
Sensor Synthesis for POMDPs with Reachability Objectives ∗

Krishnendu Chatterjee
IST Austria

krishnendu.chatterjee@ist.ac.at

Martin Chmelı́k
TTTech Computertechnik AG
martin.chmelik@tttech.com

Ufuk Topcu
University of Texas at Austin

utopcu@utexas.edu

Abstract

Partially observable Markov decision processes (POMDPs)
are widely used in probabilistic planning problems in which
an agent interacts with an environment using noisy and im-
precise sensors. We study a setting in which the sensors are
only partially defined and the goal is to synthesize “weakest”
additional sensors, such that in the resulting POMDP, there is
a small-memory policy for the agent that almost-surely (with
probability 1) satisfies a reachability objective. We show that
the problem is NP-complete, and present a symbolic algo-
rithm by encoding the problem into SAT instances. We illus-
trate trade-offs between the amount of memory of the policy
and the number of additional sensors on a simple example.
We have implemented our approach and consider three clas-
sical POMDP examples from the literature, and show that in
all the examples the number of sensors can be significantly
decreased (as compared to the existing solutions in the litera-
ture) without increasing the complexity of the policies.

1 Introduction

In this work we study synthesis of sensor requirements for
partially defined POMDPs, i.e., required precision of sen-
sors, need for additional sensors, minimal set of necessary
sensors, etc.
POMDPs. Markov decision processes (MDPs) are a stan-
dard model for systems that have both probabilistic and
nondeterministic behaviors (Howard 1960), and they pro-
vide a framework to model and solve control and prob-
abilistic planning problems (Filar and Vrieze 1997; Put-
erman 1994). The various choices of control actions for
the controller (or planner) are modeled as nondetermin-
ism while the stochastic response to the control actions is
represented by the probabilistic behavior. In partially ob-
servable MDPs (POMDPs) to resolve the nondeterministic
choices in control actions the controller observes the state

∗The research was partly supported by Vienna Science and
Technology Fund (WWTF) Project ICT15-003, Austrian Science
Fund (FWF) NFN Grant No S11407-N23 (RiSE/SHiNE), ERC
Starting grant (279307: Graph Games), ONR N000141310778,
ONR ONR N000141712623, and the European Union Horizon
2020 research and innovation programme under grant agreement
No 731946.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

space according to observations, i.e., the controller can only
view the observation of the current state, but not the pre-
cise state (Papadimitriou and Tsitsiklis 1987). POMDPs are
a widely used model for several applications and research
fields, such as in computational biology (Durbin et al. 1998),
speech processing (Mohri 1997), image processing (Culik
and Kari 1997), software verification (Cerný et al. 2011),
robot planning (Kaelbling, Littman, and Cassandra 1998),
cyber-physical systems (Bagnato et al. 2017), reinforcement
learning (Kaelbling, Littman, and Moore 1996), to name a
few.

Reachability objectives. One of the most basic objectives is
the reachability objective, where given a set of target states,
the objective requires that some state in the target set is vis-
ited at least once. The classical computational questions for
POMDPs with reachability objectives are as follows: (a) the
quantitative question asks for the existence of a policy (that
resolves the choice of control actions) that ensures the reach-
ability objective with probability at least 0 < λ ≤ 1; and
(b) the qualitative question is the special case of the quanti-
tative question with λ = 1 (i.e., it asks that the objective is
satisfied almost-surely).

Previous results. The quantitative question for POMDPs
with reachability objectives is undecidable (Paz 1971) (and
the undecidability result even holds for any approxima-
tion (Madani, Hanks, and Condon 2003)). In contrast,
the qualitative question is EXPTIME-complete (Chatterjee,
Doyen, and Henzinger 2010; Baier, Größer, and Bertrand
2012). The main algorithmic idea to solve the qualitative
question (that originates from (Chatterjee et al. 2006)) is
as follows: first construct the belief-support MDP explic-
itly (which is an exponential-size perfect-information MDP
where every state is the support of a belief), and then solve
the qualitative analysis on the perfect-information MDP
(which is in polynomial time (Chatterjee, Jurdziński, and
Henzinger 2003; Chatterjee and Henzinger 2014; 2011)).
This gives an EXPTIME upper bound for the qualitative
analysis of POMDPs, and a matching EXPTIME lower
bound has been established in (Chatterjee, Doyen, and Hen-
zinger 2010).

Modeling and analysis. In the design of systems there are
two crucial phases, namely, the modeling phase, where a
formal model of the system is constructed, and the analy-

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

47

sis phase, where the model is analyzed for correctness. Cur-
rently POMDPs are typically used in the analysis phase,
where in the modeling phase a fully specified POMDP for
the system is constructed, which is analyzed (in the model-
checking terminology this is called a posteriori analysis or
verification). However, POMDPs are seldom used in the
modeling phase, where the model is not yet fully specified.

Partially specified POMDPs. In this work we consider the
problem in which a POMDP is partially specified and can
be used also in the modeling phase (i.e., a priori verifica-
tion). To motivate our problem consider the standard appli-
cations in robotics or planning, where the state space of the
POMDP is obtained from valuations of the variables of the
system, and the sensors are designed to obtain the obser-
vations. We consider a partially specified POMDP where
the state space and the transitions are completely speci-
fied, but the observations are not. This corresponds to sce-
narios where (i) the state space of the system is designed
but the sensors have not yet been designed (Censi 2015;
Mehta, DelPreto, and Rus 2015) or (ii) the sensors are de-
signed and there is a possibility to augment and annotate the
state space, in order to make the task for the agent simpler. In
both scenarios the goal is to synthesize the observations (that
is from the partially specified POMDP obtain a fully spec-
ified POMDP) such that in the resulting POMDP there is a
policy that satisfies the reachability objective almost-surely.
Since additional sensors increase complexity, one goal is to
obtain as few additional observations as possible; and since
policies represent controllers another goal is to ensure that
the resulting policies are not too complex (Amato, Bern-
stein, and Zilberstein 2010). Concretely, we consider the fol-
lowing problem: given a partially specified POMDP (where
the observations are not completely specified), the problem
asks to synthesize at most ν additional observations such
that in the resulting POMDP there is a policy with mem-
ory size at most μ to ensure that the reachability objective
is satisfied almost-surely. Note that the problem we consider
provides trade-offs between the additional observations (i.e.,
ν) and the memory of the policy (i.e., μ).

Significance of qualitative question. The qualitative ques-
tion is of great importance as in several applications it is
required that the correct behavior happens with probabil-
ity 1. For example, in the analysis of randomized embedded
schedulers, the important question is whether every thread
progresses with probability 1. Moreover, though it might
be sufficient that the correct behavior arises with probabil-
ity at least λ < 1, the correct choice of the threshold λ is
still challenging, due to simplifications and imprecisions in-
troduced during modeling. Importantly it has been shown
recently (Chatterjee et al. 2016) that for the fundamen-
tal problem of minimizing the total expected cost to reach
the target set (Bertsekas 1995; Bonet and Geffner 2009;
Kolobov et al. 2011; Kolobov, Mausam, and Weld 2012) un-
der positive cost functions (or the stochastic shortest path
problem), it suffices to first compute the almost-sure win-
ning set, and then apply any finite-horizon algorithm for
approximation. Moreover, the qualitative analysis problem
has also a close connection with planning: while the quali-

tative analysis problem is different as compared to strong or
contingent planning (Bonet 2010; Meuleau and Smith 2003;
Maliah et al. 2014; Cimatti et al. 2003; Albore, Palacios, and
Geffner 2009), it is equivalent to the qualitative contingent
planning and the strong cyclic planning problem (Cimatti et
al. 2003; Bertoli, Cimatti, and Pistore 2006). Thus results for
qualitative analysis of POMDPs carry over to strong cyclic
planning. Finally, besides the practical relevance, almost-
sure convergence, like convergence in expectation, is a fun-
damental concept in probability theory, and provides the
strongest probabilistic guarantee (Durrett 1996).

Our contributions. Our main contributions are as follows.
First, we show that when ν and μ are constants, then
the problem we consider is NP-complete. Note that the
unrestricted problem (without restrictions on ν and μ) is
EXPTIME-complete, because we can use observations of at
most the size of the state space, and the general qualitative
analysis problem of fully specified POMDPs is EXPTIME-
complete. Second, we present an efficient reduction of our
problem to SAT instances. This results in a practical, sym-
bolic algorithm for the problem we consider and state-of-
the-art SAT solvers, from artificial intelligence as well as
many other fields (Biere 2013; Rintanen 2011; Biere et al.
1999), can be used for our problem. Then, we illustrate the
trade-offs between the amount of memory of the policy and
the number of additional sensors on a simple example. Fi-
nally, we present experimental results. We consider three
classical POMDP examples from the literature, and show
that in these examples the number of observations (hence the
number of sensors in practice) can be significantly decreased
as compared to the existing models in the literature, without
increasing the memory size of the policies. We report scala-
bility results on three examples showing that our implemen-
tation can handle POMDPs with ten thousand states.

2 Preliminaries

A probability distribution f on a finite set X is a function
f : X → [0, 1] such that

∑
x∈X f(x) = 1, we denote by

D(X) the set of all probability distributions on X and by
Uniform(X) the uniform distribution over a finite set X . For
a distribution f ∈ D(X) we denote by Supp(f) = {x ∈ X |
f(x) > 0} the support of f .

POMDPs. A Partially Observable Markov Decision Pro-
cess (POMDP) is defined as a tuple P = (S,A, δ,Z,O, I)
where
• (i) S is a finite set of states;
• (ii) A is a finite alphabet of actions;
• (iii) δ : S × A → D(S) is a probabilistic transition

function that given a state s and an action a ∈ A gives
the probability distribution over the successor states, i.e.,
δ(s, a)(s′) denotes the transition probability from s to s′
given action a;

• (iv) Z is a finite set of observations;
• (v) I ∈ S is the unique initial state;
• (vi) O : S → D(Z) is a probabilistic observation func-

tion that maps every state to a probability distribution over
observations.

48

Plays. A play (or a path) in a POMDP is an infinite se-
quence (s0, a0, s1, a1, s2, a2, . . .) of states and actions such
that s0 = I and, for all i ≥ 0, we have δ(si, ai)(si+1) > 0.
We write Ω for the set of all plays.

Policies. A policy (or a strategy) is a recipe to extend pre-
fixes of plays. That is, a policy is a function σ : (Z · A)∗ ·
Z → D(A) that, given a finite history of observations and
actions, selects a probability distribution over the actions to
be played next. We present an alternative definition of poli-
cies with finite memory for POMDPs.

Policies with Memory. A policy with memory is a tuple σ =
(σu, σn,M,m0) with the following elements:
• M is a finite set of memory elements.
• The function σn : M → D(A) is the action selection

function that maps the current memory element to a prob-
ability distribution over actions.

• The function σu : M × Z ×A → D(M) is the memory
update function that, given the current memory element,
the current observation and action, updates the memory
element probabilistically.

• The element m0 ∈ M is the initial memory element.
We will say a policy has memory size n if the number of
memory elements is n, i.e., |M | = n.

Probability Measure. Given a policy σ and a starting
state I , the unique probability measure obtained given σ is
denoted as Pσ

I (·) (Billingsley 1995; Littman 1996).

Reachability Objectives. Given a set T ⊆ S of target
states, a reachability objective in a POMDP P is a measur-
able set ϕ ⊆ Ω of plays defined as follows: Reach(T) =
{(s0, a0, s1, a1, s2 . . .) ∈ Ω | ∃i ≥ 0 : si ∈ T}, i.e., the set
of plays, such that a state from the set of target states T is
visited at least once.

In the remainder of the paper, we assume that the set of
target states consists of a single goal state, i.e., T = {G} ⊆
S. This assumption is w.l.o.g. because it is always possible
to add a state G with transitions from all target states in T .
Note, that there are no costs or rewards associated with tran-
sitions.

Almost-Sure Winning. A policy σ is almost-sure winning
for a POMDP P with a reachability objective Reach(T) iff
P
σ
I (Reach(T)) = 1. In the sequel, whenever we refer to a

winning policy, we mean an almost-sure winning policy.

3 Partially Defined Observation Functions

Traditionally, POMDPs are equipped with a fully defined
observation function O : S → D(Z) that assigns to every
state of the POMDP a probability distribution over obser-
vations. In order to model the partially defined observation
function, we assume the input POMDP P is given with par-
tially defined observation function O⊥ : S → D(Z ∪ {⊥}).
The probability distributions in the range of the function O⊥
contain an additional symbol ⊥, and whenever for a state
s ∈ S we have ⊥ ∈ Supp(O⊥(s)), we will say that the
state s has observations only partially defined.

Observation function completions. We say a fully defined
observation function O is a completion of a partially defined

+ g

Figure 1: Grid POMDP

observation function O⊥ : S → D(Z ∪ {⊥}) (and write
O⊥ ≺ O) if all of the following conditions are met:
1. There exists a set ZA of additional observations and the

observation function O : S → D(Z∪ZA) maps the states
only to the set of old observations Z and the newly added
observations ZA, i.e., the observations are defined for all
states.

2. The function O agrees on assigned observations with
O⊥, i.e., for all states s ∈ S and observations z ∈ Z ,
we have O⊥(s)(z) = O(s)(z).
Intuitively, given a POMDP with a reachability objective

and a partially defined observation function O⊥, Problem 1
asks, whether there exists a completion using no more than
ν additional observations such that in the resulting POMDP
there exists an almost-sure winning policy using no more
than μ memory elements. More formally we study:

Problem 1 Given a POMDP P = (S,A, δ,Z,O⊥, I) with
a reachability objective Reach(T), and two integer param-
eters μ > 0 and ν ≥ 0, decide whether there exists a com-
pletion O⊥ ≺ O using additional observations ZA and
an almost-sure winning policy σ = (σu, σn,M,m0) for
the Reach(T) objective in the POMDP P ′ = (S,A, δ,Z ∪
ZA,O, I), with |ZA| ≤ ν and |M | ≤ μ.

Example 1 Consider a deterministic POMDP depicted in
Figure 1. There are three states corresponding to the posi-
tion of the agent on the grid. The agent starts in the left-
most grid cell, and tries to move to the rightmost grid cell,
where a treasure is hidden. There are three deterministic
actions available to the agent: move-left, move-right, and
grab-treasure. When the action grab-treasure is played in the
rightmost cell, the agents wins, if it is played in any other
cell the agent loses. The remaining two movement actions
move the agent in the corresponding directions, if the wall is
hit the agent loses.

• In the setting where μ = 3 and ν = 1, the problem is
satisfiable by a policy that plays actions in the following
sequence move-right, move-right, and grab-treasure.

• In the setting where μ = 2 and ν = 2, the problem is sat-
isfiable by an observation function that assigns the right-
most grid cell an observation different from the two re-
maining grid cells. The policy plays action move-right in
the first memory element until an observation correspond-
ing to the rightmost cell is observed. After that it switches
to the second memory element, where it plays action grab-
treasure.

• In the setting where μ = 2 and ν = 1, the problem is
not satisfiable, i.e., there is no two-memory almost-sure
winning policy if all the states have the same observation.

49

4 Complexity and SAT Encoding

In this section we consider properties of almost-sure win-
ning policies, the complexity of Problem 1, and its encoding
to SAT instances.

Complexity

Theorem 1 Deciding Problem 1 given constant parame-
ters μ and ν is NP-complete.

Main ideas. We remark that Theorem 1 holds even if param-
eter μ is polynomial and ν is sublinear (such as logarithmic,
or square-root) in the size of the POMDP.

• Inclusion in NP. Note that for polynomial μ and ν, a
guess of the observation completion and the policy (if
they exist) is polynomial. Thus we have polynomial-
sized witnesses. Given a policy and an observation func-
tion, we obtain a Markov chain where qualitative analy-
sis is polynomial time using standard discrete graph al-
gorithms (Chatterjee, Jurdziński, and Henzinger 2003;
Chatterjee and Henzinger 2014; 2011). Hence inclusion
in NP follows.

• NP-hardness. An NP-hardness result was established for
a similar problem, namely, for no memory policies in
fully specified two-player games with partial-observation,
in (Chatterjee, Kößler, and Schmid 2013, Lemma 1). The
reduction constructed a game that is a DAG (directed
acyclic graph), and replacing the adversarial player with
a uniform distribution over choices shows that Problem 1
is NP-hard even with μ = 1 (no memory policies) and
ν = 0 (fully specified observation).

SAT Encoding

In this section we present SAT encoding for Problem 1,
which generalizes the results of (Chatterjee, Chmelik, and
Davies 2016), where only a special case of fully specified
observation function was considered.
Standard Results. We now present two basic lemmas. The
following lemma presents a standard result for qualitative
analysis of POMDPs, and it basically follows from the fact
that in a Markov chain for qualitative analysis, the exact
probability distributions are not important, and the sup-
ports of the distributions completely characterize almost-
sure winning.

Lemma 1 Given an almost-sure winning policy σ =
(σu, σn,M,m0) for a Reach(T) objective, the policy σ′ =
(σ′

u, σ
′
n,M,m0), where for m ∈ M the action selection

function σ′
n is defined as σ′

n(m) = Uniform(Supp(σn(m))),
and for m ∈ M,a ∈ A, and z ∈ Z the mem-
ory update function σ′

u is defined as σ′
u(m, z, a) =

Uniform(Supp(σu(m, z, a))), is also an almost-sure win-
ning policy for Reach(T).

Given a policy σ and a POMDP P = (S,A, δ,Z,O, I)
and two state-memory pairs (s,m), (s′,m′) ∈ S × M
we define a predicate Pathk,σ,P ((s,m), (s′,m′)) to be
True iff there exists a sequence of state-memory pairs
((s1,m1), (s2,m2), . . . , (sj ,mj)) of length j where 0 <

j ≤ k, such that s = s1,m = m1, s
′ = sj , and m′ = mj ,

and for all 1 ≤ i < j there exists an action ai ∈ A, observa-
tion zi ∈ Z , such that σn(mi)(ai) > 0, δ(si, ai)(si+1) > 0,
O(si+1)(zi) > 0, and σu(mi, zi, ai)(mi+1) > 0. Let
RP,σ be the set of all pairs (s,m) ∈ S × M such that
Pathk,σ,P ((I,m0), (s,m)) is True for some k ∈ N. The fol-
lowing lemma states that almost-sure winning policies are
characterized by paths of bounded length to the goal state.

Lemma 2 A policy σ is almost-sure winning in a
POMDP P iff for every state-memory pair (s,m) ∈ RP,σ

the predicate Pathk,σ,P ((s,m), (G,m′)) for some m′ ∈ M
and k = |S| · |M | is True.

Consequences for the SAT encoding. The consequences of
the presented lemmas for the SAT encoding are as follows:
Lemma 1 allows to encode only the supports of the proba-
bility distributions of the policy σ, i.e., a boolean property
whether an action (resp. a memory element) is present in the
support of the distribution σn (resp. σu). Lemma 2 allows to
characterize state-memory pairs (s,m) that are almost-sure
winning by encoding the boolean predicate Pathk,σ,P that
represents existence of paths to the goal state.
Notations. Given a POMDP P , reachability objective
Reach(T), a bound on the number of memory elements μ,
a bound on the number of additional observations ν, and a
path length k ≤ |S| · |M | which is a parameter related to the
length of paths in the POMDP, we will define a formula in
conjunctive normal form (CNF) Φk,μ,ν that for a sufficiently
large parameter k, e.g., k = |S| · |M |, will be satisfiable if
and only if there exists completion of the observation func-
tion using no more than ν additional observations and an
almost-sure winning policy with no more than μ memory
elements, i.e., the associated instance of Problem 1 is true.
We define the set ZA = {z1, z2, . . . , zν} of additional ob-
servations, and denote by Z ′ = Z∪ZA the disjoint union of
the old observations in Z and the newly added observations
in ZA. We describe the CNF formula Φk,μ,ν by defining all
of its Boolean variables, followed by the clausal constraints
over those variables.
Boolean Variables. We first introduce the variables.

• We begin by encoding the action selection function σn of
the policy σ. We introduce a Boolean variable Am,a for
each memory-state m ∈ M and action a ∈ A to represent
that action a is played with positive probability in memory
state m, i.e., that σn(m)(a) > 0 (see Lemma 1).

• Next, we encode the memory update function σu. We in-
troduce a Boolean variable Mm,z,a,m′ for each pair of
memory-states m,m′ ∈ M , observation z ∈ Z ′ and ac-
tion a ∈ A. If such a variable is assigned to True, it in-
dicates that, if the current memory-state is m, the current
observation is z, and action a is played, then it is possible
that the new memory-state is m′, i.e., σu(m, z, a)(m′) >
0 (see Lemma 1).

• We encode the completion O of the partially defined ob-
servation function O⊥. We introduce a variable Os,z for
every state s ∈ S and observation z ∈ Z ′. The intuitive

50

meaning is that the observation function completion O as-
signs to state s observation z with positive probability.

• Boolean variables Ci,m for each state i ∈ S and memory
state m ∈ M indicate which (state, memory-state) pairs
are reachable by the policy.

• The variables Pi,m,j for all i ∈ S, m ∈ M , and 0 ≤
j ≤ k, correspond to the proposition that there is a path
of length at most j from (i,m) to the goal state, that is
compatible with the policy.

Logical Constraints. We introduce the following clause for
each m ∈ M to ensure that at least one action is chosen with
positive probability for each memory state (see Lemma 1):∨

j∈A
Am,j .

To ensure that the memory update function is well-
defined, we introduce the following clause for each m ∈ M ,
a ∈ A and z ∈ Z ′ (see Lemma 1):∨

m′∈M

Mm,z,a,m′ .

To ensure that every state i has at least one observation z
in the support of the observation function, we introduce the
following clause for every state i ∈ S:∨

z∈Z′
Oi,z.

For every state i ∈ S and every z ∈ Supp(O(i)), we
enforce the consistency by adding the clause:

Oi,z.

For every state i ∈ S, with observations fully defined, i.e.,
⊥ �∈ Supp(O(i)), for every additional observation z ∈ ZA

we add the following clause:

¬Oi,z.

The following clauses ensure that the variables Ci,m will
be assigned True for all pairs (i,m) that are reachable using
the policy:

(Ci,m ∧Am,a ∧Oj,z ∧Mm,z,a,m′) ⇒ Cj,m′ .

Such a clause is defined for each pair m,m′ ∈ M of
memory-states, each pair i, j ∈ S of states, each observa-
tion z ∈ Z and each action a ∈ A such that δ(i, a)(j) > 0.

Therefore, the fact that the initial state and initial memory
element is reachable is enforced by adding the single clause

CI,m0 .

We introduce the following unit clause for each m ∈ M
and 0 ≤ j ≤ k, which says that the goal state with any
memory element is reachable from the goal state and that
memory element using a path of length at most 0:

PG,m,0.

Next, we define the following binary clause for each i ∈ S
and m ∈ M so that, if the pair (i,m) of a state and a memory

element is reachable, then the existence of a path from (i,m)
to the goal state is enforced (see Lemma 2):

Ci,m ⇒ Pi,m,k.

Finally, we use the following constraints to define the
value of variables Pi,m,j for all i ∈ S, m ∈ M , and
0 ≤ j ≤ k in terms of the chosen policy (see Lemma 1
and definition of predicate Path).

Pi,m,j ⇐⇒
∨
a∈A

⎡
⎢⎢⎣Am,a∧

⎛
⎜⎜⎝

∨
m′∈M,z∈Z,

i′∈S:δ(i,a)(i′)>0

[Oi′,z ∧Mm,z,a,m′ ∧ Pi′,m′,j−1]

⎞
⎟⎟⎠
⎤
⎥⎥⎦ .

The conjunction of all clauses defined above forms the
CNF formula Φk,μ,ν .

Theorem 2 The formula Φk,μ,ν for k ≥ |S|·μ is satisfiable,
iff there exists a completion of the observation function using
no more than ν additional observations and an almost-sure
winning policy using no more than μ memory elements.

Proof [Proof sketch.] Satisfiable formula ⇒ completion and
a policy: If the formula Φk,μ,ν is satisfiable, the SAT solver
outputs a valuation v of the variables. The boolean variables
Os,z that are true according to v encode the completion
of the observation function, variables Am,a encode the ac-
tion selection function σn, and Mm,z,a,m′ encode the mem-
ory update function σu. The fact that the encoded policy is
almost-sure winning follows from the clauses and lemmas 1
and 2.
Completion and a policy ⇒ satisfiable formula: Given a
completion of the observation function and an almost-sure
winning policy σ we show how to construct a satisfying val-
uation v for the formula Φk,μ,ν . The completion of the ob-
servation function O⊥ gives the valuation for the Os,z vari-
ables, the action selection function σn for the Am,a vari-
ables, and the memory update function σu for the Mm,z,a,m′

variables. The valuation for the Ci,m and Pi,m,j is obtained
by constructing RP,σ and examining which state-memory
pairs are reachable and the shortest path to a goal state. �

Partial Specification with Constraints

In the previous section we have presented a SAT encoding
for POMDPs with partially specified observation functions.
In this section we discuss additional constraints that might
be desirable and our encoding can be easily extended to han-
dle these constraints.
Non-distinguishable states. In many scenarios it might be
the case that there are states that cannot be distinguished by
any available sensors, i.e., the observation assigned to these
states must necessarily be the same. This can be enforced by
adding the following clause for any pair j, j′ ∈ S of non-
distinguishable states and all the observations z ∈ Z ′.

Oj,z ⇔ Oj′,z.

51

Distinguishable states. In some scenarios it might be the
case that two states cannot have the same observation. This
can be enforced by adding the following clause for any pair
j, j′ ∈ S of states and all the observations z ∈ Z ′.

(Oj,z ∧ ¬Oj′,z) ∨ (¬Oj,z ∧Oj′,z).

Dependencies among observations. Various dependencies
among observations can be expressed. For example in a
state i whenever an observation z is observed with posi-
tive probability also observation z′ is observed with positive
probability can be expressed by the following clause:

Oi,z ⇒ Oi,z′ .

Adding sensor variables. Let P be a POMDP with the
set of observations Z = {z1, z2, . . . , zn} and observation
function O. By adding a new sensor C, that receives values
Val(C) = {c1, c2, . . . , cl}, the new set of observations in the
modified POMDP P̃ is Z̃ = Z × Val(C) with observation
function Õ. This corresponds to increasing the observation
dimensionality, rather than increasing cardinality. Our ap-
proach allows to synthesise observations in POMDP P̃ as
follows:
• We set the observations of all states to be undefined.
• We add constrains to the resulting formula as follows:

In POMDP P̃ an observation (z, c) ∈ Z̃ for some c ∈
Val(C) is received with positive probability in state i, i.e.,
Õ(i)((z, c)) > 0 if and only if the observation z ∈ Z is
received in state i in the original POMDP P with positive
probability, i.e., O(i)(z) > 0.

1. For every state i ∈ S and observation z ∈ Supp(O(i))
we add the following clause:

∨
c∈Val(C)

Oi,(z,c)

2. For every state i ∈ S and observation z �∈ Supp(O(i))
we add the following constraint:

∧
c∈Val(C)

¬Oi,(z,c)

Deterministic observations function. For every state s ∈ S
we introduce the following clause:∑

z∈Z′
Oi,z = 1 (exactly one of Oi,z for z ∈ Z ′ is true).

Remark 1 Deterministic observation functions are a spe-
cial case of probabilistic observation functions. Therefore,
the number of observations in the deterministic case is an
upper bound for the probabilistic case. However, a proba-
bilistic observation function might require less observations.

5 Experimental Results

In this section we present experimental results and evaluate
our approach on several POMDP examples that were pub-
lished in the literature. We have implemented the encoding

Name Grid # States μ ν Time (s) SAT

Escape2 2× 2 19 5 5 0.18
√

Escape3 3× 3 84 5 5 1.22
√

Escape4 4× 4 259 5 5 5.69
√

Escape5 5× 5 628 5 5 19.31
√

Escape6 6× 6 1299 5 5 52.65
√

Escape7 7× 7 2404 5 5 131.77
√

Escape8 8× 8 4099 5 5 280.19
√

Escape9 9× 9 6564 5 5 674.42
√

Escape10 10× 10 10003 5 5 1519.48
√

Table 1: Escape instances.

presented in Section 4 as a program in Python and use the
MiniSAT solver (Eén and Sörensson 2003) on an Intel(R)
Xeon(R)@ 3.50GHz CPU.

Remark 2 In our experimental results we consider the syn-
thesis of deterministic observation functions. As mentioned
in Remark 1, deterministic observation functions provide up-
per bound for the number of observations required by proba-
bilistic observation functions. Thus synthesizing determinis-
tic observation functions with fewer observations is the more
challenging problem, which we consider to illustrate the ef-
fectiveness of our approach.

We present our results first on a small, simple example
to illustrate how various selections of the memory bounds
μ and additional observation bounds ν affect the computed
policies and discuss the possible trade-offs between the
memory vs. observation budgets in Problem 1.

Name Grid # States μ ν Time (s) SAT

Hallway1 7× 5 38 2 2 0.22 ×
Hallway1 7× 5 38 3 2 0.55

√
Hallway2 11× 9 190 3 2 5.95 ×
Hallway2 11× 9 190 3 3 5.28 ×
Hallway2 11× 9 190 4 2 20.82

√
Hallway3 11× 10 226 3 2 6.53 ×
Hallway3 11× 10 226 3 3 7.33 ×
Hallway3 11× 10 226 4 2 28.98

√

Table 2: Hallway instances.

Deterministic Hallway

We consider a simplification of the well-known Hallway
problem (Littman, Cassandra, and Kaelbling 1995), where
an agent navigates itself on a rectangular grid (see Fig-
ure 2a). There are four actions N , E, S, and W available
to the agent. For simplicity, all the movement on the grid is
deterministic (probabilistic movement is considered in the
Hallway problem later in the scalability evaluation). There
are multiple initial states (depicted as + in Figure 2a) and
the agent starts in any of them with uniform probability. The
objective of the agent is to reach any of the goal states (de-
picted as g in Figure 2a). Whenever an agent hits a wall or
enters a trap state (depicted as x in Figure 2a) an absorbing

52

Name # States μ ν Time (s) SAT

RockSample4 351 2 2 2.43
√

RockSample5 909 2 2 18.14
√

RockSample6 2187 2 2 95.28 ×
RockSample6 2187 2 3 165.87 ×
RockSample6 2187 3 2 519.21

√
RockSample7 5049 2 2 565.49 ×
RockSample7 5049 3 2 565.43 ×
RockSample7 5049 3 3 5196.40

√

Table 3: RockSample instances.

state is reached, from which it is no longer possible to reach
the desired goal states. We consider that there are no obser-
vations defined in the POMDP, i.e., for all states s ∈ S we
have O⊥(s) = ⊥.
4 memory elements and 2 observations. In the setting,
where μ = 4 and ν = 2 the SAT solver reports that there
exists a completion of O⊥ ≺ O and an almost-sure winning
policy σ. We depict the synthesized observation function O
in Figure 2b, where the red color corresponds to the new syn-
thesized observation z1 and green color corresponds to new
synthesized observation z2. The synthesized policy σ uses
four memory elements M = {m1,m2,m3,m4}. The syn-
thesized action selection function is defined as σn(m1) =
E, σn(m2) = W,σn(m3) = S, σn(m4) = S. The com-
puted policy initially updates its memory element to m3 in
case the first observation is z1 (red) and to m4 if the obser-
vation is z2 (green), i.e., the information whether the agent
starts in the left or right start state is stored in the mem-
ory element. Then action S is played until the bottom row is
reached (this is detected by changed observations, from z2 to
z1 in the left part, and from z1 to z2 in the right part). Finally,
in case the agent is in the left part, memory element m3 is
updated to m2 and by action W the goal state is reached.
Similarly, in the right part, memory element m4 is updated
to m1 and by action E the goal state is reached.
3 memory elements and 3 observations. In the setting,
where μ = 3 and ν = 3 the SAT solver reports there ex-
ists a completion of O⊥ ≺ O and an almost-sure winning
policy σ. This allows to reduce the number of memory el-
ements needed, provided we add one more observation to
the POMDP. We depict the synthesized observation func-
tion O in Figure 2c, where red color corresponds to the new
synthesized observation z1, green color to the new obser-
vation z2, and blue color corresponds to the new observa-
tion z3. The synthesized policy σ uses three memory el-
ements M = {m1,m2,m3}. The synthesized next-action
selection function is defined as σn(m1) = W,σn(m2) =
E, σn(m3) = S. The computed policy starts with the initial
memory element m3 and plays actions S until either obser-
vation z1 or z3 is received. In case z1 (red) is observed, the
policy is updated to memory element m2 and reaches the
goal state with action E. In case z3 (blue) is observed, the
policy is updated to memory element m1 and reaches the
goal state with action W .
3 memory elements and 2 observations. In the setting,

where μ = 3 and ν = 2 the SAT solver reports there does
not exist a completion of O⊥ ≺ O that would allow for a
two-memory almost-sure winning policy. This follows from
the fact that at least three memory elements are necessary
for actions S,E,W , i.e., with the restriction μ = 3, there
are no available memory elements to store additional infor-
mation. As the agent needs to avoid hitting into walls, a ran-
domized action selection function cannot be used. It follows
that there can be at most one memory element m such that
σn(m) = S. It follows easily that, with only two observa-
tions and one memory element for action S, it is not possible
to detect that the agent is already present in the bottom row.

Scalability Evaluation

In this part we demonstrate the scalability of our approach
on three well-known POMDP examples of varying sizes.
Our results show that in all cases the observations consid-
ered in these examples from the literature are unnecessar-
ily refined and significantly less precise observations suffice
even without making the policies more complicated.
Escape POMDPs. The problem is originally based on a case
study published in (Svorenova et al. 2015), where the goal
is to compute a policy to control a robot in an uncertain en-
vironment. A robot navigates on a square grid. There is an
agent moving over the grid, and the robot must avoid be-
ing captured by the agent forever. The robot has four ac-
tions: move north, south, east, or west. These actions have
deterministic effects, i.e., they always succeed. In the origi-
nal POMDP instance, there are 179 different observations.

The memory and observation trade-offs for the smallest
instance Escape2 are depicted on Figure 3, which shows
that for μ = 5 and ν = 179 there exists an almost-sure
policy. However, it is possible to significantly decrease the
number of observations to ν = 5 and there is still an almost-
sure winning policy with μ = 5. If μ is increased to 8, it is
possible to decrease ν to 4. If the memory size μ is further
increased to 12, it is possible to reduce the number of obser-
vations ν to 3. We illustrate the scalability results in Table 1,
where we report the number of states, the parameters μ, ν,
the running time of the SAT solver, and whether the formula
is satisfiable. In all the cases with μ = 5 and ν = 5 there
exists an almost-sure policy and the sizes of the instances go
up to 10000 states. There are approx. 1.6 × 108 clauses in
the largest instance.
Hallway POMDPs. Hallway POMDP instances are inspired
by the Hallway problem introduced in (Littman, Cassan-
dra, and Kaelbling 1995) and used later in (Spaan 2004;
Smith and Simmons 2004; Bonet and Geffner 2009; Chatter-
jee et al. 2015). In the Hallway POMDPs, a robot navigates
on a rectangular grid. The grid has barriers through which
the robot cannot move, as well as trap locations that destroy
the robot. The robot must reach a specified goal location.
The robot has three actions: move forward, turn left, and
turn right. The actions may all fail with positive probability,
in which case the robot’s state remains unchanged. The state
is therefore comprised of the robot’s location in the grid,
and its orientation. Initially, the robot is randomly positioned
among multiple start locations. Originally, the POMDP in-

53

+ +

g gx

(a)

+ +

g gx

(b)

+ +

g gx

(c)

Figure 2: (a) Deterministic Hallway POMDP. (b) Synthesized O for Hallway μ = 4 and ν = 2. (c) Synthesized O for Hallway
μ = 3 and ν = 3.

5 10 15

101

102

Memory (μ)

#
O

bs
er

va
tio

ns
(ν

)

Figure 3: Memory vs. observation trade-off for Escape2

stances contain 16 different observations. The results are re-
ported in Table 2, where we consider three different Hall-
way instances and vary the parameters μ for the number of
memory elements and ν for the number of additional ob-
servations. For every entry we report the number of states,
the parameters μ, ν, the running time of the SAT solver, and
whether the formula is satisfiable. The results show that in
all cases two observations are sufficient. In the smallest in-
stance memory of size 3 is sufficient. For larger instances,
memory size needs to be increased to 4. There are approx.
1.1× 107 clauses in the largest instance.
RockSample POMDPs. We consider a variant of the Rock-
Sample problem introduced in (Smith and Simmons 2004)
and used later in (Bonet and Geffner 2009; Chatterjee et al.
2015). The RockSample instances model rover science ex-
ploration. Only some of the rocks have a scientific value,
and we will call these rocks “good”. Whenever a bad rock is
sampled the rover is destroyed and a losing absorbing state is
reached. If a rock is sampled for the second time, then with
probability 0.5 the action has no effect. With the remaining
probability the sample is destroyed and the rock needs to
be sampled one more time. An instance of the RockSample
problem is parametrized with a parameter [n]: n is the num-
ber of rocks on a grid of size 3×3. The goal of the rover is to
obtain two samples of good rocks. The results are presented
in Table 3. Originally, the POMDP instances contain 15 dif-
ferent observations. The results show that, with increasing
sizes of the POMDP instances, either increasing the mem-
ory size or increasing the number of additional observations

is enough to obtain an almost-sure winning policy. There are
approx. 9.8× 107 clauses in the largest instance.

6 Conclusion

In this work we consider POMDPs with partially specified
observations, and the problem to synthesize additional ob-
servations along with small-memory almost-sure winning
policies. Interesting directions of future work would be to
consider (a) the usage of incremental SAT solvers (b) other
aspects of partial specifications (such as transitions), and
(c) other objectives, such as discounted-sum.

References

Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI, 1623–1628.
Amato, C.; Bernstein, D.; and Zilberstein, S. 2010. Op-
timizing fixed-size stochastic controllers for POMDPs and
decentralized POMDPs. AAMAS 21(3):293–320.
Bagnato, A.; Biro, R. K.; Bonino, D.; Pastrone, C.; Elmenre-
ich, W.; Reiners, R.; Schranz, M.; and Arnautovic, E. 2017.
Designing Swarms of Cyber-Physical Systems: the H2020
CPSwarm Project. In ACM International Conference on
Computing Frontiers.
Baier, C.; Größer, M.; and Bertrand, N. 2012. Probabilistic
omega-automata. J. ACM 59(1).
Bertoli, P.; Cimatti, A.; and Pistore, M. 2006. Strong cyclic
planning under partial observability. ICAPS 141:580.
Bertsekas, D. 1995. Dynamic Programming and Optimal
Control. Athena Scientific. Volumes I and II.
Biere, A.; Cimatti, A.; Clarke, E.; Fujita, M.; and Zhu, Y.
1999. Symbolic model-checking using SAT procedures in-
stead of BDDs. In DAC, 317–320.
Biere, A. 2013. Lingeling, plingeling and treengeling enter-
ing the SAT competition 2013. In SAT Comp.
Billingsley, P., ed. 1995. Probability and Measure. Wiley-
Interscience.
Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-
Bel vs. point-based algorithms. In IJCAI, 1641–1646.

54

Bonet, B. 2010. Conformant plans and beyond: Principles
and complexity. Artif. Intell. 174(3-4):245–269.
Censi, A. 2015. A Mathematical Theory of Co-Design.
arXiv preprint arXiv:1512.08055.
Cerný, P.; Chatterjee, K.; Henzinger, T. A.; Radhakrishna,
A.; and Singh, R. 2011. Quantitative synthesis for con-
current programs. In Proc. of CAV, LNCS 6806, 243–259.
Springer.
Chatterjee, K., and Henzinger, M. 2011. Faster and dy-
namic algorithms for maximal end-component decomposi-
tion and related graph problems in probabilistic verification.
In SODA. ACM-SIAM.
Chatterjee, K., and Henzinger, M. 2014. Efficient and dy-
namic algorithms for alternating Büchi games and maximal
end-component decomposition. J. ACM 61(3):15.
Chatterjee, K.; Doyen, L.; Henzinger, T.; and Raskin, J.
2006. Algorithms for omega-regular games with imperfect
information. In CSL’06, 287–302. LNCS 4207, Springer.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A.
2015. Qualitative Analysis of POMDPs with Temporal
Logic Specifications for Robotics Applications. ICRA.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A.
2016. Optimal Cost Almost-sure Reachability in POMDPs.
In AI.
Chatterjee, K.; Chmelik, M.; and Davies, J. 2016. A Sym-
bolic SAT-based Algorithm for Almost-sure Reachability
with Small Strategies in POMDPs. AAAI 3225–3232.
Chatterjee, K.; Doyen, L.; and Henzinger, T. A. 2010. Qual-
itative analysis of partially-observable Markov decision pro-
cesses. In MFCS, 258–269.
Chatterjee, K.; Jurdziński, M.; and Henzinger, T. 2003. Sim-
ple stochastic parity games. In CSL’03, LNCS 2803, 100–
113. Springer.
Chatterjee, K.; Kößler, A.; and Schmid, U. 2013. Auto-
mated analysis of real-time scheduling using graph games.
In HSCC’13, 163–172.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1):35–84.
Culik, K., and Kari, J. 1997. Digital images and formal
languages. Handbook of formal languages 599–616.
Durbin, R.; Eddy, S.; Krogh, A.; and Mitchison, G. 1998.
Biological sequence analysis: probabilistic models of pro-
teins and nucleic acids. Cambridge Univ. Press.
Durrett, R. 1996. Probability: Theory and Examples (Sec-
ond Edition). Duxbury Press.
Eén, N., and Sörensson, N. 2003. An extensible SAT-solver.
In Theory and Applications of Satisfiability Testing, 502–
518.
Filar, J., and Vrieze, K. 1997. Competitive Markov Decision
Processes. Springer-Verlag.
Howard, H. 1960. Dynamic Programming and Markov Pro-
cesses. MIT Press.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artif. Intell. 101(1):99–134.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. JAIR 4:237–285.
Kolobov, A.; Mausam; Weld, D.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
MDPs. In ICAPS.
Kolobov, A.; Mausam; and Weld, D. 2012. A theory of
goal-oriented MDPs with dead ends. In UAI, 438–447.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P.
1995. Learning policies for partially observable environ-
ments: Scaling up. In ICML, 362–370.
Littman, M. L. 1996. Algorithms for Sequential Decision
Making. Ph.D. Dissertation, Brown University.
Madani, O.; Hanks, S.; and Condon, A. 2003. On the un-
decidability of probabilistic planning and related stochastic
optimization problems. Artif. Intell. 147(1-2):5–34.
Maliah, S.; Brafman, R.; Karpas, E.; and Shani, G. 2014.
Partially observable online contingent planning using land-
mark heuristics. In ICAPS.
Mehta, A.; DelPreto, J.; and Rus, D. 2015. Integrated
codesign of printable robots. Journal of Mechanisms and
Robotics 7(2):021015.
Meuleau, N., and Smith, D. E. 2003. Optimal Limited Con-
tingency Planning. In UAI, 417–426.
Mohri, M. 1997. Finite-state transducers in language and
speech processing. Comp. Linguistics 23(2):269–311.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12:441–450.
Paz, A. 1971. Introduction to probabilistic automata (Com-
puter science and applied mathematics). Academic Press.
Puterman, M. L. 1994. Markov Decision Processes. John
Wiley and Sons.
Rintanen, J. 2011. Planning with SAT, admissible heuristics
and A*. In IJCAI, 2015–2020.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI, 520–527. AUAI Press.
Spaan, M. 2004. A point-based POMDP algorithm for robot
planning. In ICRA, volume 3, 2399–2404. IEEE.
Svorenova, M.; Chmelik, M.; Leahy, K.; Eniser, H. F.; Chat-
terjee, K.; Cerna, I.; and Belta, C. 2015. Temporal Logic
Motion Planning using POMDPs with Parity Objectives. In
HSCC.

55

