
Path Planning for Multiple Agents Under Uncertainty

Glenn Wagner, Howie Choset
Carnegie Mellon University

500 Forbes Ave, Pittsburgh PA 15213

Abstract

Multi-agent systems in cluttered environments require path
planning that not only prevents collisions with static obsta-
cles, but also safely coordinates the motion of many agents.
The challenge of multi-agent path finding becomes even more
difficult when the agents experience uncertainty in their pose.
In this work, we develop a multi-agent path planner that con-
siders uncertainty, called uncertainty M* (UM*), which is
based on a prior multi-agent path approach called M*. UM*
plans a path through the belief space for each individual agent
and then uses a strategy similar to M* that coordinates only
agents that are “likely” to collide. This approach has the same
scalability advantages as M*. We then introduce an extension
called Permuted UM* (PUM*) that uses randomized restarts
to enhance performance. We finish by presenting a belief
space representation appropriate for multi-agent path plan-
ning with uncertainty and validate the performance of UM*
and PUM* in simulation and mixed-reality experiments.

Introduction
Many applications, such as robotic warehouses, must co-
ordinate large numbers of agents simultaneously to carry
out their specific tasks. In practice, robots will not execute
planned paths exactly due to unmodeled dynamics as well as
localization and sensing errors, leading to a need for plans
that are robust to significant uncertainty in robot pose. In this
paper, we address the multi-agent path finding with uncer-
tainty (MAPFU) problem by combining the M* multi-agent
path finding (MAPF) algorithm with belief space planning
(Bry and Roy 2011)(Gonzalez and Stentz 2005)(Patil, Van
Den Berg, and Alterovitz 2012)(Prentice and Roy 2009)(Sun
and Torres 2013) to produce uncertainty M* (UM*).

Belief space planning functions by first choosing a sim-
ple, parameterized representation of the probability distri-
bution of the system’s configuration, often a Gaussian for
single agent systems, and then computing a single trajectory
through the resulting belief space. At the intuitive level, be-
lief space planning can be thought of as computing a single
trajectory for the nominal configuration of the system, e.g.,
the center of a Gaussian distribution, while dilating the size
of the agents by the uncertainty in their configuration. We
believe that applying belief space planning to the MAPFU

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem will allow for path planning that scales to large
number of agents in cluttered environments.

We start by analyzing the MAPFU problem and compar-
ing it to the MAPF problem, which does not consider un-
certainty. The analysis shows that the MAPFU is broadly
similar to the MAPF problem, but couples the dynamics of
its constituent agents more tightly. As a result, MAPF algo-
rithms can be adapted to the MAPFU problem but will lose
guarantees of completeness and optimality with respect to
path cost. We then present UM*, a variant of the M* MAPF
algorithm (Wagner and Choset 2011) that uses belief space
planning to solve the MAPFU problem and an extension of
UM* that utilizes random restarts to enhance performance
called permuted UM* (PUM*). We test UM* and PUM*
on simulated agents moving on a 4-connected grid to deter-
mine how their performance scales with increasing number
of robots, and compare those results to those of two alter-
nate approaches for solving the MAPFU. We then use UM*
to generate plans for a mixed-reality system of real and sim-
ulated robots. The resulting plans can be safely executed by
the robots, whereas following plans generated by a MAPF
algorithm that ignores uncertainty led to collisions between
agents.

Prior Work
Several works have successfully solved the MAPFU prob-
lem using Partially Observable Markov Decision Processes
(POMDPs) (Ulusoy et al. 2012)(Miller, Harris, and Chong
2009), generating a control policy over all possible beliefs
as to the configuration of the system. However, doing so
for more than a small number of agents is computation-
ally intractable (Papadimitriou and Tsitsiklis 1987). There-
fore the community has developed a number of MAPFU
algorithms that seek to approximate the full POMDP for-
mulation while minimizing computational cost. Three ba-
sic approaches to the MAPFU problem are dynamic re-
planning (Ferguson, Kalra, and Stentz 2006)(Likhachev et
al. 2005)(Stentz 1993), interaction regions (Dresner and
Stone 2008)(Ferrari et al. 1998)(Hoenig et al. 2016)(Melo
and Veloso 2009), and belief space planning (Bry and Roy
2011)(Gonzalez and Stentz 2005)(Patil, Van Den Berg, and
Alterovitz 2012)(Prentice and Roy 2009)(Sun and Torres
2013).

Dynamic replanning approaches operate by computing

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

577



a deterministic plan, taking a step along the plan, then
observing the result and recomputing the plan. These ap-
proaches work well when the effects of uncertainty are
small over short periods of time. Examples include D* and
other algorithms based on Rapidly-Exploring Random Trees
(RRTs) (Ferguson, Kalra, and Stentz 2006)(Likhachev et al.
2005)(Stentz 1993) that reuse work done in previous plan-
ning steps to allow for rapid, global replanning for single
agents in an unknown or partially known world. Bruce and
Veloso (Bruce and Veloso 2005) applied a replanning ap-
proach to multi-agent systems, combining separate global
path planning with one-step look-ahead velocity selection.
Dynamic replanning approaches will fail if the uncertainty
in single actions is significant or if continuous observation
and replanning during plan execution is not feasible, and re-
quire significant inter-agent communication due to frequent
replanning.

Reactive approaches, such as reciprocal velocity obsta-
cles (Van Berg, Lin, and Manocha 2008)(Hennes, Claes, and
Tuyls 2012), are similar to dynamic replanning, but use re-
active controllers to mediate behavior instead of repeated
planning. Using reactive controllers allows for higher update
rates and requires less communication. Reactive approaches
work well in open environments, where resolving a single
conflict between a pair of agents is relatively easy. However,
these approaches will fail or perform poorly in tight environ-
ments, such as those featuring long corridors wide enough
for only a single agent, as preventing conflicts in such envi-
ronments require sustained, deliberate cooperation.

An alternate approach specific to multi-agent systems
with uncertainty is to identify a limited set of regions where
agents may interact. In reservation based approaches, the
planner reserves the interaction regions for specific agents,
and requires other agents to wait safely outside the inter-
action region until the agent that has the region reserved
has passed through (Dresner and Stone 2008)(Ferrari et al.
1998)(Hoenig et al. 2016). Reservation based approaches
generally do not explicitly consider uncertainty in the paths
of single agents, and may lead to agents waiting for pro-
longed periods of time if an agent with a reservation for an
interaction region is delayed.

Melo and Veloso (Melo and Veloso 2009) exploited in-
teraction regions to produce a simplified version of the
full POMDP formulation, called a Decentralized Sparse-
Interaction Markov Decision Process (DEC-SIMDP). An
agent could only observe the state of other agents when
both were in designated interaction regions, which were
also the only regions where agent-agent interactions could
lead to increased cost. As a result, the multi-agent POMDP
was restricted to a small portion of the workspace, substan-
tially reducing the computational cost of computing a policy.
However, like reservation based systems, DEC-SIMDPs are
only applicable to environments containing a low number of
small, well defined interaction regions. This is most likely to
be the case for structured environments like road networks,
hallways, or warehouses, and unlikely to be true for cluttered
environments

Belief space planning is commonly employed to solve the
single agent path planning problem with uncertainty. A sim-

ple representation, such as a Gaussian, is chosen for the un-
certainty in agent position and a conventional path planning
algorithm such as A* or RRTs are used to compute a sin-
gle trajectory through the resultant belief space (Bry and
Roy 2011)(Gonzalez and Stentz 2005)(Patil, Van Den Berg,
and Alterovitz 2012)(Prentice and Roy 2009)(Sun and Tor-
res 2013). Work with non-Gaussian beliefs has also been
done (Melchior and Simmons 2007)(Platt et al. 2012). Be-
lief space planning is more efficient than solving the full
POMDP because it computes a single nominal trajectory,
rather than a control policy over all possible belief states.
The only application of belief space planning to the MAPFU
problem of which the authors are aware was done by van
den Berg, Abbeel and Goldberg (van den Berg, Abbeel, and
Goldberg 2011). They used a priority planner to perform be-
lief space planning for a multi-agent system in an unclut-
tered environment with relatively small uncertainty.

Problem Definition
The objective of the MAPFU problem is to find a minimal
cost path from some initial distribution of agent states bs
to one of a set of goal distributions bf sufficiently concen-
trated around a goal configuration, while satisfying a safety
condition. Let the system consist of n agents ri, i ∈ I =
{1, . . . , n} where each agent ri has a discrete configura-
tion space Qi and an action set Ai. The configuration space
Qi of each agent is augmented with a special collision state
coli ∈ Qi. If ri collides with another agent, ri is removed
from the workspace and placed at coli. The full system is de-
scribed by a joint configuration space Q =

∏
i Q

i and joint
action set A =

∏
i Ai. Taking a joint action incurs a cost

that is the sum of the costs of taking the individual agent
actions.

The belief space Bi for a single agent is the space of belief
states

Bi =

⎧⎨
⎩bi : Qi → R

≥0

∣∣∣∣∣∣
∑

qi∈Qi

bi(qi) = 1

⎫⎬
⎭ (1)

while the joint belief space B is the space of joint beliefs
b : Q → R

≥0. The belief dynamics Dyni : Bi × Ai →
Bi maps a belief for the state of ri to the belief that results
when ri takes a given action. The belief dynamics of the
full system Dyn : B × A → B are formed by applying the
belief dynamics of the individual agents then checking for
potential collisions.

The MAPFU problem can be formulated with multiple
different safety conditions. Obvious choices include placing
bounds on the probability that each robot is involved in a
collision, the probability of any collision occurring, or on the
total expected number of collisions. In this paper, we focus
on the case where each agent is constrained to keep its prob-
ability of colliding with other agents below some threshold
δcol, i.e. ∀ri, bf (coli) < δcol. A constraint violation occurs
if the probability of a robot colliding ever exceeds δcol. We
chose this approach because it guarantees fairness, i.e. ev-
ery robot will have at least some probability of completing
its task. We also believe that plans where each robot has at

578



most some small probability of collision will be easier to
’repair’ via later replanning than a plan where one or more
robots are guaranteed to collide with other robots.

Structure of the MAPFU problem
This paper approaches the MAPFU problem by adapting
algorithms developed to solve the MAPF problem to be-
lief space planning. Efficient MAPF algorithms, particularly
those that offer completeness guarantees and cost bounds
(Sharon et al. 2012)(Wagner and Choset 2011), rely on a
direct product structure possessed by MAPF problems that
is not present in MAPFU problems. More specifically, the
direct product structure of the MAPF problem means that
both the configuration space and dynamics of the full system
are the Cartesian product1 of the single agent configuration
spaces and dynamics. Furthermore, each agent is subject to
a set of n − 1 constraints requiring that it avoid collision
with the other agents. Taken together, these facts imply that
if a solution exists for a MAPF problem, then a solution ex-
ists for any subproblem created by selecting a subset of the
agents. As a result, MAPF algorithms can efficiently solve
large problems by combining solutions to constituent sub-
problems.

The MAPFU problem lacks the direct product structure,
because the belief dynamics of the constituent agents are
inherently coupled. Specifically, a small overlap in the be-
lief state of two agents will result in the belief state of both
robots being pruned, to remove the conflicting states, with-
out necessarily causing a constraint violation. As a result,
an agent can reach belief states as part of a system that it
would be unable to reach on its own. In the formulation of
the MAPFU problem described in the previous section, this
means that it is possible to construct problems that have so-
lutions, but which contain subproblems that do not have any
solutions.

Consider the system of three agents in Fig. 1a where each
agent has a single action available at each state. To simplify
the example, we assume that actions are deterministic but
collisions are stochastic, with a 20% chance of agents r2 and
r3 colliding while at states e and h, and a 50% chance of a
collision between r1 and r2 at states c and f respectively.
As a result, the cumulative probability of r2 colliding with
another agent is 60%. Therefore, if the collision threshold is
59%, the problem has no solution.

Now consider adding a fourth agent r4 (Fig. 1b) with two
possible paths: a cheap path through k that entirely avoids all
other agents and an expensive path through j that has a 20%
chance of colliding with r3. There is no solution if r4 takes
the cheap path. However, if r4 takes the more expensive path
then r3 only has a 16% chance of colliding with r2, as it may
have collided with r4 before reaching state h. As a result, the
cumulative probability of r2 colliding with another agent is
only 58% which satisfies the collision threshold. The solu-
tion effectively trades slack in the safety constraint on r4 to
satisfy the constraint on r2.

1If f : A → X and g : B → Y , then f ×g : A×B → X×Y
and (f × g)(a, b) �→ (f(a), g(b))

(a) (b)

Figure 1: (a) A three agent problem with a collision thresh-
old of δcol = 0.59. Each agent has a single action at each
state. There is a 20% chance of a collision if states e and
h are occupied simultaneously, and a 50% chance of col-
lision if states c and f are occupied simultaneously. There
is no solution, the probability of r2 colliding is 0.6. In (b)
a fourth agent is added with two paths: an expensive path
passing through j and a cheap path passing through k. There
is a 20% chance of collision if states g and j are occupied
simultaneously. The only solution is when r4 chooses the
more expensive path, at which point the probability of r2

colliding is 0.58 just below the threshold value.

Because slack in the constraints in one subproblem can
be traded to satisfy constraints in a second subproblem,
MAPF algorithms reliant on solving independent subprob-
lems will loose theoretical guarantees on completeness and
path quality when adapted to MAPFU problems. However,
we note that incomplete methods have long been used suc-
cessfully to solve interesting MAPF problems (Erdmann and
Lozano-Perez 1986)(van den Berg, Abbeel, and Goldberg
2011)(Jansen and Sturtevant 2008). Combined with the fact
that creating a solvable problem with unsolvable subprob-
lems required carefully tuned values, we believe the incom-
pleteness of MAPF algorithms adapted to MAPFU problems
is unlikely to be problematic in practice.

The counterintuitive behavior displayed in Fig. 1, wherein
additional conflicts can be added to produce a valid solution,
is specific to the formulation of the MAPFU problem used
in this paper and would not be present in alternate formu-
lations that place a single, global constraint on the agents,
such as a maximal number of expected collisions. However,
a single, global constraint means that the full problem could
not be cleanly split into subproblems for efficient solution
by an adapted MAPF algorithm; some method of budgeting
how many expected collisions each subproblem would be
permitted would be necessary. Such work is out of the scope
of the current paper, but we investigated an optimization ap-
proach inspired by (Stentz 2002) in (Wagner 2015) to solve
the MAPFU problem subject to an expected number of col-
lisions constraint.The resulting paths were similar to those
found using the MAPFU formulation in this paper, but were
much more computationally expensive to compute.

579



Uncertainty M*
In this section we introduce UM*, a variant of the M*
MAPF algorithm (Wagner and Choset 2011) adapted to
solve MAPFU problems by planning paths in the belief
space of the system. UM* differs from M* primarily in ex-
ploring the joint belief space of the system, rather than the
joint configuration space as does M*. UM* also replaces the
structure that M* uses to track constraint violations, called
the collision set, with the conflict and coupled sets to account
for the shift from a hard no-collision constraint in M* to a
constraint on likelihood that an agent collides with another
agent in UM*.

UM* functions by alternating between running A* on
a low-dimensional search graph and expanding the search
graph to generate alternate paths around states found by A*
that contain constraint violations. The search graph is ini-
tially constructed using the individual policies of the agents
that describe the optimal path for each agent if no other
agents were present. Every vertex vk in the search graph
maintains a conflict set Ck of agents that violate their col-
lision probability constraints at some successor of vk in the
A* search tree and a coupled set Γk of agents that may be
able to prevent the constraint violation by taking a different
action vk. The coupled set is then used to grow the search
graph to provide alternate paths around constraint violations.
We will first define the search graph before providing a de-
tailed algorithmic description of UM*.

The search graph explored by UM* is a subgraph of a
(possibly infinite) graph that represents the joint belief space
called the joint belief graph G = {V,E}. Each vertex in the
vertex set vk ∈ V represents a joint belief state bk ∈ B .
Edges correspond to a subset of the feasible actions at bk.
As UM* finds constraint violations at successors of vk, the
set of actions considered at vk grows, expanding the search
space in a fashion that will be described in detail later in this
section. An edge in the edge set ek� ∈ E connects vk to the
vertex v� that corresponds to the belief Dyn(bk, ak�).

With the search graph defined, we now will give a detailed
description of UM*. UM* begins by computing a separate
individual policy φi : Bi → Ai for each agent ri that de-
scribes the optimal action for the agent to take from any
belief state. The individual policy computed by planning a
path in the belief graph of ri, which is analogous to the joint
belief graph but for a single agent. In practice, the policy is
computed in a lazy fashion.

Once the individual policies are initialized, UM* enters a
standard A* search loop (Algorithm 1) to explore the search
graph. The vertices in the open list are sorted by their f-
value, f = g + h, where g is the current upper bound on
the cost of the optimal path to a given vertex and h is a
heuristic, computed by taking the sum of the cost-to-go of
the individual policies.

When UM* expands a vertex vk it only considers a subset
of all possible actions Ak ⊂ A. If the conflict set Ck con-
taining the agents that violate their collision probability con-
straints at a successor of vk is empty then each agent takes
the action determined by its individual policy. However if Ck

is not empty, then to prevent the constraint violations UM*
considers alternate actions for the agents in the coupled set

Algorithm 1 FindPath

1: function FINDPATH(bs)
2: open list ← {VERTEXFROMBELIEF(bs)}
3: while open list �= ∅ do
4: vk ← open list.pop best()
5: if vk.closed then
6: continue
7: vk.closed ← True
8: if ISGOAL(vk) then
9: return trace back ptr to find optimal path to vk

10: for a ∈ Ak (Equation 2) do
11: v� ← VERTEXFROMBELIEF(Dyn(bk, a))
12: BACKPROPAGATE(vk, C�,Γ� open list)
13: v�.backpropagation set.append(vk)
14: if v�.closed ∨ VIOLATESCONSTRAINT(v�) ∨ v�.g

≤ vk.g + COST(a) then
15: continue
16: v�.g ← vk.g + COST(a)
17: v�.back ptr = vk
18: open list.insert(v�)
19: return No Solution

Algorithm 2 Backpropagate constraint violations

1: function BACKPROPAGATE(vk, C�,Γ�,open list)
2: temp ← Γk

3: Ck ← Ck ∪ C�

4: Γk ← Γk ∪ Ck ∪ri∈C�
ζ
(
ri, ek�

)
5: if temp �= Γk then
6: vk.closed = False
7: open list.insert(vk)
8: for vm ∈ vk.backpropagation set do
9: BACKPROPAGATE(vm, Ck,Γk, open list)

Γk

Ak =
∏
i

{
Ai ri ∈ Γk

φi
(
bik
)

ri �∈ Γk

(2)

where Γk is defined as the agents that are either in Ck or
have a non-zero probability of colliding with an agent in
Ck at a successor of vk. Given the our formulation of the
MAPFU problem, resolving the constraint violations given
by Ck could potentially require any agent to change its ac-
tion. However, Γk contains the agents which directly con-
tribute to the known constraint violation and thus will have
the strongest impact in preventing the violations. As de-
scribed in the section on the structure of the MAPFU prob-
lem, the resulting algorithm will be incomplete, but should
be able to solve most interesting problems. The computation
of Ck and Γk is described in detail later.

For each action ak� ∈ Ak, UM* constructs the vertex
v� corresponding to the belief Dyn(bk, ak�). UM* marks vk
as a predecessor of v� by adding vk to the backpropagation
set of v�. Then for each agent ri, UM* finds the agents that
may collide with ri when the system traverses the edge ek�
and stores the result in ζ

(
ri, ek�

)
. If no agents violate their

collision probability constraints at v� then the g-value of v�

580



is updated and v� is added to the open list, if appropriate.
If the conflict set of v� is non-empty UM* has found a

new path to a constraint violation and needs to update cou-
pled sets of vk and all predecessor states (Algorithm 2). First
UM* adds C� to Ck. Then Ck is added to Γk. Finally, for
every ri ∈ C�, UM* adds ζ

(
ri, ek�

)
to Γk. If Γk changes

then Ak is also changed, in which case vk is added back to
the open list so the new actions can be explored. Because
agents are never removed from Γk, vk will be returned to
the open list at most n times, avoiding infinite loops. Then
the process is repeated recursively to update the conflict and
coupled sets of the predecessors of vk, which are stored in
the backpropagation set of vk.

The search loop continues until UM* expands a vertex
which corresponds to a goal belief, at which point UM* can
reconstruct the path.

Algorithmic Improvements
In this paper we made use of several enhancements to the
basic UM* algorithm. The first is that we replaced A* with
a variant specialized for multi-agent path planning called
Operator Decomposition (OD) (Standley 2010). In the sec-
ond enhancement, UM* was modified to use the recursive
framework developed for recursive M* (rM*) (Wagner and
Choset 2011) that breaks the full problem into separate sub-
problems. The conflict set and coupled set are broken into
elements that contain disjoint sets of mutually interacting
agents. Thus if at some successors of vk r1 has some chance
of colliding with r2 which may in turn collide with r3, while
r4 may collide with r5, the coupled set in the recursive for-
mulation of vk would be {{r1, r2, r3}, {r4, r5}}, containing
two disjoint elements, rather than {r1, r2, r3, r4, r5}. When
UM* generates Ak it computes a single, optimal joint ac-
tion for each coupled set element by calling UM* on just the
agents in the coupled set element. Effectively UM* treats the
coupled set element as a temporary meta-agent whose policy
is computed with a recursive call to UM* If a single coupled
set element contains all the agents in the subproblem then
UM* considers all possible joint actions, forming the base
case of the recursion.

We also inflated the heuristic h by ε > 1. Doing so greatly
reduces planning time, but increases path cost by up to a
factor of ε.

Finally, we examined utilizing randomized restarts. UM*
is a deterministic algorithm, but the order in which vertices
with the same f-value are expanded, called tie-breaking, is
arbitrary. We have found that the performance of M*, and by
inference UM*, on any given problem is sensitive to small
changes in tie-breaking. Furthermore, we have found that
M* usually either finds a solution quickly or times out. As
a result, we believe that the distribution of UM* planning
time for a given problem over tie-breaking strategies has a
peak at a relatively small duration followed by a long tail.
Under these conditions, it can be more efficient to divide
the available time into multiple instances with the planner
using different strategies in each instance (Luby, Sinclair,
and Zuckerman 1993) than to run a single strategy for all
the available time. Cohen et al (Cohen et al. 2016) success-
fully applied randomized restarts to a deterministic MAPF

algorithm by splitting the available planning time into equal
instances and using a different permutation of agent order
in each instance. Changing the agent order only changed the
planner’s internal representation, i.e. swapping the labels of
r1 and r4, and did not change an agent’s initial or goal lo-
cation. Instances were solved sequentially until a solution
was found. We applied the same strategy to UM* to produce
permuted UM* (PUM*).

Belief Representation for MAPFU
In most of the work on single agent belief space planning,
the belief state of the system is represented by Gaussian dis-
tributions (van den Berg, Abbeel, and Goldberg 2011)(Bry
and Roy 2011)(Gonzalez and Stentz 2005)(Patil, Van Den
Berg, and Alterovitz 2012)(Prentice and Roy 2009)(Sun and
Torres 2013) to reflect imperfect localization. Gaussian dis-
tributions could be used with UM* but cannot represent
low probability conflicts between robots with high fidelity.
Furthermore, we are interested in problems where the indi-
vidual agents are highly capable and the primary challenge
arises from the lack of synchronization between robots, for
which Gaussian distributions are inappropriate. Therefore,
we model the belief state of each agent as a distribution over
the position of the agent along the agent’s intended trajec-
tory (Fig. 2). Because the belief distribution conforms to the
planned trajectory of the agent, planning can be done even
when the support of the belief distribution is comparable in
size to or larger than the scale of the features in the environ-
ment.

Allowing agents to run both ahead and behind schedule
would case problems during planning, as the belief state for
the agents running ahead of schedule would depend upon
parts of the path that have not yet been computed. We there-
fore assume that the nominal behavior of the agent is to
move as quickly as possible, with all uncertainty being mod-
eled as delays. As a result, the belief distribution of the agent
is fully defined throughout planning.

Ideally, the agents would have a continuous distribu-
tion in possible velocities, but this is impractical when us-
ing a graph-based representation of the agent configuration
spaces. Instead, each agent is modeled as delaying at its cur-
rent location instead of taking its planned action with proba-
bility Pdelay. During execution, each agent counted the num-
ber of unplanned delay actions it took, and would subse-
quently skip an equal number of planned delay actions. Thus
planned delay actions served as an indirect synchronization
action.

The belief state bik of ri was represented by two se-
quences: posik : {1, . . . ,m} → V i and probi

k :
{1, . . . ,m} → [0, 1]. posik was the planned trajectory for
ri consisting of a sequence of grid cells up to the cur-
rent position posik (1), and probik contained the probabili-
ties that ri occupied each state in posik. The probability that
ri had collided with another robot was given implicitly by
bik(col

i) = 1−∑m
j=1 probi

k (j). Tracking the full joint prob-
ability would be computationally impractical, so the belief
distributions for each agent were assumed to be independent.

As defined, the support of the belief of ri would cover

581



Figure 2: Typical step in a 40-agent plan computed by UM*.
The gray circles are obstacles. Colored stars denote the
goal configuration of agents. The colored bars represent the
planning-time belief state as to where the agents would be.
The color of more probable states are more saturated. The
colored circles denote the actual position of the agents in
one realization of the plan.

the entire path taken by ri, even though the probability mass
at many states would be infinitesimal. Therefore, states at
the front and back of the distribution were removed if the
probability mass at those states were less than some thresh-
old value Pprune. After states are pruned, the remaining be-
lief was re-normalized to preserve the total probability mass
of the belief. For the simulated experiments, a value of
Pprune = 0.001 was found to be appropriate.

Results
We ran two sets of experiments. The first was a simula-
tion study in a discrete world with agents whose dynam-
ics exactly matched those assumed in the previous section.
We then conducted a set of experiments in a mixed-reality
simulation which combined physical robots with simulated
robots tuned to match the continuous time and space dynam-
ics of the physical robots. Simulated robots were employed
because the available lab space was insufficient to accom-
modate enough physical robots. The mixed-reality tests also
served to validate that the belief representation described in
the previous section reasonably models robots with continu-
ous dynamics and velocity distributions.

Simulation Results
UM* was tested on randomly generated worlds, where each
trial took place in a 32x32 four-connected grid of cells, with
a 20% probability of a given cell being marked as an obstacle
(Fig. 2). Unique initial and goal positions for between 5 and
40 agents were chosen randomly within the same connected
component of the workspace. Any action by an individual
agent, including waiting, incurred a cost of one, although an

0 5 10 15 20 25 30 35 40
Number of Robots

0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

Success Rate

UM* PUM*

0 5 10 15 20 25 30 35 40
Number of Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

Median Time to Solution

Figure 3: Comparison of performance of UM* and PUM*
using Pdelay = 0.1, δcol = 0.1, and ε = 3. PUM* split
the available time into six separate instances. The left figure
gives the percentage of trials that were solved successfully in
under five minutes and the right plot gives the median time
to find solutions.

agent could wait at its assigned goal with zero cost. Agent
actions where discrete; no kinematics were simulated. Un-
less otherwise stated, Pdelay = 0.1, δcol = 0.1, and the heuris-
tics used by M* and UM* were inflated by a factor of ε = 3.

Each trial was given 5 minutes to find a solution. 100
random environments were tested for a given number of
agents. We present the percentage of trials that were suc-
cessful within 5 minutes as well as the median time required
to find solutions. Run time is plotted on a logarithmic scale.

We start by comparing UM* to PUM*, where PUM*
splits the five available minutes for planning into six in-
stance each of which use a different permutation of agent or-
der (Fig. 3). PUM* shows noticeably improved performance
compared to UM* for between 15 and 35 agents. We thus
use PUM* for the rest of the results on the grid.

We then compared PUM* to two alternative approaches
to solving the MAPFU problem: running rM* without ac-
counting for uncertainty and belief space planning based on
priority planners (Erdmann and Lozano-Perez 1986).

PUM* was first compared to rM* which did not account
for unplanned delays (Fig. 4). Not accounting for uncer-
tainty allowed rM* to solve much larger problems than
PUM*, achieving similar success rates on problems of 180
agents as PUM* did on problems with 40 agents (Fig. 4a).
However, the plans computed by rM* were not safe, with a
significant number of agents colliding with other agents with
probability near one (Fig. 4b). In contrast, the probability of
a robot colliding while following a PUM* paths is bounded
by the collision threshold to within random noise from using
a limited number of simulations. Thus accounting for uncer-
tainty is expensive, but necessary to maintain safety.

We believe that there are two major factors that increased
the difficulty of planning with uncertainty compared to ig-
noring uncertainty. Tracking a belief distribution for each
robot effectively causes each robot to occupy a larger por-
tion of the work space, increasing the effective robot density.
This will in turn increase the number potential conflicts be-
tween agents the planner has to resolve. The second issue is
that the belief distribution trails behind the nominal position
of each agent. As a result, constraint violations can become
inevitable a number of time steps before they actually occur.

582



0 50 100 150 200
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)
PUM* rM*

0 50 100 150 200
Number of Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

(a) Planning performance

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
um

be
ro

fR
ob

ot
s

PUM*
rM*

(b) Collision probability during
execution

Figure 4: Comparison between PUM* and rM*, where rM*
ignores the probabilistic dynamics. Each agent has a 10%
chance of delaying rather than taking its planned action. The
heuristics of PUM* and rM* are inflated by 3. (a) The per-
centage of trials that were solved successfully in under five
minutes are plotted on the left and the median time to find
solutions are plotted on the right. (b) Every trial solved by
both PUM* and rM* was executed 100 times to compute
the collision probability of each agent, and are plotted in a
histogram on a per-agent basis.

This results in deep local minima that are computationally
expensive to escape.

A priority planner is a MAPF algorithm (Erdmann and
Lozano-Perez 1986) wherein each agent is assigned a prior-
ity. Paths are then computed for the agents one at a time in
declining order of priority with low priority agents treating
high priority agents as moving obstacles. Priority planners
can generally find solutions to the MAPF problem quickly,
but are not guaranteed to find any path, much less the op-
timal path. van den Berg, Abbeel and Goldberg (van den
Berg, Abbeel, and Goldberg 2011) have previously applied
priority planners to the MAPFU problem using belief space
planning. Plans for individual agents were computed using
RRT in an environment devoid of static obstacles. Individual

0 5 10 15 20 25 30 35 40
Number of Robots

0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

Success Rate

PUM* Priority

0 5 10 15 20 25 30 35 40
Number of Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

Median Time to Solution

Figure 5: Comparison of performance of PUM* and belief
space priority planning. All trials were run with Pdelay = 0.1,
δcol = 0.1, and ε = 3. The left figure gives the percentage
of trials that were solved successfully in under five minutes
and the right plot gives the median time to find solutions.

10 15 20 25 30 35 40
Robots without collision

0

50

100

150

200

250

300

N
um

be
ro

fT
ria

ls

UM*
rM*

(a) Planning horizon: 4 steps

10 15 20 25 30 35 40
Robots without collision

0

50

100

150

200

250

300

N
um

be
ro

fT
ria

ls

UM*
rM*

(b) Planning horizon: 10 steps

Figure 6: Number of robots that reach their goals without
collision with receding horizon planning. Trials that timed
out are not counted.

agents were able to localize using static beacons, resulting in
belief distributions which were small compared to those en-
countered in our test cases (Fig. 2).

We used a different version of priority planning in the
belief space dictated by our discrete representation of the
world. Individual agent plans were computed using A* with
a heuristic inflated by a factor of 3. The resulting plans had to
satisfy the collision probability constraints for the agent be-
ing planned for as well as all higher priority agents. Agents
were assigned priority in decreasing order of the cost of their
paths in the absence of other agents. If the planner deter-
mined that the priority order prevented a solution from be-
ing found, which occurred in only 3 trials, the agent that was
unable to find a solution was set as the highest priority agent
and planning was restarted. If doing so caused a previously
considered priority ordering to be revisited then the priority
order was randomly permuted.

The priority planner was dramatically outperformed by
PUM* (Fig. 5). We believe there are several reasons for the
poor performance of the priority planner. First of all, the be-
lief space is very large, which means that the priority planner
is unlikely to determine whether a given priority order ex-
cludes a solution. Secondly, the priority planner is prone to
finding constraint violations far from where action must be
taken to resolve said constraint. Let r1 and r2 be high prior-
ity agents that have a low probability of colliding late in their
path. If r3 encounters r2 early in its path then the increased
probability of colliding may cause r2 to violate its constraint
when it encounters r1 much later. Because the priority plan-
ner can only alter the path of r3 it may have to back track a
long way and explore a large fraction of the belief space of
r3 to find a path for r3 that avoids r2. Depending upon the
inflation factor used, PUM* would have the option of alter-
ing the path of r2 to avoid interacting with r1 when it finds
the constraint violation, which would require less backtrack-
ing and thus be much faster.

Finally, we explored receding horizon approaches that re-
plan regularly out to a limited depth, thus allowing knowl-
edge of robot location during the run to be utilized. In the
implementation described here, the agents executed half of
their computed plan before replanning. Therefore, if plan-
ning was conducted to a depth of 4 actions, then the agents
would execute two actions before replanning.

Receding horizon planning was tested on 100 randomly
generated problems containing 40 robots, with each trial run

583



(a) Snapshot of experiment

0 5 10 15 20 25
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
in

im
um

D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(b) rM*

0 5 10 15 20 25 30
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
in

im
um

D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(c) UM*

Figure 7: (a) Snapshot of UM* experiment execution. The
boxes are the grid cells over which control policies in the
plan for at least one robot were defined. Circles denote sim-
ulated robots. The colored arrows depict the control poli-
cies in the current planned belief for each robot; more satu-
rated policies are more probable. We compare the minimum
distance between the centers of the robots while executing
plans computed using rM*, neglecting uncertainty (b), and
UM* (c). The red dashed lines mark 1 robot diameter; dis-
tances below this value indicate collision.

10 times, using both rM* and UM* as planners. Each trial
was given 30 seconds total of planning time. If all robots did
not reach their goals before the budgeted planning time was
exhausted the trial was counted as a failure. UM* was run
with the collision threshold set to δcol = 0.075 for each plan-
ning iteration. In all other respects the environments were
the same as in other trials.

For short planning horizons (Fig. 6a) UM* was prone to
live locks that caused many time outs. When using longer
planning horizons, UM* produced much safer paths than
rM* (Fig. 6b), confirming the benefits of accounting for un-
certainty in planning.

Experimental Results
We then validated UM* in a mixed-reality simulation fea-
turing three physical Scribbler robots and three simulated
robots with kinematics tuned to match the Scribblers. Local-
ization was provided by an overhead camera. The workspace
was divided into a grid of rectangular cells. Five control poli-

cies were defined over each grid cell; one to wait in place
and one continuous piecewise-linear control policy to move
the robot out of the cell through each edge of the cell (Fig.
7a). Calibration runs indicated that the robots could execute
the non-wait motion primitives in a minimum of 0.6 sec-
onds and an average of 0.9 seconds. A delay probability of
0.3 was chosen to match the distribution. Execution of plans
was fully decentralized. Each robot was given a path in the
form of a sequence of beliefs over control policies. A robot
tracked its progress through the plan by selecting either the
current belief in the plan or its successor depending upon
which had greater probability density at the robot’s current
position. The robot then executed the most probable control
policy from that belief. Control policy selection and the con-
trol policies themselves ran at approximately 10 Hz.

We tested plans computed using rM* (neglecting uncer-
tainty) and UM*. The minimal center-center distance be-
tween robots over the course of a run is plotted in Fig. 7b for
rM* and Fig 7c for UM*. The distance dropped below one
robot diameter (the red dashed line) when following the rM*
plan as a result of a simulated robot running over a physical
robot. In contrast, the robots were able to safely execute the
UM* plan, demonstrating its benefit for a physical system.

Conclusions
In this paper, we contributed to the literature on MAPFU
problems, leveraging our previous MAPF work. The MAPF
problem has a direct product structure on which many effi-
cient MAPF algorithms rely, particularly those that have op-
timality and completeness guarantees. We started by show-
ing that the MAPFU problem does not have the direct
product structure. As a result, while MAPF algorithms that
rely on the direct product structure can be adapted to the
MAPFU problem, they will lose any guarantees of com-
pleteness or optimality. We then presented UM*, a variant
of rM* for the MAPFU problem and an extension, PUM*
that leverages randomized restarts to improve performance.
We then introduced a non-Gaussian belief space represen-
tation that is appropriate for multi-agent systems when in-
dividual agents can localize themselves well, but have lit-
tle ability to synchronize their actions with other agents. We
then showed that PUM* outperforms alternate approaches to
the MAPFU problem in simulation and mixed-reality tests.
We also showed that UM* was beneficial in a receding hori-
zon framework for longer planning horizons.

The improvement shown by PUM* over UM* was im-
pressive for such a small change. However, the randomiza-
tion in tie-breaking by permuting the agents is indirect and
coarse. In particular, all instances used the same individual
policies. We will explore whether applying vertex-level ran-
domized tie-breaking at both the level of UM* and the in-
dividual policies would further enhance the performance of
UM*.

Acknowledgments This work was supported by ONR
Subcontract to the Applied Physics Lab entitled ”Au-
tonomous Unmanned Vehicles Applied Research Program”
Prime Contract Number N00024-13-D-6400

584



References
Bruce, J. R., and Veloso, M. 2005. Real-time multi-robot
motion planning with safe dynamics. In Multi-Robot Sys-
tems. From Swarms to Intelligent Automata, volume III. 1–
12.
Bry, A., and Roy, N. 2011. Rapidly-exploring random belief
trees for motion planning under uncertainty. In IEEE Inter-
national Conference on Robotics and Automation, 723–730.
Cohen, L.; Uras, T.; Kumar, T. K. S.; Xu, H.; Ayanian, N.;
and Koenig, S. 2016. Improved Solvers for Bounded-
Suboptimal Multi-Agent Path Finding. In International
Joint Conference on Artificial Intelligence.
Dresner, K., and Stone, P. 2008. A Multiagent Approach to
Autonomous Intersection Management. Journal of Artificial
Intelligence Research 31:591–653.
Erdmann, M., and Lozano-Perez, T. 1986. On multiple mov-
ing objects. In IEEE International Conference on Robotics
and Automation, volume 3, 1419–1424. Institute of Electri-
cal and Electronics Engineers.
Ferguson, D.; Kalra, N.; and Stentz, A. 2006. Replanning
with rrts. In IEEE International Conference on Robotics and
Automation, 1243–1248. IEEE.
Ferrari, C.; Pagello, E.; Ota, J.; and Arai, T. 1998. Multi-
robot motion coordination in space and time. Robotics and
Autonomous Systems 25(3-4):219–229.
Gonzalez, J. P., and Stentz, A. 2005. Planning with Uncer-
tainty in Position: an Optimal Planner. In IEEE International
Conference on Intelligent Robots and Systems.
Hennes, D.; Claes, D.; and Tuyls, K. 2012. Multi-robot colli-
sion avoidance with localization uncertainty. In Proceedings
of the 11th International Conference on Autonomous Agents
and Multiagent Systems, 4–8.
Hoenig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.;
Ayanian, N.; and Koenig, S. 2016. Multi-Agent Path
Finding with Kinematic Constraints. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling.
Jansen, M., and Sturtevant, N. R. 2008. Direction maps for
cooperative pathfinding. In AAAI Conference on Artificial
Intelligence and Interactive Digitial Entertainment poster,
185–190.
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime Dynamic A*: An Anytime, Re-
planning Algorithm. In International Conference on Auto-
mated Planning and Scheduling.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters (June).
Melchior, N. A., and Simmons, R. 2007. Particle RRT
for path planning with uncertainty. In IEEE Conference on
Robotics and Automation, number April, 10–14.
Melo, F. S., and Veloso, M. 2009. Learning of Coordination:
Exploiting Sparse Interactions in Multiagent Systems. In In-
ternational Conference on Autonomous Agents and Multia-
gent Systems.

Miller, S. A.; Harris, Z. A.; and Chong, E. K. P. 2009. Coor-
dinated guidance of autonomous UAVs via nominal belief-
state optimization. In Proceedings of the American Control
Conference, 2811–2818.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The Com-
plexity of Markov Decision Processes. Mathematics of Op-
erations Research 12(3):441–.
Patil, S.; Van Den Berg, J.; and Alterovitz, R. 2012. Estimat-
ing probability of collision for safe motion planning under
Gaussian motion and sensing uncertainty. In IEEE Interna-
tional Conference on Robotics and Automation, 3238–3244.
Platt, R.; Kaelbling, L.; Lozano-Perez, T.; and Tedrake, R.
2012. Non-Gaussian belief space planning: Correctness and
complexity. In IEEE International Conference on Robotics
and Automation, 4711–4717.
Prentice, S., and Roy, N. 2009. The Belief Roadmap: Ef-
ficient Planning in Belief Space by Factoring the Covari-
ance. The International Journal of Robotics Research 28(11-
12):1448–1465.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2012. Meta-Agent Conflict-Based Search For Optimal
Multi-Agent Path Finding. Symposium on Combinatorial
Search 97–104.
Standley, T. 2010. Finding Optimal Solutions to Coopera-
tive Pathfinding Problems. In AAAI Conference on Artificial
Intelligence.
Stentz, A. 1993. Optimal and Efficient Path Planning for
Unknown and Dynamic Environments. International Jour-
nal of Robotics and Automation 10:89–100.
Stentz, A. 2002. CD*: A Real-Time Resolution Optimal Re-
Planner for Globally Constrained Problems. In AAAI Con-
ference on Artificial Intelligence, 605–612.
Sun, W., and Torres, L. 2013. Safe Motion Planning for
Imprecise Robotic Manipulators by Minimizing Probability
of Collision. In International Symposium on Robotics Re-
search, 1–16.
Ulusoy, A.; Smith, S. L.; Ding, X. C.; and Belta, C. 2012.
Robust multi-robot optimal path planning with temporal
logic constraints. In IEEE International Conference on
Robotics and Automation, 4693–4698. Saint Paul, Min-
nesota, USA: Ieee.
Van Berg, J. D.; Lin, M.; and Manocha, D. 2008. Reciprocal
velocity obstacles for real-time multi-agent navigation. In
Proceedings - IEEE International Conference on Robotics
and Automation, 1928–1935. Ieee.
van den Berg, J.; Abbeel, P.; and Goldberg, K. 2011. LQG-
MP: Optimized path planning for robots with motion un-
certainty and imperfect state information. The International
Journal of Robotics Research 30(7):895–913.
Wagner, G., and Choset, H. 2011. M*: A Complete Mul-
tirobot Path Planning Algorithm with Performance Bounds.
In IEEE International Conference on Intelligent Robots and
Systems.
Wagner, G. 2015. Subdimensional Expansion: A Frame-
work for Computationally Tractable Multirobot Path Plan-
ning. Phd, Carnegie Mellon University.

585




