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Abstract

This paper presents a novel approach for learning STRIPS ac-
tion models from examples that compiles this inductive learn-
ing task into a classical planning task. Interestingly, the com-
pilation approach is flexible to different amounts of available
input knowledge; the learning examples can range from a set
of plans (with their corresponding initial and final states) to
just a pair of initial and final states (no intermediate action
or state is given). Moreover, the compilation accepts partially
specified action models and it can be used to validate whether
the observation of a plan execution follows a given STRIPS
action model, even if this model is not fully specified.

Introduction

Besides plan synthesis (Ghallab, Nau, and Traverso 2004),
planning action models are also useful for plan/goal recog-
nition (Ramı́rez 2012). In both planning tasks, an auto-
mated planner is required to reason about action models that
correctly and completely capture the possible world tran-
sitions (Geffner and Bonet 2013). Unfortunately, building
planning action models is complex, even for planning ex-
perts, and this knowledge acquisition task is a bottleneck that
limits the potential of AI planning (Kambhampati 2007).

On the other hand, Machine Learning (ML) has shown
to be able to compute a wide range of different kinds of
models from examples (Michalski, Carbonell, and Mitchell
2013). The application of inductive ML to learning STRIPS
action models, the vanilla action model for planning (Fikes
and Nilsson 1971), is not straightforward though:

• The input to ML algorithms (the learning/training data) is
usually a finite set of vectors that represent the value of
some fixed object features. The input for learning plan-
ning action models is, however, observations of plan exe-
cutions (where each plan possibly has a different length).

• The output of ML algorithms is usually a scalar value
(an integer, in the case of classification tasks, or a real
value, in the case of regression tasks). When learning ac-
tion models the output is, for each action, the precondi-
tions, negative and positive effects that define the possible
state transitions.
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Learning STRIPS action models is a well-studied prob-
lem with sophisticated algorithms such as ARMS (Yang,
Wu, and Jiang 2007), SLAF (Amir and Chang 2008) or
LOCM (Cresswell, McCluskey, and West 2013), which do
not require full knowledge of the intermediate states tra-
versed by the example plans. Motivated by recent advances
on the synthesis of different kinds of generative models
with classical planning (Bonet, Palacios, and Geffner 2009;
Segovia-Aguas, Jiménez, and Jonsson 2016; 2017), this pa-
per introduces an innovative planning compilation approach
for learning STRIPS action models. The compilation ap-
proach is appealing by itself because it opens up the door
to the bootstrapping of planning action models, but also be-
cause:

1. It is flexible to various amounts of input knowledge.
Learning examples range from a set of plans (with their
corresponding initial and final states) to just a pair of ini-
tial and final states where no intermediate state or action
is observed.

2. It accepts previous knowledge about the structure of the
actions in the form of partially specified action models.
In the extreme, the compilation can validate whether an
observed plan execution is valid for a given STRIPS action
model, even if this model is not fully specified.
The second section of the paper formalizes the classical

planning model, its extension to conditional effects (a re-
quirement of the proposed compilation) and the STRIPS ac-
tion model (the output of the addressed learning task). The
third section formalizes the task of learning action models
with different amounts of available input knowledge. The
fourth and fifth sections describe our compilation approach
to tackle the formalized learning tasks. Finally, the last sec-
tions show the experimental evaluation, discuss the strengths
and weaknesses of the compilation approach and propose
several opportunities for future research.

Background

This section defines the planning model and the output of
the learning tasks addressed in the paper.

Classical planning with conditional effects

Our approach to learning STRIPS action models is compil-
ing this learning task into a classical planning task with con-
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ditional effects. Conditional effects allow us to compactly
define actions whose effects depend on the current state.
Supporting conditional effects is now a requirement of the
IPC (Vallati et al. 2015) and many classical planners cope
with conditional effects without compiling them away.

We use F to denote the set of fluents (propositional vari-
ables) describing a state. A literal l is a valuation of a fluent
f ∈ F ; i.e. either l = f or l = ¬f . A set of literals L repre-
sents a partial assignment of values to fluents (without loss
of generality, we will assume that L does not contain con-
flicting values). We use L(F ) to denote the set of all literal
sets on F ; i.e. all partial assignments of values to fluents.

A state s is a full assignment of values to fluents; |s| =
|F |, so the size of the state space is 2|F |. Explicitly includ-
ing negative literals ¬f in states simplifies subsequent def-
initions but often we will abuse of notation by defining a
state s only in terms of the fluents that are true in s, as it is
common in STRIPS planning.

A classical planning frame is a tuple Φ = 〈F,A〉, where
F is a set of fluents and A is a set of actions. An action a ∈
A is defined with preconditions, pre(a) ⊆ L(F ), positive
effects, eff+(a) ⊆ L(F ), and negative effects eff−(a) ⊆
L(F ). We say that an action a ∈ A is applicable in a state s
iff pre(a) ⊆ s. The result of applying a in s is the successor
state denoted by θ(s, a) = {s \ eff−(a)) ∪ eff+(a)}.

An action a ∈ A with conditional effects is defined as a
set of preconditions pre(a) and a set of conditional effects
cond(a). Each conditional effect C � E ∈ cond(a) is com-
posed of two sets of literals: C ⊆ L(F ), the condition, and
E ⊆ L(F ), the effect. An action a ∈ A is applicable in
a state s iff pre(a) ⊆ s, and the triggered effects resulting
from the action application are the effects whose conditions
hold in s:

triggered(s, a) =
⋃

C�E∈cond(a),C⊆s

E,

The result of applying action a in state s is the suc-
cessor state θ(s, a) = {s \ eff−c (s, a)) ∪ eff+

c (s, a)}
where eff−c (s, a) ⊆ triggered(s, a) and eff+

c (s, a) ⊆
triggered(s, a) are, respectively, the triggered negative and
positive effects.

A classical planning problem is a tuple P = 〈F,A, I,G〉,
where I is an initial state and G ⊆ L(F ) is a goal condition.
A plan for P is an action sequence π = 〈a1, . . . , an〉 that
induces the state trajectory 〈s0, s1, . . . , sn〉 such that s0 = I
and ai (1 ≤ i ≤ n) is applicable in si−1 and generates the
successor state si = θ(si−1, ai). The plan length is denoted
with |π| = n . A plan π solves P iff G ⊆ sn; i.e. if the
goal condition is satisfied in the last state resulting from the
application of the plan π in the initial state I .

STRIPS action schemas and variable name objects

Our approach is aimed at learning PDDL action schemas
that follow the STRIPS requirement (McDermott et al. 1998;
Fox and Long 2003). Figure 1 shows the stack schema of
a four-operator blocksworld domain (Slaney and Thiébaux
2001) encoded in PDDL.

To formalize the output of the learning task, we assume
that fluents F are instantiated from a set of predicates Ψ,

(:action stack
:parameters (?v1 ?v2 - object)
:precondition (and (holding ?v1) (clear ?v2))
:effect (and (not (holding ?v1))

(not (clear ?v2))
(handempty) (clear ?v1)
(on ?v1 ?v2)))

Figure 1: The stack operator schema of the blocksworld do-
main specified in PDDL.

as in PDDL. Each predicate p ∈ Ψ has an argument list of
arity ar(p). Given a set of objects Ω, the set of fluents F is
induced by assigning objects in Ω to the arguments of the
predicates in Ψ; i.e. F = {p(ω) : p ∈ Ψ, ω ∈ Ωar(p)},
where Ωk is the k-th Cartesian power of Ω.

Let Ωv = {vi}maxa∈A ar(a)
i=1 be a new set of objects de-

noted as variable names (Ω ∩ Ωv = ∅). Ωv is bound
to the maximum arity of an action in a given planning
frame. For instance, in a three-block blocksworld, Ω =
{block1, block2, block3} while Ωv = {v1, v2} because the
operators with the maximum arity, stack and unstack,
have two parameters each.

Let Fv be a new set of fluents, F ∩ Fv = ∅, that
results from instantiating the predicates in Ψ using ex-
clusively objects of Ωv . Fv defines the elements of the
preconditions and effects of an action schema. For in-
stance, in the blocksworld domain, Fv={handempty,
holding(v1), holding(v2), clear(v1),
clear(v2), ontable(v1), ontable(v2),
on(v1, v1), on(v1, v2), on(v2, v1), on(v2, v2)}.

Finally, we assume that an action a ∈ A is
instantiated from a STRIPS operator schema ξ =
〈head(ξ), pre(ξ), add(ξ), del(ξ)〉 where:

• head(ξ) = 〈name(ξ), pars(ξ)〉 is the operator header
defined by its name and the corresponding variable
names, pars(ξ) = {vi}ar(ξ)i=1 . For instance, the headers
of a four-operator blocksworld domain are: pickup(v1),
putdown(v1), stack(v1, v2) and unstack(v1, v2).

• pre(ξ) ⊆ Fv is the set of preconditions, del(ξ) ⊆ Fv the
negative effects and add(ξ) ⊆ Fv the positive effects such
that del(ξ) ⊆ pre(ξ), del(ξ) ∩ add(ξ) = ∅ and pre(ξ) ∩
add(ξ) = ∅.

Learning STRIPS action models

Learning STRIPS action models from fully available input
knowledge, i.e. from plans where the pre- and post-states
of every action in the plans are known, is straightforward.
When intermediate states are available, operator schemas are
derived lifting the literals that change between the pre and
post-state of each action execution. Preconditions of an ac-
tion are derived lifting the minimal set of literals that appears
in all the pre-states of the corresponding action (Jiménez et
al. 2012).

This section formalizes more challenging learning tasks,
where less input knowledge is available:

Learning from (initial, final) state pairs. This learning
task amounts to observing agents acting in the world but
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watching only the result of their plans execution. No inter-
mediate information about the actions in the plans is given.
This learning task is formalized as Λ = 〈Ψ,Σ〉:
• Ψ is the set of predicates that define the abstract state

space of a given planning domain.
• Σ = {σ1, . . . , στ} is a set of (initial, final) state pairs

called labels. Each label σt = (st0, s
t
n), 1 ≤ t ≤ τ , com-

prises the final state stn resulting from executing an un-
known plan πt = 〈at1, . . . , atn〉 in the initial state st0.

Learning from labeled plans. We augment the input
knowledge with the actions executed by the observed agent
and define the learning task Λ′ = 〈Ψ,Σ,Π〉:
• Π = {π1, . . . , πτ} is a given set of example plans where

πt = 〈at1, . . . , atn〉, 1 ≤ t ≤ τ , is an action sequence that
induces the corresponding state sequence 〈st0, st1, . . . , stn〉
such that ati, 1 ≤ i ≤ n, is applicable in sti−1 and generates
sti = θ(sti−1, a

t
i).

Figure 2 shows an example of a learning task Λ′ of the
blocksworld domain. This task has a single learning exam-
ple, Π = {π1} and Σ = {σ1}, that corresponds to observing
the execution of an eight-action plan (|π1| = 8) for inverting
a four-block tower.

Learning from partially specified action models. In case
that partially specified operator schemas are available, we
can incorporate this information within the learning task.
The new leaning task is defined as Λ′′ = 〈Ψ,Σ,Π,Ξ0〉:
• Ξ0 is a partially specified action model in which some

preconditions and effects are known a priori.

A solution to Λ is a set of operator schemas Ξ that
is compliant with the predicates in Ψ and the set of ini-
tial and final states Σ. In a Λ learning scenario, a so-
lution must not only determine a possible STRIPS action
model but also the plans πt, 1 ≤ t ≤ τ , that explain
the given labels Σ using the learned model. A solution to
Λ′ is a set of STRIPS operator schemas Ξ (one schema
ξ = 〈head(ξ), pre(ξ), add(ξ), del(ξ)〉 for each action that
has a different name in the example plans Π) that is com-
pliant with the predicates Ψ, the example plans Π, and their
corresponding labels Σ. Finally, a solution to Λ′′ is a set of
STRIPS operator schemas Ξ that is also compliant with the
provided partially specified action model Ξ0.

Learning STRIPS action models with planning

In our approach, a learning task Λ, Λ′ or Λ′′ is solved by
compiling it into a classical planning task with conditional
effects. The intuition behind the compilation is that a solu-
tion to the resulting classical planning task is a sequence of
actions that:

1. Programs the STRIPS action model Ξ. A solution plan has
a prefix that, for each ξ ∈ Ξ, determines the fluents from
Fv that belong to pre(ξ), del(ξ) and add(ξ).

2. Validates the programmed STRIPS action model Ξ in the
given input knowledge (the labels Σ and Π, and/or Ξ0

if available). For every label σt ∈ Σ, a solution plan

;;; Predicates in Ψ

(handempty) (holding ?o - object)
(clear ?o - object) (ontable ?o - object)
(on ?o1 - object ?o2 - object)

;;; Plan π1

0: (unstack A B)
1: (putdown A)
2: (unstack B C)
3: (stack B A)
4: (unstack C D)
5: (stack C B)
6: (pickup D)
7: (stack D C)

;;; Label σ1 = (s10, s
1
n)

D
C
B
A

A
B
C
D

Figure 2: Learning task of the blocksworld domain from a
single labeled plan.

has a postfix that produces a final state stn using the pro-
grammed action model Ξ in the corresponding initial state
st0. This process is the validation of the programmed ac-
tion model Ξ with the set of learning examples 1 ≤ t ≤ τ .

To formalize our compilation we first define a set of clas-
sical planning instances Pt = 〈F, ∅, It, Gt〉 that belong to
the same planning frame (i.e. same fluents and actions but
different initial states and goals). Fluents F are built instan-
tiating the predicates in Ψ with the objects of the input labels
Σ. Formally, Ω =

⋃
1≤t≤τ obj(s

t
0), where obj is a function

that returns the objects that appear in a fully specified state.
The set of actions, A = ∅, is empty because the action model
is initially unknown. Finally, the initial state It is given by
the state st0 ∈ σt, and the goals Gt are defined by the state
stn ∈ σt.

We can now formalize the compilation approach. We start
with Λ as it requires the least input knowledge. Given a
learning task Λ = 〈Ψ,Σ〉, the compilation outputs a clas-
sical planning task PΛ = 〈FΛ, AΛ, IΛ, GΛ〉:
• FΛ extends F with:

– Fluents pref (ξ), delf (ξ) and addf (ξ), for every f ∈
Fv and ξ ∈ Ξ that represent the programmed action
model. If a fluent of pref (ξ)/delf (ξ)/addf (ξ) holds,
it means that f is a precondition/negative effect/posi-
tive effect of the operator schema ξ ∈ Ξ. For instance,
the preconditions of the stack schema (Figure 1) are
represented by fluents pre holding stack v1 and
pre clear stack v2.

– A fluent modeprog to indicate whether the operator
schemas are being programmed or validated (when al-
ready programmed)

– Fluents {testt}1≤t≤τ which represent the examples
where the action model will be validated.

• IΛ contains the fluents from F that encode s10 (the initial
state of the first label), the fluents in every pref (ξ) ∈ FΛ

and the fluent modeprog set to true. Our compilation as-
sumes that any operator schema is initially programmed
with every possible precondition (the most specific learn-
ing hypothesis), no negative effect and no positive effect.
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• GΛ =
⋃

1≤t≤τ{testt} indicates that the programmed ac-
tion model is validated in all the learning examples.

• AΛ contains actions of three kinds:
1. Actions for programming an operator schema ξ ∈ Ξ:

– Actions for removing a precondition f ∈ Fv from ξ.

pre(programPref,ξ) ={¬delf (ξ),¬addf (ξ),
modeprog, pref (ξ)},

cond(programPref,ξ) ={∅}� {¬pref (ξ)}.

– Actions for adding a negative or positive effect f ∈
Fv to ξ.

pre(programEfff,ξ) ={¬delf (ξ),¬addf (ξ),
modeprog},

cond(programEfff,ξ) ={pref (ξ)}� {delf (ξ)},
{¬pref (ξ)}� {addf (ξ)}.

2. Actions for applying an already programmed operator
schema ξ ∈ Ξ bound to the objects ω ⊆ Ωar(ξ). We
assume operators headers are known so the binding of
ξ is done implicitly by order of appearance of the ac-
tion parameters, i.e. variables pars(ξ) are bound to the
objects in ω that appear in the same position. Figure 3
shows the PDDL encoding of the action for applying a
programmed operator stack.
pre(applyξ,ω) ={pref (ξ) =⇒ p(ω)}∀p∈Ψ,f=p(pars(ξ)),

cond(applyξ,ω) ={delf (ξ)}� {¬p(ω)}∀p∈Ψ,f=p(pars(ξ)),

{addf (ξ)}� {p(ω)}∀p∈Ψ,f=p(pars(ξ)),

{modeprog}� {¬modeprog}.

3. Actions for validating the learning example 1 ≤ t ≤ τ .
pre(validatet) =Gt ∪ {testj}1≤j<t

∪ {¬testj}t≤j≤τ ∪ {¬modeprog},
cond(validatet) ={∅}� {testt} ∪ {¬f}∀f∈Gt,f /∈It+1

∪ {f}∀f∈It+1,f /∈Gt .

Lemma 1. A classical plan π that solves PΛ induces an
action model Ξ that solves the learning task Λ.

Proof sketch. Once operator schemas Ξ are programmed, they
can only be applied and validated according to the modeprog flu-
ent. To solve PΛ, goals {testt}, 1 ≤ t ≤ τ can only be achieved by
executing an applicable sequence of programmed operator schemas
that reaches the final state stn, defined in σt, starting from st0. If this
is achieved for all the input examples 1 ≤ t ≤ τ , it means that the
programmed action model Ξ is compliant with the provided input
knowledge and hence it is a solution to Λ.

The compilation is complete in the sense that it does not
discard any possible STRIPS action model. The size of the
classical planning task PΛ depends on:
• The arity of the actions headers in Ξ and the predicates
Ψ of the learning task. The larger the arity, the larger the
Fv set, which in turn defines the size of the fluent sets
pref (ξ)/delf (ξ)/addf (ξ) and the corresponding set of
programming actions.

(:action apply_stack

:parameters (?o1 - object ?o2 - object)

:precondition

(and (or (not (pre_on_stack_v1_v1)) (on ?o1 ?o1))

(or (not (pre_on_stack_v1_v2)) (on ?o1 ?o2))

(or (not (pre_on_stack_v2_v1)) (on ?o2 ?o1))

(or (not (pre_on_stack_v2_v2)) (on ?o2 ?o2))

(or (not (pre_ontable_stack_v1)) (ontable ?o1))

(or (not (pre_ontable_stack_v2)) (ontable ?o2))

(or (not (pre_clear_stack_v1)) (clear ?o1))

(or (not (pre_clear_stack_v2)) (clear ?o2))

(or (not (pre_holding_stack_v1)) (holding ?o1))

(or (not (pre_holding_stack_v2)) (holding ?o2))

(or (not (pre_handempty_stack)) (handempty)))

:effect

(and (when (del_on_stack_v1_v1) (not (on ?o1 ?o1)))

(when (del_on_stack_v1_v2) (not (on ?o1 ?o2)))

(when (del_on_stack_v2_v1) (not (on ?o2 ?o1)))

(when (del_on_stack_v2_v2) (not (on ?o2 ?o2)))

(when (del_ontable_stack_v1) (not (ontable ?o1)))

(when (del_ontable_stack_v2) (not (ontable ?o2)))

(when (del_clear_stack_v1) (not (clear ?o1)))

(when (del_clear_stack_v2) (not (clear ?o2)))

(when (del_holding_stack_v1) (not (holding ?o1)))

(when (del_holding_stack_v2) (not (holding ?o2)))

(when (del_handempty_stack) (not (handempty)))

(when (add_on_stack_v1_v1) (on ?o1 ?o1))

(when (add_on_stack_v1_v2) (on ?o1 ?o2))

(when (add_on_stack_v2_v1) (on ?o2 ?o1))

(when (add_on_stack_v2_v2) (on ?o2 ?o2))

(when (add_ontable_stack_v1) (ontable ?o1))

(when (add_ontable_stack_v2) (ontable ?o2))

(when (add_clear_stack_v1) (clear ?o1))

(when (add_clear_stack_v2) (clear ?o2))

(when (add_holding_stack_v1) (holding ?o1))

(when (add_holding_stack_v2) (holding ?o2))

(when (add_handempty_stack) (handempty))

(when (modeProg) (not (modeProg)))))

Figure 3: PDDL action for applying an already programmed
schema stack (implications coded as disjunctions).

• The number of learning examples. The larger this number,
the more testt fluents and validatet actions in PΛ.

Constraining the learning hypothesis space

with additional input knowledge

In this section, we show that further input knowledge can be
used to constrain the space of possible action models and to
make the learning task more practicable.

Labeled plans

We extend the compilation to consider labeled plans. Given
a learning task Λ′ = 〈Ψ,Σ,Π〉, the compilation outputs a
classical planning task PΛ′ = 〈FΛ′ , AΛ′ , IΛ′ , GΛ′〉:
• FΛ′ extends FΛ with FΠ = {plan(name(ξ),Ωar(ξ), j)},

the fluents to code the steps of the plans in Π, where
Fπt

⊆ FΠ encodes πt ∈ Π. Fluents atj and nextj,j+1,
1 ≤ j < n, are also added to represent the current plan
step and to iterate through the steps of a plan.

• IΛ′ extends IΛ with fluents Fπ1
plus fluents at1 and

{nextj,j+1}, 1 ≤ j < n, to indicate the plan step where
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the action model is validated. As in the original compila-
tion, GΛ′ = GΛ =

⋃
1≤t≤τ{testt}.

• With respect to AΛ′ .
1. The actions for programming the preconditions/effects

of a given operator schema ξ ∈ Ξ are the same.
2. The actions for applying an already programmed op-

erator have an extra precondition f ∈ FΠ that en-
codes the current plan step, and extra conditional ef-
fects {atj} � {¬atj , atj+1}∀j∈[1,n] for advancing to
the next plan step. With this mechanism we ensure that
these actions are applied in the same order as in the ex-
ample plans.

3. The actions for validating the current learning exam-
ple have an extra precondition, at|πt|, to indicate that
the current plan πt is fully executed and extra condi-
tional effects to remove plan πt and initiate the next
plan πt+1:

{∅}� {¬at|πt|, at1} ∪ {¬f}f∈Fπt
∪ {f}f∈Fπt+1 .

Partially specified action models

The known preconditions and effects of a partially specified
action model are encoded as fluents pref (ξ), delf (ξ) and
addf (ξ) set to true in the initial state IΛ′ . The programming
actions, programPref,ξ and programEfff,ξ, become now un-
necessary and they are removed from AΛ′ , thus making the
planning task PΛ′ be easier to solve.

To illustrate this, the plan of Figure 4 is a solution
to a learning task Λ′′ = 〈Ψ,Σ,Π,Ξ0〉 for acquiring
the blocksworld action model where operator schemas for
pickup, putdown and unstack are specified in Ξ0. This
plan programs and validates the operator schema stack
from blocksworld using the plan π1 and label σ1 shown in
Figure 2. Plan steps [0, 8] program the preconditions of the
stack operator, steps [9, 13] program the operator effects
and steps [14, 22] validate the programmed operators follow-
ing the plan π1 shown in Figure 2.

In the extreme, when a fully specified STRIPS action
model is given in Ξ0, the compilation validates whether an
observed plan follows the given model. In this case, if a so-
lution plan is found for PΛ′ , it means that the given action
model is valid for the provided examples. If PΛ′ is unsolv-
able then it means that the action model is invalid because it
is not compliant with all the given examples. Tools for plan
validation like VAL (Howey, Long, and Fox 2004) could
also be used at this point.

Static predicates

A static predicate p ∈ Ψ is a predicate that does not appear
in the effects of any action (Fox and Long 1998). Therefore,
one can get rid of the mechanism for programming these
predicates in the effects of any action schema while keeping
the compilation complete. Given a static predicate p:
• Fluents delf (ξ) and addf (ξ), such that f ∈ Fv is an in-

stantiation of the static predicate p in the set of variable
names Ωv , can be discarded for every ξ ∈ Ξ.

• Actions programEfff,ξ (s.t. f ∈ Fv is an instantiation of p
in Ωv) can also be discarded for every ξ ∈ Ξ.

00 : (program pre clear stack v1)
01 : (program pre handempty stack)
02 : (program pre holding stack v2)
03 : (program pre on stack v1 v1)
04 : (program pre on stack v1 v2)
05 : (program pre on stack v2 v1)
06 : (program pre on stack v2 v2)
07 : (program pre ontable stack v1)
08 : (program pre ontable stack v2)
09 : (program eff clear stack v1)
10 : (program eff clear stack v2)
11 : (program eff handempty stack)
12 : (program eff holding stack v1)
13 : (program eff on stack v1 v2)
14 : (apply unstack a b i1 i2)
15 : (apply putdown a i2 i3)
16 : (apply unstack b c i3 i4)
17 : (apply stack b a i4 i5)
18 : (apply unstack c d i5 i6)
19 : (apply stack c b i6 i7)
20 : (apply pickup d i7 i8)
21 : (apply stack d c i8 i9)
22 : (validate 1)

Figure 4: Plan for programming and validating the stack
schema using plan π1 and label σ1 (shown in Figure 2) as
well as previously specified operator schemas for pickup,
putdown and unstack.

Static predicates can also constrain the space of possible
preconditions by looking at the given set of labels Σ. One
can assume that if a precondition f ∈ Fv (s.t. f ∈ Fv is
an instantiation of a static predicate in Ωv) is not compliant
with the labels in Σ then fluents pref (ξ) and actions
programPref,ξ can be discarded for every ξ ∈ Ξ. For
instance, in the zenotravel domain, pre next board v1 v1,
pre next debark v1 v1, pre next fly v1 v1,
pre next zoom v1 v1, pre next refuel v1 v1 can be
discarded (and their corresponding programming actions)
because a precondition (next ?v1 ?v1 - flevel) will
never hold in any state of Σ.

On the other hand, fluents pref (ξ) and actions
programPref,ξ are discardable for every ξ ∈ Ξ if a precon-
dition f ∈ Fv (s.t. f ∈ Fv is an instantiation of a static
predicate in Ωv) is not possible according to Π. Back to
the zenotravel domain, if an example plan πt ∈ Π con-
tains the action (fly plane1 city2 city0 fl3 fl2)
and the corresponding label σt ∈ Σ contains the static literal
(next fl2 fl3) but does not contain (next fl2 fl2),
(next fl3 fl3) or (next fl3 fl2), the only possi-
ble precondition that would include the static predicate is
pre next fly v5 v4.

Evaluation

This section evaluates the performance of our approach for
learning STRIPS action models with different amounts of
available input knowledge.

Setup. The domains used in the evaluation are IPC
domains that satisfy the STRIPS requirement (Fox and
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Long 2003), taken from the PLANNING.DOMAINS reposi-
tory (Muise 2016). We only used 5 learning examples for
each domain and we fixed the examples for all the experi-
ments so that we can evaluate the impact of the input knowl-
edge in the quality of the learned models. All experiments
are run on an Intel Core i5 3.10 GHz x 4 with 8 GB of RAM.

The classical planner we used to solve the instances that
result from our compilations is MADAGASCAR (Rintanen
2014). We used MADAGASCAR due to its ability to deal with
planning instances populated with dead-ends. In addition,
SAT-based planners can apply the actions for programming
preconditions in a single planning step (in parallel) because
these actions do not interact. Actions for programming ac-
tion effects can also be applied in a single planning step re-
ducing significantly the planning horizon.

Metrics. The quality of the learned models is measured
with the precision and recall metrics. These two metrics are
frequently used in pattern recognition, information retrieval
and binary classification and are more informative that sim-
ply counting the number of errors in the learned model or
computing the symmetric difference between the learned and
the reference model (Davis and Goadrich 2006).

Intuitively, precision gives a notion of soundness while re-
call gives a notion of the completeness of the learned models.
Formally, Precision = tp

tp+fp , where tp is the number of
true positives (predicates that correctly appear in the action
model) and fp is the number of false positives (predicates
appear in the learned action model that should not appear).
Recall is formally defined as Recall = tp

tp+fn where fn is
the number of false negatives (predicates that should appear
in the learned action model but are missing).

Given the syntax-based nature of these metrics, it may
happen that they report low scores for learned models that
are actually good but correspond to reformulations of the ac-
tual model; i.e. a learned model semantically equivalent but
syntactically different to the reference model. This mainly
occurs when the learning task is under-constrained.

Learning from labeled plans

We start evaluating our approach with tasks Λ′ = 〈Ψ,Σ,Π〉,
where labeled plans are available. We then repeat the evalua-
tion but exploiting potential static predicates computed from
Σ, which are the predicates that appear unaltered in the ini-
tial and final states in every σt ∈ Σ. Static predicates are
used to constrain the space of possible action models as ex-
plained in the previous section.

Table 1 shows the obtained results. Precision (P) and re-
call (R) are computed separately for the preconditions (Pre),
positive effects (Add) and negative Effects (Del), while the
last two columns of each setting and the last row report av-
erages values. We can observe that identifying static pred-
icates leads to models with better precondition recall. This
fact evidences that many of the missing preconditions cor-
responded to static predicates because there is no incentive
to learn them as they always hold (Gregory and Cresswell
2015).

Table 2 reports the total planning time, the preprocessing
time (in seconds) invested by MADAGASCAR to solve the

planning instances that result from our compilation as well
as the number of actions of the solution plans. All the learn-
ing tasks are solved in a few seconds. Interestingly, one can
identify the domains with static predicates by just looking at
the reported plan length. In these domains some of the pre-
conditions that correspond to static predicates are directly
derived from the learning examples and therefore fewer pro-
gramming actions are required. When static predicates are
identified, the resulting compilation is also much more com-
pact and produces smaller planning/instantiation times.

Learning from partially specified action models

We evaluate now the ability of our approach to support par-
tially specified action models; that is, addressing learning
tasks of the kind Λ′′ = 〈Ψ,Σ,Π,Ξ0〉. In this experiment,
the model of half of the actions is given in Ξ0 as an extra
input of the learning task.

Tables 3 and 4 summarize the obtained results, which in-
clude the identification of static predicates. We only report
the precision and recall of the unknown actions since the val-
ues of the metrics of the known action models is 1.0. In this
experiment, a low value of precision or recall has a greater
impact than in the corresponding Λ′ tasks because the eval-
uation is done only over half of the actions. This occurs,
for instance, in the precondition recall of domains such as
Floortile, Gripper or Satellite.

Remarkably, the overall precision is now 0.98, which
means that the contents of the learned models is highly re-
liable. The value of recall, 0.87, is an indication that the
learned models still miss some information (preconditions
are again the component more difficult to be fully learned).
Overall, the results confirm the previous trend: the more in-
put knowledge of the task, the better the models and the less
planning time. Additionally, the solution plans required for
this task are smaller because it is only necessary to program
half of the actions (the other half are included in the input
knowledge Ξ0). Visitall and Hanoi are excluded from this
evaluation because they only contain one action schema.

Learning from (initial,final) state pairs

Finally, we evaluate our approach when input plans are not
available and thereby the planner must not only compute the
action models but also the plans that satisfy the input labels.
Table 5 and 6 summarize the results obtained for the task
Λ = 〈Ψ,Σ,Ξ0〉 using static predicates. Values for the Zeno-
travel and Grid domains are not reported because MADA-
GASCAR was not able to solve the corresponding planning
tasks within a 1000 sec. time bound. The values of pre-
cision and recall are significantly lower than in Table 1.
Given that the learning hypothesis space is now fairly under-
constrained, actions can be reformulated and still be com-
pliant with the inputs (e.g. the blocksworld operator stack
can be learned with the preconditions and effects of the
unstack operator and vice versa). We tried to minimize this
effect with the additional input knowledge (static predicates
and partially specified action models) and yet the results are
below the scores obtained when learning from labeled plans.
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No Static Static
Pre Add Del Pre Add Del

P R P R P R P R P R P R P R P R

Blocks 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Driverlog 1.0 0.36 0.75 0.86 1.0 0.71 0.92 0.64 0.9 0.64 0.56 0.71 0.86 0.86 0.78 0.73
Ferry 1.0 0.57 1.0 1.0 1.0 1.0 1.0 0.86 1.0 0.57 1.0 1.0 1.0 1.0 1.0 0.86
Floortile 0.52 0.68 0.64 0.82 0.83 0.91 0.66 0.80 0.68 0.68 0.89 0.73 1.0 0.82 0.86 0.74
Grid 0.62 0.47 0.75 0.86 0.78 1.0 0.71 0.78 0.79 0.65 1.0 0.86 0.88 1.0 0.89 0.83
Gripper 1.0 0.67 1.0 1.0 1.0 1.0 1.0 0.89 1.0 0.67 1.0 1.0 1.0 1.0 1.0 0.89
Hanoi 1.0 0.50 1.0 1.0 1.0 1.0 1.0 0.83 0.75 0.75 1.0 1.0 1.0 1.0 0.92 0.92
Miconic 0.75 0.33 0.50 0.50 0.75 1.0 0.67 0.61 0.89 0.89 1.0 0.75 0.75 1.0 0.88 0.88
Satellite 0.60 0.21 1.0 1.0 1.0 0.75 0.87 0.65 0.82 0.64 1.0 1.0 1.0 0.75 0.94 0.80
Transport 1.0 0.40 1.0 1.0 1.0 0.80 1.0 0.73 1.0 0.70 0.83 1.0 1.0 0.80 0.94 0.83
Visitall 1.0 0.50 1.0 1.0 1.0 1.0 1.0 0.83 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Zenotravel 1.0 0.36 1.0 1.0 1.0 0.71 1.0 0.69 1.0 0.64 0.88 1.0 1.0 0.71 0.96 0.79

0.88 0.50 0.88 0.92 0.95 0.91 0.90 0.78 0.90 0.74 0.93 0.92 0.96 0.91 0.93 0.86

Table 1: Precision and recall scores for learning tasks from labeled plans without (left) and with (right) static predicates.

No Static Static

Total Preprocess Length Total Preprocess Length
Blocks 0.04 0.00 72 0.03 0.00 72
Driverlog 0.14 0.09 83 0.06 0.03 59
Ferry 0.06 0.03 55 0.06 0.03 55
Floortile 2.42 1.64 168 0.67 0.57 77
Grid 4.82 4.75 88 3.39 3.35 72
Gripper 0.03 0.01 43 0.01 0.00 43
Hanoi 0.12 0.06 48 0.09 0.06 39
Miconic 0.06 0.03 57 0.04 0.00 41
Satellite 0.20 0.14 67 0.18 0.12 60
Transport 0.59 0.53 61 0.39 0.35 48
Visitall 0.21 0.15 40 0.17 0.15 36
Zenotravel 2.07 2.04 71 1.01 1.00 55

Table 2: Total planning time, preprocessing time and plan
length for learning tasks from labeled plans without/with
static predicates.

Related work

Action model learning has also been studied in domains
where there is partial or missing state observability. ARMS
works when no partial intermediate state is given. It defines
a set of weighted constraints that must hold for the plans to
be correct, and solves the weighted propositional satisfiabil-
ity problem with a MAX-SAT solver (Yang, Wu, and Jiang
2007). In order to efficiently solve the large MAX-SAT rep-
resentations, ARMS implements a hill-climbing method that
models the actions approximately. In contrast to our model
comparison validation which aims at covering all the train-
ing examples, ARMS maximizes the number of covered ex-
amples from a testing set.

SLAF also deals with partial observability (Amir and
Chang 2008). Given a formula representing the initial belief
state, a sequence of executed actions and the corresponding
partially observed states, it builds a complete explanation
of observations by models of actions through a CNF for-
mula. The learning algorithm updates the formula of the be-
lief state with every action and observation in the sequence
and thus the final returned formula includes all consistent
models. SLAF assesses the quality of the learned models
with respect to the actual generative model.

LOCM only requires the example plans as input with-
out need for providing information about predicates or
states (Cresswell, McCluskey, and West 2013; Cresswell and
Gregory 2011). The lack of available information is over-
come by exploiting assumptions about the kind of domain
model it has to generate. Particularly, it assumes a domain
consists of a collection of objects (sorts) whose defined set
of states can be captured by a parameterized Finite State Ma-
chine. LOP (LOCM with Optimized Plans (Gregory and
Cresswell 2015)) incorporates static predicates and applies
a post-processing step after the LOCM analysis that requires
a set of optimal plans to be used in the learning phase. This is
done to mitigate the limitation of LOCM of inducing similar
models for domains with similar structures. LOP compares
the learned models with the corresponding reference model.

Compiling an action model learning task into classical
planning is a general and flexible approach that allows to ac-
commodate various amounts and kinds of input knowledge
and opens up a path for addressing further learning and val-
idation tasks. For instance, the example plans in Π can be
replaced or complemented by a set O of sequences of ob-
servations (i.e., fully or partial state observations with noisy
or missing fluents (Sohrabi, Riabov, and Udrea 2016)), and
learning tasks of the kind Λ = 〈Ψ,Σ,O,Ξ0〉 would also be
attainable. Furthermore, our approach seems extensible to
learning other types of generative models (e.g. hierarchical
models like HTN or behaviour trees) that can be more ap-
pealing than STRIPS models since they require less search
effort to compute a a planning solution.

Conclusions

We presented a novel approach for learning STRIPS action
models from examples using classical planning. The ap-
proach is flexible to various amounts of input knowledge
and accepts partially specified action models. We also intro-
duced the precision and recall metrics, widely used in ML,
for evaluating the learned action models. These two met-
rics measure the soundness and completeness of the learned
models and facilitate the identification of model flaws.

To the best of our knowledge, this is the first work on
learning action models that is exhaustively evaluated over
a wide range of domains and uses exclusively an off-the-
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Pre Add Del
P R P R P R P R

Blocks 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Driverlog 1.0 0.71 1.0 1.0 1.0 1.0 1.0 0.90
Ferry 1.0 0.67 1.0 1.0 1.0 1.0 1.0 0.89
Floortile 0.75 0.60 1.0 0.80 1.0 0.80 0.92 0.73
Grid 1.0 0.67 1.0 1.0 1.0 1.0 0.84 0.78
Gripper 1.0 0.50 1.0 1.0 1.0 1.0 1.0 0.83
Miconic 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Satellite 1.0 0.57 1.0 1.0 1.0 1.0 1.0 0.86
Transport 1.0 0.75 1.0 1.0 1.0 1.0 1.0 0.92
Zenotravel 1.0 0.67 1.0 1.0 1.0 0.67 1.0 0.78

0.98 0.71 1.0 0.98 1.0 0.95 0.98 0.87

Table 3: Precision and recall scores for learning tasks with
partially specified action models.

Total time Preprocess Plan length
Blocks 0.07 0.01 54
Driverlog 0.03 0.01 40
Ferry 0.06 0.03 45
Floortile 0.43 0.42 55
Grid 3.12 3.07 53
Gripper 0.03 0.01 35
Miconic 0.03 0.01 34
Satellite 0.14 0.14 47
Transport 0.23 0.21 37
Zenotravel 0.90 0.89 40

Table 4: Time and plan length learning for learning tasks
with partially specified action models.

shelf classical planner. The work in (Stern and Juba 2017)
proposes a planning compilation for learning action mod-
els from plan traces following the finite domain represen-
tation for the state variables. This is a theoretical study on
the boundaries of the learned models and no experimental
results are reported.

When example plans are available, we can compute ac-
curate action models from small sets of learning examples
(five examples per domain) in little computation time (less
than a second). When action plans are not available, our ap-
proach still produces action models that are compliant with
the input information. In this case, since learning is not con-
strained by actions, operators can be reformulated changing
their semantics, in which case the comparison with a refer-
ence model turns out to be tricky.

Generating informative examples for learning planning
action models is still an open issue. Planning actions include
preconditions that are only satisfied by specific sequences
of actions which have low probability of being chosen by
chance (Fern, Yoon, and Givan 2004). The success of recent
algorithms for exploring planning tasks (Francès et al. 2017)
motivates the development of novel techniques that enable
to autonomously collect informative learning examples. The
combination of such exploration techniques with our learn-
ing approach is an appealing research direction that opens
up the door to the bootstrapping of planning action models.

In many applications, the actual actions executed by the
observed agent are not available but, instead, the resulting
states can be observed. We plan to extend our approach for
learning from state observations as it broadens the range of
application to external observers and facilitates the represen-
tation of imperfect observability, as shown in plan recogni-

Pre Add Del
P R P R P R P R

Blocks 0.33 0.33 0.75 0.50 0.33 0.33 0.47 0.39
Driverlog 1.0 0.29 0.33 0.67 1.0 0.50 0.78 0.48
Ferry 1.0 0.67 0.50 1.0 1.0 1.0 0.83 0.89
Floortile 0.67 0.40 0.50 0.40 1.0 0.40 0.72 0.40
Grid - - - - - - - -
Gripper 1.0 0.50 1.0 1.0 1.0 1.0 1.0 0.83
Miconic 0.0 0.0 0.33 0.50 0.0 0.0 0.11 0.17
Satellite 1.0 0.14 0.67 1.0 1.0 1.0 0.89 0.71
Transport 0.0 0.0 0.25 0.5 0.0 0.0 0.08 0.17
Zenotravel - - - - - - - -

0.63 0.29 0.54 0.70 0.67 0.53 0.61 0.51

Table 5: Precision and recall scores for learning from (ini-
tial,final) state pairs.

Total time Preprocess Plan length
Blocks 2.14 0.00 58
Driverlog 0.09 0.00 88
Ferry 0.17 0.01 65
Floortile 6.42 0.15 126
Grid - - -
Gripper 0.03 0.00 47
Miconic 0.04 0.00 68
Satellite 4.34 0.10 126
Transport 2.57 0.21 47
Zenotravel - - -

Table 6: Time and plan length when learning from (ini-
tial,final) state pairs.

tion (Sohrabi, Riabov, and Udrea 2016), as well as learning
from unstructured data, like state images (Asai and Fuku-
naga 2018).
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