-
tually never be part of the returned solution. The regions
where unnecessary states are expanded are the local minima
zones. Ultimately, we want to identify these regions during
the learning phase to help improve performance later. Our
intuition for the learning phase is that by determining the
states on the solution path that took “longer” to discover, we
can identify the local minima regions where the search spent
time.

Formally, let {s1, s2, . . . , sN} be the ordered set of states
expanded by the search for a particular start-goal pair, with
N ′ ≤ N states on the solution path. For each state si ex-
panded by the search, we will also record the timestamp ti
at which it was expanded. Now, consider two consecutive
states on the solution path, si and sj , with timestamps ti
and tj respectively. If the difference between tj and ti were
“small’, then it implies that the heuristic gradient was infor-
mative at state si. Conversely, if the time difference were
large, then the search must have spent a significant amount
of time expanding states in a local minimum. It follows then,
that the time difference Δtij = tj − ti is a measure of the
depth of local minimum in that region of the state space.

Figure 1 shows an example plot of the first difference of
the expansion times Δti(i−1) (abbreviated Δti) against the
N ′ states in the solution path. The peaks in the plot corre-
spond to the states that took longest to discover, and are also
“exits” to local minima in the corresponding region of the
state space. Algorithm 1 shows how to discover these states.

Algorithm 1 Learning Phase
1: procedure FINDLOCALMINIMA(m)
2: P ← random start-goal pairs � Training Set.
3: for pi ∈ P do
4: success = RUNPLANNER(pi)
5: if success then
6: T = timestamps of all states on path
7: for each state si on path do
8: calculate Δt[i] = T [i]− T [i− 1]

9: return m highest local maxima from the Δt curve

Figure 1: A plot of Δt, the first difference of the expansion
times, versus the states on the solution path. The colored
dots indicate the top 10 local maxima that correspond to the
learnt activation centers.

The next task is to learn a generalization from the exit
states so that they can be used for similar planning queries
in the future. To do so, we will approximate the local minima
as hyperspheres in the configuration space called activation
regions. Since the search would benefit most from knowing
how to escape each local minima, we will define an activa-
tion region ai as centered at an exit state si, and having a
radius ri. Algorithm 1 describes the procedure to compute
the activation region centers si, which in turn correspond to
the peaks of the curve in Fig. 1.

Next, we obtain the activation region radii ri by essen-
tially computing the half-widths of the peaks in Fig. 1. Start-
ing at an exit state, si we iterate backwards and look at the
second difference of the expansion times (i.e, Δtj−Δtj−1).
The state, sk at which this changes from positive to neg-
ative does not belong to the current local minimum, and
we mark it as its beginning. Consequently, we define ri =
α·DIST(sk, si), where DIST is a domain dependent distance
function, and α is a variable inflation factor.

Planning Phase. Consider a planning problem with start-
goal pair p = (sstart, sgoal). Having learnt activation re-
gions for the whole environment and for a variety of train-
ing data points, we would first like to select those activa-
tion regions that cover the local minima likely to be encoun-
tered while trying to solve p. To do so, we choose all acti-
vation regions that were encountered by the planner while
solving problems that were “similar” to p during the learn-
ing phase. We measure distance between two planning prob-
lems by summing the domain dependent distances between
their respective start and goal states: DIST(sstart, s

′
start) +

573



Algorithm 2 Successor Function for Planning Phase
1: procedure ADAPTIVESUCCS(s)
2: succs ← SUCCS(s) � original successors
3: for a ∈ activation regions do
4: if s ∈ a then
5: c ← a.center � “exit” state
6: motion = ADAPTIVEMOTION(s,c)
7: if motion is feasible then
8: insert c in succs
9: return succs

DIST(sgoal, s
′
goal). While sstart does not influence the cost-

to-go, using similarity between both start and goal restricts
the number of relevant activation regions.

If we choose to select n most similar training problems,
we get a set of m ·n activation regions, where m is the num-
ber of activation regions learnt per training episode. Next,
we describe our approach to using these activation regions
during planning. We run the same search algorithm as used
during the training phase, albeit with a modified successor
function given in Alg. 2. Every time we expand a state that
is within an activation region, we augment the regular set
of successors with the center of the activation region (i.e,
the local minima’s exit state). The adaptive motion between
the expanded state and the exit state could be as simple as
straight-line interpolation, or an arbitrarily complicated one.
The idea behind this adaptive successor generation is to pre-
emptively prohibit the search from expanding states in the
local minima. We term the implicit graph resulting from this
modified successor function as the Adaptive Motion Graph.

Finally, we note that the choice of n and m for a problem
is largely a function of the environment’s complexity and the
heuristic’s quality. A very small m could lead to poor learn-
ing, while a large value could result in significant overhead
during the planning phase.

Theorem. The solution returned by a search algorithm on
the adaptive motion graph is optimal (bounded suboptimal)
with respect to the original graph, if the search algorithm is
optimal (bounded suboptimal) on the original graph.

Proof. (Sketch.) This theorem follow from the observation
that the original graph is a subgraph of the adaptive motion
graph. Since the minimum of a set is always upper bounded
by the minimum of any of its subsets, the property holds.

Following a similar reasoning, if the search algorithm is
complete on the original graph, then it remains complete
with respect to the adaptive motion graph.

4 Experimental Results

We evaluate the benefits of our learning approach on a chal-
lenging 11 DoF mobile manipulation planning problem for
the PR2 robot, the same domain used in (Narayanan, Aine,
and Likhachev 2015). We also use the Focal-MHA* search
algorithm from the same paper, as it was shown to per-
form well on this domain. Results are presented for run-
ning Focal-MHA* on the adaptive motion graph as well as

Figure 2: Left: Planning environment. Right: A learnt acti-
vation center near the doorway—a deep local minimum for
the heuristics.

the original graph. In addition, we also present comparisons
with a popular sampling-based motion planning algorithm,
RRT-Connect (Kuffner and LaValle 2000).

Domain. The PR2 robot is a mobile manipulation plat-
form with two arms, a telescoping spine, and a mobile base.
We restrict ourselves to planning only for a single arm, the
spine, and mobile base. Each 11 DoF state in the graph we
plan on is comprised of a 6 DoF object pose for the end-
effector (x, y, z, roll, pitch, yaw), one redundant free angle
for the right arm, a prismatic degree of freedom for the spine,
and (x, y, yaw) for the robot base. The start state for the
planner sstart is a fully specified 11 DoF state, whereas the
goal state sgoal is an underspecified 6 DoF end-effector con-
figuration. Consequently, any state that results in the end-
effector of the robot reaching the object’s pose meets the
goal condition. In addition to the default motion primitives
described for this domain, we define two types of adaptive
motions for the ADAPTIVEMOTION method in Alg. 2:

• Full-body Snap Motion Primitive: This adds the acti-
vation center (a full 11 DoF state) to the open list by in-
terpolating a straight line from the expanded state to the
activation center. We use a low α (2) as arm motions over
long distances are likely to collide with the environment.

• Base Snap Motion Primitive: This adds a state with the
base configuration of the activation center but arm and
torso configuration of the source state. Here, we can af-
ford to use a higher α (15) since there are no arm motions,
and we can take advantage of long-range base motions.

Note that by using motion-primitive specific activation re-
gion radii, we can preemptively eliminate adaptive motions
that are unlikely to be valid.

Implementation Details. Focal-MHA* is a multi-
heuristic search algorithm which uses one consistent
heuristic and possibly several inadmissible heuristics. It
is guaranteed to provide a solution which is at most w
suboptimal, and does not expand a graph state more than
twice. We can used this property to optimize successor gen-
eration in Alg. 2 in the following manner: we maintain two
separate sets of activation centers—one for the admissible
anchor heuristic and another for the inadmissible heuristics.
Once an activation center is expanded by an admissible or
inadmissible heuristic, we delete it from the corresponding
set. This reduces the branching factor of the search when

574



w = 20 w = 50

Adaptive Original RRT-C Adaptive Original RRT-C

Success Rate (%) 75 69 38 74 69 38
Speedup 1 1.85 0.81 1 1.6 0.59

Planning Time (s) 54 77 44 55 77 44

Table 1: Focal-MHA* with 10 heuristics was used to search
on the original and the adaptive motion graphs.

possible. In all our experiments, we used 60 activation
regions (n = 4 and m = 15). For the domain dependent
distance measure DIST between two states, we use the L∞
distance between their corresponding 3 DoF (x, y, θ) robot
base configurations.

For Focal-MHA*, we used the same set of 20 heuristics
used in (Narayanan, Aine, and Likhachev 2015). Addition-
ally, to show the generality of our learning approach, we re-
peat all experiments with a) a set of only 10 heuristics (by
dropping all base rotation heuristics) and b) using subopti-
mality factors of 20 and 50 for Focal-MHA*.

For our experiments, we used a typical house environment
with a kitchen and a room connected via a doorway. We also
generated 3 variations of this environment by adding two ta-
bles in the room at random positions along with a different
number of objects on the tabletop (at random locations). The
learning phase is repeated for each variant, and results on
testing instances are averages across all environments. The
heuristics used are variants of two main types: base heuris-
tics that guide the robot’s (x, y) location to the goal region,
and end-effector heuristics that guide the (x, y, z) of the end-
effector to the goal. Looking at the environment in Fig. 2,
one might guess that regions of deep local minima are likely
to occur at the door, around tables and around clutter on top
of these tables. The activation centers that were learnt dur-
ing our experiments confirm our intuition. Fig. 2 shows such
an activation center at the door. Note how this state has the
“correct” exit base orientation and arm configuration to get
through the door, despite having no heuristic that provides
this information. Now whenever the planner receives a query
in which the robot needs to get through this door, an adaptive
motion primitive will be added as an edge to this state.

Results. We generated 120 random trials for each envi-
ronment. Out of these, 60 were used in the learning phase
and 60 for testing performance. Each trial was created by
choosing a random pose on one of the two tables for the end-
effector to reach and a randomly generated starting configu-
ration for the robot. A trial is successful if the planner finds a
w-optimal solution within the time limit. Time limit was set
to 200 seconds when planning with 10 heuristics and to 300
seconds when using 20 heuristics. All experiments were run
on an Intel i7-6700HQ CPU (2.60 GHz) with 16GB RAM.

Results of our experiments are summarized in Table 1 and
Table 2. The algorithms are compared against the measures
of success rate and mean planning time. Further, we calcu-
late a measure of speedup by taking the geometric mean of
the ratios of planning times. These statistics are computed
on only those trials in which adaptive motion graph and
the algorithm being compared to, both succeeded. The main

Planning time for w = 20 Planning time for w = 50

Figure 3: The scatter plots compare the time taken by Focal-
MHA* on an adaptive motion graph with that taken on the
original graph on every instance. The different shaded re-
gions represent distinct speedup intervals. The top two plots
are with 10 heuristics and the bottom two are using 20
heuristics.

w = 20 w = 50

Adaptive Original Adaptive Original

Success Rate (%) 67 46 69 47
Speedup 1 1.98 1 2.1

Planning Time (s) 71 100 74 98

Table 2: Focal-MHA* with 20 heuristics was used to search
on the original graph as well as the adaptive motion graph.

takeaway is that our method shows marked improvement in
planning time and success rate over using the original graph,
across all values of w, the number of heuristics used, and
different environments.

From Table 1, we see that the RRT-Connect has a better
planning time than our method. However, its success rate is
drastically smaller, primarily owing to the narrow doorway
in the problem. The problems it does solve are the easier
ones, where our adaptive motion graph incurs unnecessary
overhead. However, as can be seen in the scatter plots in
Fig. 3, there are very few trials in which the adaptive motion
graph does worse than the original graph, implying that its
overhead is not as severe.

5 Conclusions

We presented an algorithm for improving planning effi-
ciency in static environments by learning local minima re-
gions and using them to modify the search graph. In addi-
tion to being conceptually simple, our method was shown to
provide significant improvements in success rate and plan-
ning time over a non-learning approach, for a challenging
11 DoF mobile manipulation planning domain. For future
work, we are interested in generalizing our approach to do-

575



mains where the environments are not identical but do share
some common “features”. Consequently, we would require
automatic feature learning for transferring the local minima
knowledge across different environments. Finally, we would
like to automate learning of the activation region parame-
ters (e.g. α) to dynamically adapt their shape and reduce the
overhead induced by additional graph edges.

Acknowledgments

This work was supported by NSF grant IIS-1409549 and by
ARL under the Robotics CTA program grant W911NF-10-
2-0016.

References

Chakrabarti, P.; Ghose, S.; and Desarkar, S. 1986. Heuris-
tic search through islands. Artificial Intelligence 29(3):339–
347.
Cohen, B. J.; Subramania, G.; Chitta, S.; and Likhachev, M.
2011. Planning for manipulation with adaptive motion prim-
itives. In Robotics and Automation (ICRA), 2011 IEEE In-
ternational Conference on, 5478–5485. IEEE.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. J. Artif. Intell.
Res.(JAIR) 28:119–156.
Kuffner, J. J., and LaValle, S. M. 2000. Rrt-connect: An ef-
ficient approach to single-query path planning. In Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE Inter-
national Conference on, volume 2, 995–1001. IEEE.
Likhachev, M., and Stentz, A. 2008. R*Search. In Proceed-
ings of the National Conference on Artificial Intelligence
(AAAI).
Narayanan, V.; Aine, S.; and Likhachev, M. 2015. Improved
multi-heuristic a* for searching with uncalibrated heuristics.
In Eighth Annual Symposium on Combinatorial Search.
Phillips, M.; Cohen, B. J.; Chitta, S.; and Likhachev, M.
2012. E-graphs: Bootstrapping planning with experience
graphs. In Robotics: Science and Systems, volume 5.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193–204.
Valenzano, R. A., and Xie, F. 2016. On the completeness
of best-first search variants that use random exploration. In
Thirtieth AAAI Conference on Artificial Intelligence.
Xu, Y.; Fern, A.; and Yoon, S. W. 2007. Discriminative
learning of beam-search heuristics for planning. In IJCAI,
2041–2046.

576




