
Multi-Objective Policy Generation for Mobile Robots
Under Probabilistic Time-Bounded Guarantees

Bruno Lacerda, David Parker and Nick Hawes
School of Computer Science, University of Birmingham

Birmingham, United Kingdom
{b.lacerda, d.a.parker, n.a.hawes}@cs.bham.ac.uk

Abstract

We present a methodology for the generation of mobile robot
controllers which offer probabilistic time-bounded guarantees
on successful task completion, whilst also trying to satisfy
soft goals. The approach is based on a stochastic model of the
robot’s environment and action execution times, a set of soft
goals, and a formal task specification in co-safe linear temporal
logic, which are analysed using multi-objective model check-
ing techniques for Markov decision processes. For efficiency,
we propose a novel two-step approach. First, we explore poli-
cies on the Pareto front for minimising expected task execution
time whilst optimising the achievement of soft goals. Then,
we use this to prune a model with more detailed timing in-
formation, yielding a time-dependent policy for which more
fine-grained probabilistic guarantees can be provided. We il-
lustrate and evaluate the generation of policies on a delivery
task in a care home scenario, where the robot also tries to
engage in entertainment activities with the patients.

Introduction

Decision making under uncertainty has been widely used for
the control of systems where the state evolution and outcome
of actions is non-deterministic. In particular, models such as
Markov decision processes (MDPs) have been successfully
used to control robot systems. In this paper, we propose a
multi-objective sequential decision making technique to gen-
erate policies for MDPs that combine the achievement of a
primary task with the execution of as many secondary tasks
as possible, while maintaining a high probability of achieving
the primary task within a user-defined time-bound. Given a
primary task specified in co-safe linear temporal logic (LTL),
to be executed within a deadline, and a utility function for
a set of secondary tasks, we present a method that tries to
gather as much utility from the secondary tasks as possible,
whilst maintaining a guaranteed threshold on the probability
of successful, timely primary task completion. Time bounds
are important in robotic applications, as they allow robots’
long-term behaviour to be scheduled reliably against user
requirements and temporal environmental variations. By tak-
ing such time bounds into account, we are able to generate
policies that can reason about elapsed time during execution,
allowing for more complex robot behaviour that takes into

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A care home environment.

account the available time for primary task completion when
deciding whether to execute secondary tasks.

Example 1. The scenario that will be used to motivate our
approach, and illustrate its main concepts, is as follows. Con-
sider a care home environment, as shown in Fig. 1, where
the central area (v0 − v2) represents a common entrance and
kitchen area, the right-hand area (v3 − v11) represents offices
for administrative staff, and the left-hand area (v12 − v20)
represents patient rooms. The robot starts in the middle of
the central area (v0), and can navigate between different loca-
tions in the environment according to the depicted navigation
graph. Furthermore, at certain times the central area is over-
crowded (e.g., due to people having lunch). Thus, there is
uncertainty on the expected time to navigate from/to v0. In
the kitchen area (v1), the robot can retrieve water bottles.
Given the high uncertainty of grasping, the time needed to
do so is also uncertain. Finally, the robot cannot carry more
than 2 bottles at a time.

As part of its routine, the robot has to execute a water
delivery task, navigating to a subset O of the staff offices,
and asking if the person there wants water. If so, the robot
needs to bring it to them. We also want the robot to be ready
to carry other objects once the task is finished, so we require
that the robot should not be holding bottles when it finishes
the task. We provide a bound of d ∈ N>0 seconds for the task
such that we can provide a guarantee on the latest time when
people that asked for water will have it delivered.

Apart from being in charge of water delivery, the robot
can also engage in interactions with the patients and staff in
its spare time. Such interactions can be, for example, provid-
ing the lunch menu, or showing an entertainment video on
its screen. Thus, in certain rooms I where the occupant is
interested in the robot, it can execute an interact action.

In order to accurately model this scenario, one needs to
take several factors into account, such as:
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• As stated above, there is uncertainty on the outcome and
timing of certain actions. In order to effectively cope with
these uncertainties, one needs to appropriately include
them in the planning model. Thus, we use timed MDPs,
which explicitly model probabilistic action outcomes and
discrete action durations. We use discrete action duration
distributions in order to reduce complexity of the solution
method, when compared to the use of continuous distri-
butions. Note that one can choose finer discretisations in
order to keep the accuracy of the model high. Finally, while
the illustrative example presented in this paper has hand
written distributions, for real robot deployments one can
use machine learning techniques to learn the probability
distributions such as those associated with the uncertainties
above.

• The natural language description of the primary task of
water delivery is reasonably complex, requiring one to take
different responses from the staff into account, and also
requiring that the robot finishes the task holding no bottles.
Specifying such a task using a reward structure, as is more
common for MDP planning, is far from straightforward.
However, this can represented intuitively using co-safe
LTL, a flexible formal specification language for which
there are known techniques for automatic verification and
policy generation. With co-safe LTL, one can not only
specify “classical” planning goals of reaching a specific
state, but also, for example, state that a particular sequence
of states must be achieved, or that a set of “forbidden”
states must be avoided.

• The (secondary) interaction tasks, which should only be
executed if the robot has enough time to do so, are re-
lated to the execution of a specific behaviour at a given
location. These can be more naturally thought of as prefer-
ences, and require an associated utility function to guide
the choice between them. In this case, such utility can be
a measure of how much the different people appreciate
interacting with the robot (e.g., obtained from a question-
naire), or can be calculated when building a new problem
instance, as a function of how long since the last time a
specific person was engaged by the robot. We therefore
use a reward structure over state-action pairs to encode this
utility function. In other scenarios these preferences can
also drawn from structured task knowledge, e.g. informa-
tion gain for exploration (Korein, Coltin, and Veloso 2014;
Santos et al. 2016), or progression towards an implicitly
defined co-safe LTL secondary goal (Lacerda, Parker, and
Hawes 2015b), or extra tasks or actions that the robot
should execute, if there is enough time to do so.

In order to achieve precise guarantees on the behaviour
of the policies generated to control our robots, we apply
formal verification techniques. In particular we use multi-
objective probabilistic model checking, to generate policies
that capture the trade-off between timely task completion
and gathering of secondary task reward. For the former, most
existing approaches measure the expected time for task com-
pletion, but the usefulness of this can be limited if there is
a large variance in execution time. Furthermore, expected
time minimisation does not allow reasoning during execu-

Figure 2: Depiction of the overall approach. The primary task
is encoded in objectives o1 and o′1 , and the secondary tasks
are encoded in objectives o2 and o′2.

tion about how long certain actions have taken, or adapting
behaviour taking into account how much time for task satis-
faction still remains. In this paper, we work with probabilis-
tic time-bounded guarantees which give precise information
about whether a task can be completed within a deadline,
thus allowing robot behaviour to be more accurately sched-
uled. Such guarantees also allow for adaptive, time-aware
behaviour that takes into account how much time for task
satisfaction still remains. However, computing time-bounded
properties is known to be computationally difficult, because
the states of the MDP need to be augmented with the elapsed
execution time, limiting feasibility for larger sized problems.

In this paper we present a two-step approximation method
to tackle the state space explosion associated with multi-
objective planning in MDPs with time-bounded properties,
depicted in Fig. 2 (a more precise explanation of the mean-
ing of the different steps of the approach will be provided
throughout the paper).

The first step in our approach is to prune the actions avail-
able at each state of the system. This pruning is based on
a solution to a the multi-objective problem without elapsed
execution time, i.e. a “time-bound relaxed” problem over a
product MDPM′

ϕ′ with an additional action that explicitly
models the decision to stop gathering reward for the sec-
ondary tasks. For this relaxed problem one objective (o′1) is
minimising the expected time to fulfil the primary co-safe
LTL task, and the other objective (o′2) is the infinite-horizon
reward maximisation for the secondary tasks. We calculate
the Pareto front for these two objectives, and remove actions
from the model that do not appear in any of the deterministic
policies associated with the Pareto front. Intuitively, actions
which do not appear in any policy on the Pareto front are
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actions which lead to either increased execution time on the
primary task (the first objective), decreased reward on the
secondary tasks (the second objective), or both. In the second
step of our approach we add elapsed time to the states in this
pruned model, and calculate the Pareto front for the time-
bounded objectives (o1, o2) over this smaller model. This
Pareto front is suboptimal for the original problem. However,
as illustrated in our empirical evaluation, the loss of optimal-
ity is low. More importantly, the Pareto front is composed of
policies for which we can provide precise probabilistic guar-
antees on timely primary task completion, which are crucial
for reliable real life deployments of autonomous systems.

We proceed with framing our work in the relevant litera-
ture, introducing the modelling formalisms and specification
languages (TMDPs, co-safe LTL, multi-objective problems)
that we will use, and frame the problem described in Exam-
ple 1 within such formalisms. Then, we describe an optimal
solution for our problem and, motivated by its high complex-
ity, we present our two-step approximation approach. Finally,
we show how our approach can yield significant state space
gains, whilst still finding good approximations to the optimal
Pareto front for the time-bounded problem, by evaluating it
in the problem described in Example 1.

Related Work

In the planning community, the term oversubscription plan-
ning is used to describe a problem in which the planning
agent does not have the resources necessary to achieve all
the goals given to it (i.e. it is oversubscribed), and instead
must determine which goals it should achieve along with a
plan to achieve them (Aghighi and Jonsson 2014). In order
to assist the choice between goals, a metric is often used to
define a the net benefit of the selected goals given the cost of
the actions to achieve them (Benton, Do, and Kambhampati
2005). Structuring the problem further, some systems deal
with hard goals (or hard constraints) which must always be
achieved and soft goals (or soft constraints) which can be
selected from to yield additional net benefit (Benton, Do, and
Kambhampati 2005).

Our work can be considered in this latter context, with the
primary LTL task as a hard goal, and the secondary tasks as
soft goals. Our approach solves the net benefit problem given
these secondary tasks by maximising the reward from them
without harming primary task completion. This is done in
the context of a time bound which places a hard constraint
on the achievement of the primary goal (thus also limiting
time available for gathering secondary reward). Given this,
our work is most directly comparable to Sapaps (Benton, Do,
and Kambhampati 2005) and OPTIC (Benton, Coles, and
Coles 2012) which can handle hard and soft constraints with
numeric rewards/preferences. However we go beyond these
planners by tackling this problem under uncertainty.

Adding soft goals that represent the execution of informa-
tion gathering actions for environment exploration has also
been studied in the robotics context. For example, in (Spaan,
Veiga, and Lima 2015), an information reward is awarded
when the agent reaches a certain level of belief regarding a
state feature, and (Korein, Coltin, and Veloso 2014) investi-

gate how to fill gaps in a schedule for a mobile robot with
exploration actions.

In recent years, there has been much work on generating
MDP policies under temporal logic specifications (Wolff,
Topcu, and Murray 2012; Yoo, Fitch, and Sukkarieh 2013;
Ding, Pinto, and Surana 2013; Ding et al. 2014; Lacerda,
Parker, and Hawes 2015b). These rely on maximising the
probability of task success and/or minimising expected costs
to do so, and do not use time-bounded specifications, nor deal
with maximising a utility related to soft goals.

Other approaches use MDPs for motion planning, and pol-
icy generation for goals expressed in time-bounded temporal
logics such as bounded LTL (Cizelj and Belta 2014) or metric
temporal logic (Fu and Topcu 2015). These works focus on a
single objective, not dealing with trade-offs between different
objectives. Also, we use LTL specifications extended with a
time-bound, which allows us to avoid the high complexity
of the time-bounded logics used in these works. Reaching
goals under a deadline has also been investigated in the con-
text of stochastic shortest path problems (Nie and Wu 2009;
Cao et al. 2017). These works are more focused on finding
computationally efficient solution methods, and deal only
with simpler, single objective, goal reachability problems
when compared to our use of co-safe LTL and multi-objective
problem formulation. Finally, also using multi-objective
model checking techniques, (Lahijanian and Kwiatkowska
2016) present an approach to manage the trade-off between
probabilities of satisfaction of a (revised) co-safe LTL speci-
fication and the cost for such a revision of the original speci-
fication. This work focuses on the co-safe LTL specification,
with the trade-off being on how much the specification needs
to be “changed” in order to be achieved with high probability
by the robot in its environment.

Preliminaries

Timed Markov Decision Processes

We model the problem as a timed MDP (TMDP), an MDP
augmented with stochastic durations for each transition. A
TMDP is a tupleM = ⟨S, s,A, δM, T,Λ,AP,Lab⟩, where:
S is a finite set of discrete states; s ∈ S is the initial state; A is
a finite set of actions; δM ∶ S×A×S → [0,1] is a probabilistic
transition function, where ∑s′∈S δM(s, a, s′) ∈ {0,1} for all
s ∈ S, a ∈ A; T = {t1, ...tn} ⊂ N>0 is a finite set of discrete
action execution times; Λ = {λs,a,s′ ∣ δM(s, a, s′) > 0},
where each λs,a,s′ ∶ T → [0,1] is a probability distribution
over (integer) durations representing the time taken to execute
action a from state s and finish in s′; AP is a set of atomic
propositions; and Lab ∶ S → 2AP is a labelling function,
such that p ∈ Lab(s) iff p is true in s ∈ S.

A TMDP represents the possible evolutions of the state of
a system where, in each state s, any action a from the enabled
actions As = {a ∈ A ∣ δM(s, a, s′) > 0 for some s′ ∈ S} can
be selected. The probability of evolving to successor state s′

is then δM(s, a, s′), and the probability that the time duration
of this is t ∈ T is λs,a,s′(t). A TMDP can be seen as a special
case of a semi-MDP (Howard 1960), restricted to integer, not
real, duration times. For a mobile robot, these probability
distributions can be learned by gathering data during robot
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execution and a clustering algorithm applied to group them
into discrete classes. One can obtain more accurate models
by increasing the number of such clusters, at the price of in-
creased model sizes. During execution, assuming an accurate
enough model where there is low action duration variability
within each cluster, one can associate the observed action
duration to the closest cluster representative.

A (finite or infinite) path through the TMDP is a sequence
σ = s0(a0, t0)s1(a1, t1) . . . where s0 = s and, for all i,
δM(si, ai, si+1) > 0 and λsi,ai,si+1(ti) > 0. We denote the
sets of all finite and infinite paths of M by FPathM and
IPathM. The choice of action to take at each step of execu-
tion is made by a policy, which can base its decision on the
history ofM up to the current state, mapping finite paths of
M to distributions over the set of actions. Formally, a policy
is a function π ∶ FPathM → Dist(A) such that, for any
finite path σ ending in state sn, if π(σ)(a) > 0 then a ∈ Asn .

Important classes of policy include those that are determin-
istic (where π(σ) is a point distribution), memoryless (which
only base their choice on the current state s), and finite-
memory (which need to track only a finite set of “modes”).
The set of all policies forM is denoted by ΠM.

Under a particular policy π, all nondeterminism is resolved
and the behaviour ofM is fully probabilistic. This allows
for the definition of a probability measure PrπM over the
set of infinite paths IPathM, which determines the proba-
bility of certain events holding under policy π. For a prop-
erty q ∶ IPathM → {0,1}, we write PrπM(q) for the prob-
ability of q holding under π. Given a (measurable) func-
tion f ∶ IPathM → R, we can define the expected value
Eπ
M(f) of f with respect to the probability measure PrπM.

We can then consider the maximum probabilities or ex-
pected values over all policies: Prmax

M (q) = supπ PrπM,s(q)
and Emax

M (f) = supπ Eπ
M(f), respectively. Minimum val-

ues Prmin
M (q) or Emin

M (f) are defined analogously.
Example 2. The scenario represented in Example 1 can be
modelled as a TMDP with a factored1 state space defined as

S =⟨L,n water, (checked watero)o∈O,
(wants watero)o∈O, (delivered watero)o∈O,
(interactedi)i∈I⟩,

where L ∈ {v0, ..., v20} represents the robot location,
n water ∈ {0,1,2} represents the number of bottles the
robot is currently holding, wants watero ∈ {−1,0,1} rep-
resents that the robot either does not know if the staff
member wants water, or it knows that the staff member
does not want water, or it knows that the staff member
wants water. The other state factors are boolean values rep-
resenting, for example, if the robot already asked if the
staff member in office o wants water, or if the robot has
delivered the water at office o. The initial state is s =
⟨v0,0, (0)o∈O, (−1)o∈O, (0)o∈O, (0)i∈I⟩. The action space
comprises the different navigation actions between nodes,

1Factored state representations are usual for MDP modelling,
given that they provide a more compact representation of the domain.
We will also define transitions over the factored representation,
where if a state factor is not present in the transition then it will be
defined regardless of the value of that state factor.

plus actions for delivering water, providing interaction, etc.
For example, the action check if watero ∈ A is such that:

δM(⟨checked watero = 0,wants watero = −1⟩,
check if watero,

⟨checked watero = 1,wants watero = 0⟩) = 0.2
δM(⟨checked watero = 0,wants watero = −1⟩,

check if watero,

⟨checked watero = 1,wants watero = 1⟩) = 0.8
Also, there is different timing information associated with

the transitions. For example, we have:

δM(L = 0,move01, L = 1) = 1,
λ(L=0,move01,L=1)(15) = 0.8,
λ(L=0,move01,L=1)(90) = 0.2,

meaning that 80% of the time, the robot can travel between
location 0 and 1 in around 15 seconds, but 20% of the time it
needs around 90 seconds, due to the presence of many people.
Finally, we define the set of atomic propositions as:

AP = {holding 0 bottles,asked if watero ,

wants watero ,delivered watero},
with holding 0 bottles ∈ Lab(s) iff s ∈ {s′ ∈

S ∣ s′[n water] = 0}, where s′[n water] represents the
value of state feature n water in s′. The labelling function
for the other atomic propositions is defined by labelling states
for which the corresponding state feature value is 1.

Single-objective Problems We introduce the set of prob-
lems over TMDPs that are relevant for our work. Let
d ∈ N>0 ∪ {∞} be a time-bound. The probabilis-
tic reachability problem is the problem of calculating
Prmax
M (reach≤dS′ ), along with a corresponding optimal pol-

icy. Given S′ ⊆ S, we define the event of reaching a state
in S′ within bound d as reach≤dS′ ∶ IPathM → {0,1} where
reach≤dS′ (s0(a0, t0)s1(a1, t1) . . . ) = 1 iff exists i such that
si ∈ S′ and ∑i−1

k=0 tk ≤ d. The expected cumulative re-
ward problem is the problem of calculating Emax

M (cumul≤dr ),
along with a corresponding optimal policy. Let r ∶ S ×A→
R≥0 be a reward structure overM. We define the cumula-
tive reward within bound d cumul≤dr ∶ IPathM → R≥0 as
cumul≤dr (s0(a0, t0)s1(a1, t1) . . . ) = ∑kd

i=0 r(si, ai) where
kd = ∞ if d = ∞, and kd = max{k ∈ N>0 ∣ ∑k

i=0 ti ≤ d}
otherwise. Emin

M (cumul≤dr ) is defined analogously, and in
this case we write c instead of r, and call it a cost structure.

When d = ∞, we call the above time-unbounded problems.
Such problems can be solved via standard MDP algorithms
such as value or policy iteration (Puterman 1994). Further-
more, the existence of an optimal memoryless policy for them
is guaranteed. Since the value for the expected cumulative
reward problem might not converge, we first perform a graph
analysis to identify states for which the reward is infinite, and
end components with zero cost (Forejt et al. 2011).

When d ≠ ∞, we call the above time-bounded problems.
Time-boundedness implies that, in order to make optimal
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decisions, one needs to keep track of how much time has
passed during execution. Thus, the optimal policies might
not be memoryless any more, and can be finite-memory. To
solve these problems optimally, we need to explicitly add an
elapsed time component to the state representation. For this
extended state representation, the policies are again memory-
less. However, the addition of the elapsed time component
incurs a large state-space explosion and severely limits the
size of the problems that can be solved.

Finally, given S′ ⊆ S such that Prmax
M (reach≤dS′ ) = 1,

and a cost function c, we can define the stochastic short-
est path problem as finding a policy that reaches a state in S′

with minimal expected cumulative cost, which we denote as
Emin
M (cumulreachS′

c ). The stochastic shortest path problem
can be reduced to a time-unbounded expected cumulative
cost problem with guaranteed convergence, by appropriately
changing the cost function.
Example 3. We define a reward and a cost structure over
the TMDP presented in Example 2. First, we assume that
the robot can gather a reward for interacting with people in
rooms i ∈ I . The value of this reward is given by how much
the person in each room i values interacting with the robot.
In our case, to simplify presentation, we assume reward 10
for the first interaction with each person:

r(s, a) =
⎧⎪⎪⎨⎪⎪⎩

10 if a = interacti and s[interacted i] = 0
for some i ∈ I

0 otherwise

The above reward structure is an example of a soft goal
specification, defined over (state,action) pairs. Note that one
can also define soft goals as just state based rewards. Fur-
thermore, we assume there is a finite number of soft goals,
i.e., the amount of soft goal reward that can be accumulated
is finite. For soft goals that are only accumulated once, one
can easily modify the MDP model in order to guarantee the
finiteness of the soft goal reward, by adding an extra state
feature representing whether the reward for a given soft goal
has been gathered or not.

We can also define a cost structure, obtained from the time
distributions in the TMDP, that represents the expected time
to execute a given action:

c(s, a) = ∑
s′∈S

δM(s, a, s′)(∑
t∈T ′

λ′s,a,s′(t)t)
Multi-objective Problems In this paper, we also consider
multi-objective properties, which optimise two or more dis-
tinct objectives. To mix objective values, it is common to
consider their Pareto front. Let o1, . . . , on be different max-
imisation2 objectives (i.e., oi(π) = Prmax

M (q) or oi(π) =
Emax
M (f)). Given policies π, π′ ∈ ΠM, π Pareto-dominates

π′, denoted π ≻ π′, if π is at least as good as π′ for all
objectives, and strictly better than π′ for at least one of them:

π ≻ π′ iff ∀ioi(π) ≥ oi(π′) and ∃ioi(π) > oi(π′)
2We present the notion of Pareto front only for maximisation

objectives in order to simplify the presentation. Its adaptation to a
mix of maximisation and minimisation objectives is straightforward.

The Pareto front for o1, . . . , on is then defined as the set of
policies which are not dominated by any other policy:

Par(o1, . . . , on) ={π ∈ ΠM ∣ /∃π′∈ΠM π′ ≻ π}
The Pareto front can be represented as a finite set of de-
terministic policies Π(o1, . . . , on): Any value for o1, ..., on
corresponding to a policy in Par(o1, . . . , on) can be attained
by a randomised policy constructed by a convex combination
of two elements of Π(o1, . . . , on), e.g., a policy that behaves
like π1 ∈ Π(o1, . . . , on), with probability α, and behaves like
π2 ∈ Π(o1, . . . , on), with probability 1 − α, 0 ≤ α ≤ 1. We
can calculate such a set Π(o1, . . . , on) using the approach
presented in (Forejt, Kwiatkowska, and Parker 2012).

Syntactically Co-Safe Linear Temporal Logic

Linear temporal logic (LTL) (Pnueli 1981) is an extension
of propositional logic that provides a formal, convenient and
powerful way to specify a variety of qualitative properties
over a system’s execution. In this work, we use the syntac-
tically co-safe class of LTL formulas, for which formula ϕ
over propositions AP is defined using the grammar:

ϕ ∶∶= true ∣ p ∣ ¬p ∣ ϕ∧ϕ ∣ ϕ∨ϕ ∣ Xϕ ∣ Fϕ ∣ ϕUϕ, p ∈ AP.
The X operator is read “next”, meaning that the formula it
precedes will be true in the next state. The F operator is
read “eventually”, meaning that the formula it precedes must
become true in some future state. The U operator is read
“until”, meaning that its second argument will eventually
become true in some state, and the first argument will be
continuously true until this point. See, e.g., (Pnueli 1981) for
the formal semantics of the logic.

Given σ ∈ IPathM, we write σ ⊧ ϕ to denote that σ satis-
fies formula ϕ. Furthermore, we write Prmax

M (ϕ) to denote
the maximum probability of satisfying ϕ from s in M. It
is known that this problem can be reduced to a reachability
problem in a product MDP (Vardi 1985).

Even though their semantics is defined over infinite se-
quences, co-safe LTL formulas always have a finite good
prefix (Kupferman and Vardi 2001). Given an LTL formula
ϕ and an infinite sequence of sets of atomic propositions
w = w0w1... ∈ (2AP )ω such that w ⊧ ϕ, w has a good pre-
fix for ϕ if there exists n ∈ N for which the truncated finite
sequence w∣n = w0w1...wn−1 is such that the concatenation
w∣n⋅w′ ⊧ ϕ for any w′ ∈ (2AP )ω . We denote as kwϕ the length
of the shortest good prefix of w for ϕ.

Furthermore, for any co-safe LTL formula ϕ written over
AP , we can build a deterministic finite automaton (DFA)
Aϕ = ⟨Q, q,QF ,2

AP , δAϕ⟩, where: Q is a finite set of dis-
crete states; q ∈ Q is the initial state; QF ⊆ Q is the set
of accepting (i.e., final) states; 2AP is the alphabet; and
δAϕ ∶ Q × 2AP → Q is a transition function. Aϕ accepts
exactly the good prefixes for ϕ (Kupferman and Vardi 2001).
Given that a good prefix satisfies ϕ regardless of how it
is “completed’, an accepting state qF ∈ QF is such that
δAϕ
(qF , α) ∈ QF for all α ∈ 2AP .

We finish by adding time bounds to our co-safe LTL speci-
fications. Let d ∈ N>0 be a time bound and ϕ a co-safe LTL
formula. We say that σ = s0(a0, t0)s1(a1, t1) ⋅ ⋅ ⋅ ∈ IPathM
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satisfies ϕ within the time bound d, denoted σ ⊧ ϕ≤d iff
w = Lab(s0)Lab(s1)... ⊧ ϕ and ∑kw

ϕ−1

i=0 ti ≤ d. Following
the presented notation, we write Prmax

M (ϕ≤d) to denote the
maximum probability of satisfying ϕ in less than d time.
Example 4. The water delivery task described in Example 1
can be represented by the following co-safe LTL formula:

ϕ =F(holding 0 bottles ∧⋀o∈O asked if watero∧
⋀o∈O(wants watero → (Fdelivered watero)))

One can read the above specification3 as “eventually reach
a state where the robot is not holding water bottles, and has
asked if all staff members in offices O want water, and for
each of the staff member, if wants water, then eventually
deliver him the water.”

Problem Statement

We now formally define the problem tackled in the paper.
In the next sections, we describe the optimal solution, and
propose a more efficient approximation technique.

Let M be a TMDP, ϕ a co-safe LTL formula, d ∈ N>0
a deadline and r ∶ S × A → R≥0 a reward structure for
soft goals such that, for all σ = s0(a0, t0)s1 ⋅ ⋅ ⋅ ∈ IPathM,
∑∞i=0 r(si, ai) < ∞. Our goal is to (i) complete the co-safe
task within the deadline, while (ii) retrieving as much soft
goal reward as possible. Formally, we have the objectives:

(i) o1 = Prmax
M (ϕ≤d) and (ii) o2 = Emax

M (cumul≤dr )
and our goal is to generate the Pareto front Par(o1, o2).

Optimal Solution

To solve the problem above, we start by following the stan-
dard approach of adding a time component to the states. We
build the MDPMT by extending the TMDPM such that:

ST ={(s, t) ∈ S ×N ∣ t ≤ d+
max{k ∈ N>0 ∣ ∃s′∈S,a∈AδM(s′, a, s)λs′,a′,s(k) > 0}}

δMT ((s, t), a, (s′, t + k)) =
{ δM(s, a, s′)λs,a,s′(k) if t ≤ d

0 otherwise

The rest of the structure ofMT and the soft goal reward r
can be extended to ST straightforwardly.MT is such that all
possible paths throughMT end in some terminal state (s, t)
where t > d. This construction reduces objective o2 in the
problem statement to a time-unbounded problem overMT :

Emax
M (cumul≤dr ) = Emax

MT (cumul≤∞r )
The same is not true for o1. In particular,MT does not

have information on the satisfaction of ϕ. Thus, we fol-
low the standard approach of building the product MDP

3In fact, to be syntactically co-safe, the occurrences of p→ (Fq)
need to be written as (¬p) ∨ (Fq). We write the specification using
implications for readability.

MT
ϕ =MT ⊗Aϕ over state space ST

ϕ = ST ×Q which be-
haves like the original MDP but is augmented with informa-
tion about the satisfaction of ϕ. Once a path ofMT

ϕ reaches
an accepting state in acc = {(s, qF ) ∈ ST ×QF ∣ s[t] ≤ d},
it is a good prefix for ϕ that was reached within d time-
steps, and we are sure that ϕ is satisfied before the deadline.
The construction of the product is well known and is such
that it preserves the probabilities of the original MDP (see,
e.g., (Baier and Katoen 2008)). We can again extend r to ST

ϕ ,
so o2 can be equivalently solved inMT and inMT

ϕ . Further-
more, o1 can now be reduced to an time-unbounded (due to
the addition of a time component to the state) probabilistic
reachability (due to the product with Aϕ) problem:

Prmax
M (ϕ≤d) = Prmax

MT
ϕ
(reach≤∞acc)

Since o1 and o2 can be independently solved inMT
ϕ using

value iteration, we can also solve the corresponding multi-
objective problem inMT

ϕ , and build the Pareto front repre-
senting the optimal solutions for the trade-offs between o1
and o2. As stated before, the main drawback of this approach
is the very large state-space explosion it entails. Thus, in the
next section we present an approach to generate approxima-
tions of the optimal Pareto front.

Approximate Solution

Relaxation of the Time-bounded Objectives

To approximate solutions to our problem, we present a
method based on using the Pareto-front for time-unbounded
simplifications of o1 and o2 to prune the model. We will de-
fine a multi-objective problem that (i) minimises the expected
cost to fulfil the co-safe LTL task; and (ii) gathers as much
soft goal reward as possible. To guarantee convergence for
the first objective, we take the common assumption that ϕ
can be satisfied with probability 1 from the initial state. We
leave relaxing this assumption for future work, building on
work on stochastic shortest paths with dead ends (Teichteil-
Königsbuch 2012; Kolobov, Mausam, and Weld 2012) and
partially satisfiable co-safe LTL (Lacerda, Parker, and Hawes
2015b; 2015a).

Problems o1 and o2 are tightly related, in the sense that
both are defined with the same time-bound d. When re-
laxing them to time-unbounded problems, that relation is
lost: given that we want to minimise time expectations, and
maximise rewards over an infinite horizon, it is not clear
when one should stop accumulating time cost, as that de-
pends not only on fulfilling the task, but also on the decision
to stop trying to satisfy more soft goals. Thus, to recover
the relation between o1 and o2 when relaxing them to time-
unbounded problems, we need to add an extra (0-timed) stop
action that is active in all the states, and allows us to decide
when to stop trying to maximise the soft goal reward struc-
ture. For TMDPM= ⟨S, s,A, δM,Λ,AP,Lab, ⟩, we define
M′ = ⟨S′, s′,A′, δM′ ,Λ′,AP ′, Lab′⟩ that has two copies of
S, i.e., S′ = Sgather ∪ Sstop, where Sgather represents that
we are still gathering soft goal reward, and Sstop represents
that we have decided to stop doing so. All other elements of
M′ are simply extended to S′.M′ starts in Sgather, where
stop is enabled in all states. When stop is executed, M′
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evolves to the corresponding state in Sstop, where it can still
act towards fulfilling the task, but no more soft goal reward
is available, i.e., slightly abusing notation we define r′ over
Sgather ∪ Sstopped such that:

r′(s, a) = { r(s, a) if s ∈ Sgather

0 otherwise

We also define a cost function overM′, c′ ∶ S′×A′ → R≥0,
providing the expected time to execute a in s, as explained in
Example 3.

We then extend ϕ to reflect that expected time cost can
only stop being accumulated once stop has been executed:

ϕ′ = ϕ ∧ (F stopped)
This transformation preserves the probabilities of satisfaction
of ϕ overM and also the timing between states in the TMDP.
By performing it, we can now get policies that achieve soft
goals after satisfying the task, while still accumulating ex-
pected time cost. Thus, we calculate the Pareto front for the
following two objectives:

(i) o′1 = Emin
M′ (cumul⊧ϕ

′

c′ ) and (ii) o′2 = Emax
M′ (cumul∞r′ )

Emin
M′ (cumul⊧ϕ

′

c′ ) represents the minimal expected cost to sat-
isfy ϕ′. Since ϕ is co-safe, o′1 can be reduced to the stochastic
shortest path problem of reaching a state in acc = S ×QF

in the product MDP M ′
ϕ′ . Note that, contrary to the product

MDP built for the optimal solution, this product does not
have a time component in the states, thus its state space is sig-
nificantly smaller. Finally, by straightforwardly extending r′

and c′ to r′ϕ′ and c′ϕ′ over M ′
ϕ′ , we can define both objectives

over the same structure:

Emin
M′ (cumul⊧ϕ

′

c′ ) = Emin
M′

ϕ′
(cumulreachacc

c′
ϕ′

)
Emax
M′ (cumul∞r′ ) = Emax

M′
ϕ′
(cumul∞r′

ϕ′
)

As mentioned before, the stochastic shortest path problem
can be turned into a time-unbounded expected cost minimisa-
tion by adjusting the cost function. Furthermore, convergence
is ensured if Prmax

M (ϕ) = 1, so we have two basic problems
which can be calculated using value iteration. Thus, we can
calculate a set Π(o′1, o′2) of deterministic memoryless poli-
cies representing the Pareto front for o′1 and o′2, using the
approach in (Forejt, Kwiatkowska, and Parker 2012).

Pareto front Induced MDP

Having calculated the set Π(o′1, o′2) = {π1, . . . , πm}, we can
use it to pruneM′

ϕ′ . The basic idea is that, given the relation
between the time-unbounded objectives o′1 and o′2, and the
original time-bounded objectives o1 and o2, policies on the
Pareto front for o′1 and o′2 are, in principle, also good policies
for balancing o1 and o2. This means that an MDP consisting
of only the transitions present in at least one of these policies
obtained for o′1 and o′2 can be a good model for reasoning
about the time-bounded problems. Thus, we build the pruned
MDP M′

ϕ′ ∣Π(o′1,o′2) by removing all transitions δ(s, a, s′)
for which a is not in π(s) for some policy π ∈ Π(o′1, o′2).
So,M′

ϕ′ ∣Π(o′1,o′2) only has actions that are working towards
either the expected time cost minimisation, or the soft goal
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Figure 3: Pareto front for minimising expected task comple-
tion time and maximising expected soft goal reward.

reward maximisation. We can then find approximations of the
optimal value by solving the time-bounded objectives o1 and
o2 onM′

ϕ′ ∣Π(o′1,o′2), using the MDPM′
ϕ′ ∣TΠ(o′1,o′2), obtained

by adding the time component to the states ofM′
ϕ′ ∣Π(o′1,o′2)

as explained when describing the optimal solution. As we
show in the next section, we obtain good approximations
of the optimal Pareto curve from MDPs with considerably
smaller state spaces. Crucially, we still have precise proba-
bilistic time-bounded guarantees for the resulting policies.
Furthermore, the Pareto front that we generate represents a
set of policies, and allows us to generate policies for any spec-
ified threshold on the probability of timely task completion
with very little computational effort. We refer the reader back
to Fig. 2 for a diagram of the overall approach.

Implementation and Evaluation

We implemented our approach in the PRISM model
checker (Kwiatkowska, Norman, and Parker 2011), which
supports solving MDPs against LTL properties and gener-
ation of Pareto curves (Forejt, Kwiatkowska, and Parker
2012). The tool includes multiple solution engines, based
on symbolic data structures such as binary decision diagrams
(BDDs), designed to improve scalability. We analyse the per-
formance of our approach on the illustrative example that has
been described throughout the paper. In particular, we analyse
the state space reduction obtained by our method, versus the
amount of sub-optimality it incurs, for O = {v6, v7, v11}
and three instances of I: I1 = {v6, v10, v17, v18}, I2 ={v6, v7, v10, v11} and I3 = {v17, v18, v19, v20}. These three
instances cover a range of situations that can occur in this
scenario: I1 represents a situation where there is some inter-
section between rooms for the task, and rooms for interaction
with humans; I2 represents a situation where all the offices
for the primary task are also relevant for the soft goals; and
I3 represents a situation where offices for the primary task
and offices for interaction are disjoint, and far apart.

We start by illustrating the generation of the Pareto fronts
for I1. In Fig. 3, we depict the Pareto front for o′1 and o′2 with
the six points being the values for the deterministic policies.
These are used to prune the product before adding the time
component. In Fig. 4, we compare the optimal Pareto fronts
with the approximated Pareto fronts obtained over the pruned
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Figure 4: Pareto front balancing the objectives of maximising
probability of task completion and maximising expected soft
goal reward, both within deadline d.

model, for different deadlines. Note that the approximated
Pareto curve gets closer to the optimal as we give more im-
portance to maximising probability of task completion within
the deadline. This is because we give more importance to
primary task completion than soft goals, and is due to the
multi-objective problem used for pruning: since we calculate
expected time for the conjunction of task completion and
reward gathering, policies that prioritise only soft goals and
ignore the primary task are not present in the Pareto curve
for o′1 and o′2. Hence, the approximated Pareto front becomes
worse as we give more importance to reward maximisation.

Note that there is a large increase in terms of expected
reward when we allow the value for the probability of task
completion to be slightly less than the calculated maximum,
as the maximum fully ignores the soft goals while there is still
a small probability of not fulfilling the task within the time
bound, regardless of how small that probability is. Thus, we
choose (randomised) policies that achieve 99% of the max-
imum probability of task satisfaction on the approximated
Pareto front. This entails a slight decrease in probability of
success, but as a trade-off we have a significant improvement
in terms of expected soft goal reward.

Furthermore, the reward for soft goals can also be defined
using a notion of information gain from executing certain
actions at certain locations. This can allow us to improve the
accuracy of the models for future planning instances. Thus,
for a robot that is continuously learning its environment in
order to improve its action outcomes and duration models,
trading-off a small percentage of probability of primary task
timely achievement for the achievement of soft goals related
with model learning can also induce performance improve-
ments for other primary tasks in the long run. We note that
this is a simple approach of choosing a policy from the Pareto
front, and more elaborate ones can be defined. In fact, the
Pareto fronts can be seen as a fast policy generation mecha-
nism for different trade-offs between our two objectives.

Finally, in Table 1, we depict the model sizes, computation
times and sub-optimality incurred for I1, I2 and I3. Sub-
optimality is measured as the fraction:

Emax
M′

ϕ′
∣Π(o′

1
,o′

2
)
(cumul≤dr ∣ p0.99)

Emax
M (cumul≤dr ∣ p0.99)

MT
ϕ M′

ϕ′
M′

ϕ′
∣T
Π(o′

1
,o′

2
)

Optimality
(fraction)

d #states CT (s) #states CT (s) #states CT (s)
1200 10,505,498 4025

165,312 461

346,525 1043 0.864
1400 13,811,739 4017 472,678 1244 0.890
1600 17,117,979 4110 598,599 1490 0.954
1800 20,424,219 4160 724,529 1676 0.984
1200 11,524,883 3727

165,312 456

189,076 605 0.860
1400 14,831,123 3855 258,131 683 0.922
1600 18,137,363 3779 326,863 780 0.974
1800 21,443,603 3826 395,572 877 0.996
1200 9,790,652 3905

165,312 460

111,601 378 0.730
1400 13,096,955 3914 152,957 474 0.844
1600 16,403,195 3935 193,650 520 0.938
1800 19,709,435 4028 233,684 651 0.980

Table 1: Model sizes, computation times (CT), and incurred
sub-optimality, for I1(top), I2 (middle), and I3 bottom.

In the above, we write p0.99 to denote that we are maximising
the expected value of cumulative reward only over policies π
such that PrπM′

ϕ′
∣Π(o′

1
,o′

2
)
(ϕ≤d) ≥ 0.99. The experiments were

run on an Intel® CoreTM i7-4930K CPU @ 3.40GHz, with
16GB of RAM. We obtain state space savings of more than
95%, while providing good approximations of the optimal
Pareto curve. Our worst approximation provides an expected
reward that is 73% of the optimal expected reward for the
chosen value for probability of timely task satisfaction. In
terms of running times, we also achieve significant speed-ups,
being twice as fast in the worst case, and generally achieving
speed-ups in the order of three to four.

We finish by noting that variability in execution time in
this example stems from two factors: the underlying uncer-
tainty on action durations, and how many people ask for
water. Our approach allows for the robot to decide whether to
engage in more or less interactions with humans depending
on these factors, i.e., the final outcome is a rich set of policies
that adapt the robot behaviour to different situations during
execution. This type of reasoning is not possible when just
minimising expected time for task completion.

Conclusions

We have presented an approach for the generation of poli-
cies for time-bounded specifications, showing how multi-
objective model checking techniques can be used to generate
policies that balance the achievement of a primary task with
the achievement of a set of soft goals, and are guaranteed
to fulfil the primary task specification with a given prob-
ability. In order to deal with time-bounded specifications,
we introduce a pruning operation that removes transitions
from the MDP before adding a time component to the states.
We showed that this pruning can mitigate the state-space ex-
plosion. We have solved the pruned MDP optimally using
probabilistic model checking techniques, but a relevant topic
for future work is applying approximated solution techniques
to our model. We expect the savings in state space provided
by our pruning technique, along with approximated solutions,
to allow us to solve much larger models. Finally, here we
assume time-independent soft goal rewards. We will also
tackle time-dependent rewards in the future.
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