
On Stubborn Sets and Planning with Resources

Anna Wilhelm, Marcel Steinmetz, Jörg Hoffmann
Saarland Informatics Campus

Saarland University
Saarbrücken, Germany

s8anwilh@stud.uni-saarland.de;{steinmetz,hoffmann}@cs.uni-saarland.de

Abstract

Stubborn sets are a well-established technique to admissibly
prune permutable parts of forward search in classical plan-
ning. But what about planning with resources? The iden-
tification of effective stubborn sets relies on non-interfering
actions. Yet, a priori, all actions affecting the same resource
interfere. We show how to exploit the fact that, neverthe-
less, with commutativity of addition and subtraction, many
resource-affecting action sequences are permutable. We de-
sign suitable notions of stubborn sets for planning with re-
sources, with and without resource production. We show em-
pirically, on classical IPC benchmarks with discrete resource
variables, that our new pruning methods are often, and some-
times dramatically, superior to previous ones. Together with a
novel way of automatically identifying the resource variables,
this result holds under IPC conditions.

Introduction

Stubborn sets admissibly prune permutable parts of forward
search. They were invented in verification (Valmari 1989;
Godefroid and Wolper 1991; Edelkamp, Leue, and Lluch-
Lafuente 2004), and later adopted to planning (Alkhazraji
et al. 2012; Wehrle et al. 2013; Wehrle and Helmert 2014;
Winterer et al. 2017). Stubborn set analysis identifies, in
any given search state s, a safe subset As of actions, where
branching only over As suffices to guarantee optimality. In a
nutshell, the idea is to include into As (a) actions a that must
be used to achieve some part of the goal, and (b) all actions
that interfere with these a, i. e., whose preconditions/effects
are in conflict with a. Given this, actions outside As can just
as well be applied later on, i. e., we can ignore them at s.

But what about planning with resources? Many planning
problems naturally involve the management of resources
like fuel or energy or the amount of space in an elevator.
Hence the consideration of resources has a long tradition in
planning, e. g. (Ghallab and Laruelle 1994; Koehler 1998;
Do and Kambhampati 2001; Srivastava, Kambhampati, and
Do 2001; Haslum and Geffner 2001; Nakhost, Hoffmann,
and Müller 2012; Coles et al. 2013). Even in the classical
IPC benchmarks, i.e. the by far most populated PDDL level
1 part of the IPC, where continuous resources are not sup-
ported, many domains contain discrete resource variables.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our starting observation is that, in planning with re-
sources, classical notions of interference are unnecessarily
strict. Two actions interfere, in particular, if they may dis-
able each other’s precondition. This is certainly the case for
any two actions a and a′ that consume the same resource.
Yet so long as there are sufficient resources to apply both a
and a′, and the two actions do not interfere in any other way,
their ordering does not matter. More generally, given the
commutativity of addition and subtraction, many resource-
affecting action sequences are permutable despite numerous
syntactic interactions on the resource variables.

There are several variants of planning with resources,
which lead to different stubborn set analyses. In par-
ticular, we consider the simple but wide-spread case,
sometimes called resource-constrained planning (RCP)
(Nakhost, Hoffmann, and Müller 2012), where resources
can only be consumed, not produced; we denote that case
ConsOnly. Matters turn out to be quite easy, and beneficial
for performance, in ConsOnly: one can simply ignore the re-
sources in the stubborn set analysis. Intuitively, in any plan,
by definition there are sufficient resources for all actions in
the plan, so we don’t have to worry about the resources in
analyzing permutability. In the presence of resource pro-
duction, this is no longer true as the availability of sufficient
resources for any one action in the plan may depend on pre-
vious actions. We show that this can be addressed by extend-
ing previous stubborn set concepts. For each of the stubborn
set designs we consider, we state a suitable variant of Wehrle
and Helmert’s (2014) generalized strong stubborn sets, as an
idealized analysis ignoring computational cost; and we state
a practical syntactic approximation thereof.

Our implementation is in Fast Downward (FD) (Helmert
2006), facilitating direct comparison with the state-of-the-
art stubborn sets techniques. While FD does not support
continuous resource variables, one can use the widespread
discrete encoding of resources via resource “units”. Our def-
initions transfer straightforwardly to this setup.

With manually marked-up resource variables, such ex-
periments would evaluate our contribution in planning with
explicit resources. We go beyond this through the auto-
matic identification of resource variables implicit in the in-
put model. We introduce a concept of discrete resource vari-
ables in FD’s finite-domain representation (FDR) context,
along with a method that tests whether a given FDR state

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

288

variable qualifies for that concept. Both go beyond previous
preliminary work in this direction (Seipp et al. 2016).

We run our machinery on previous ConsOnly benchmarks
(Nakhost, Hoffmann, and Müller 2012), and on all IPC and
Unsolvability-IPC benchmarks where resource variables can
be identified (this includes all but one of the IPC domains
with variables intended to encode resources). We test con-
figurations for optimal planning, satisficing planning, and
proving unsolvability. We consider strong stubborn sets,
which dominate the previous literature on stubborn set prun-
ing in planning, as well as weak stubborn sets which are less
well known. It turns out that previous stubborn set meth-
ods, due to the high amount of syntactic interference on re-
sources, hardly help in domains with resources; sometimes
they are even detrimental. In contrast, our new techniques
turn out to often improve over the baseline algorithms, and
sometimes outperform them dramatically.

Classical Planning Background

Finite-Domain Representation (FDR)

Our work is placed in the finite-domain representation
(FDR) context. An FDR task is a tuple Π = (V,A, sI , s∗).
V is a set of state variables v, each with a finite domain Dv .
A fact is a variable assignment 〈v = dv〉. We often inter-
pret (partial) variable assignments to V as sets of facts. The
initial state sI is a complete variable assignment to V , the
goal s∗ is a partial variable assignment. Each action a ∈ A
defines a precondition prea and an effect eff a, both partial
variable assignments. Each action has a non-negative cost
ca ∈ R+

0 . A state s is a complete variable assignment to
V . An action is applicable in s if prea ⊆ s. The applica-
tion of a to s is denoted s�a� and results from reassigning
the variables in s to the corresponding values in eff a where
defined. The application of an action sequence π is defined
iteratively, and its outcome state is denoted s�π�. We say
that π is a plan for s if s∗ ⊆ s�π�. The plan is optimal
if its summed-up cost is minimal among all plans; the plan
is strongly optimal if it also contains a minimal number of
0-cost actions. A plan for sI is called a plan for Π.

We denote the set of actions applicable in a state s by A|s.
Pruning methods identify a subset B ⊆ A|s to branch over.
For solvable non-goal states s, B is called safe in s if B
contains at least one action starting a strongly optimal plan
for s. It is easy to see that optimal search algorithms such
as A∗ remain optimal with safe pruning. In particular, note
that for unsolvable and goal states s, every pruning method is
safe: if there is no plan for s, or if the empty action sequence
is a plan for s, then it is optimality-preserving to prune all
actions at s. So, like previous works on stubborn set pruning,
we will restrict our attention to solvable non-goal states.

Generalized Strong Stubborn Sets (GSSS)

Stubborn set methods proceed by identifying an action set
S ⊆ A (the stubborn set) which “is needed to make progress
to the goal, and includes all interfering actions”. They guar-
antee that A|s ∩ S is safe. The most general form of stub-
born sets in the planning literature are generalized strong
stubborn sets (GSSS), by Wehrle and Helmert (2014) (short:

“WH14”). We introduce GSSS in a simplified form (leav-
ing out the “envelope”), suited to formulate our contribution.
All results transfer directly to WH14’s definition of GSSS.

Definition 1 (Interference, WH14) Let Π be an FDR task,
s be a state, and a1, a2 ∈ A|s. a1 disables a2 in s if a2 �∈
A|s�a1�; a1 and a2 conflict in s if none disables the other but
s�〈a1, a2〉� �= s�〈a2, a1〉�; a1 and a2 interfere in s if either
disables the other, or they conflict in s.

Definition 2 (Necessary Enabling Set, WH14) Let Π be
an FDR task, s be a state, and a �∈ A|s. A necessary en-
abling set for a in s is a set N ⊆ A such that, for every ac-
tion sequence π applicable in s that includes a, π includes
some a′ ∈ N before the first occurrence of a.

Definition 3 (GSSS, WH14) Let Π be an FDR task, and s
be a solvable non-goal state. Let SOpt be the set of states
visited by at least one strongly optimal plan for s. A set
S ⊆ A is a GSSS for s if:

(i) S contains at least one action from at least one strongly
optimal plan for s.

(ii) For every a ∈ (S \ A|s), S contains a necessary en-
abling set for a.

(iii) For every a ∈ (S ∩ A|s), S contains all a′ ∈ A that
interfere with a in any state s ∈ SOpt .

The proof of safety for GSSS was formulated by WH14
in generalization of previous works. We will adapt and ex-
tend their proof to our settings later on, so it is important to
understand, and to keep in mind, how that proof works.
Proof (GSSS Safety, WH14). Let π = 〈a1, . . . , an〉 be
a strongly optimal plan for s of which at least one action is
contained in S. Such π must exist because of (i). Let k be the
minimal index with ak ∈ S. Observe that ak is applicable in
s: if this were not so, then by (ii) S would contain a neces-
sary enabling set for ak, which by definition would contain
an action ai with i < k, in contradiction to the minimality
of k. Let s0, . . . , sn be the sequence of states traversed by
π. As π is strongly optimal, all these states are contained in
SOpt . Given this, observe that ak does not interfere with ai
for any 1 ≤ i < k in any of the states s0, . . . , si−1: if it did,
then by (iii) the interfering action ai would be contained in
S, again in contradiction to the minimality of k. Hence, π
can be permuted to move ak to the front. �
Syntactic Strong Stubborn Sets (SSSS)

GSSS are not, per se, practical, as their ingredients cannot
be efficiently obtained. All prior works address this through
syntactic approximations. Here we capture such an approxi-
mation explicitly through what we call syntactic SSS (SSSS).

A basic ingredient is syntactic compatibility in FDR:

Definition 4 (Compatibility) Let Π be an FDR task, and
p, q be partial variable assignments. p and q are compatible,
denoted p ‖ q, if there is no v ∈ V where both p(v) and
q(v) are defined, and p(v) �= q(v). Otherwise, p and q are
incompatible, denoted p ∦ q.

289

Keep in mind that “interference” refers to semantic prop-
erties as per Definition 1, while “compatibility” refers to
syntactic properties as per Definition 4. We will stick to this
terminology – interference vs. compatibility – throughout.

Definition 5 (SSSS, WH14) Let Π be an FDR task, and s
be a solvable non-goal state. S ⊆ A is an SSSS for s if:

(i) There exists g ∈ (s∗\s) s.t. {a′ ∈ A | g ∈ eff a′} ⊆ S.

(ii) For every a ∈ (S \A|s), there exists g ∈ (prea \ s) s.t.
S contains {a′ ∈ A | g ∈ eff a′}.

(iii) For every a ∈ (S ∩ A|s), S contains all a′ ∈ A where
(1) prea ‖ prea′ , and (2) either eff a ∦ eff a′ or eff a ∦
prea′ or eff a′ ∦ prea.

This definition is not actually stated by WH’14, but it cor-
responds to their approximation of GSSS (modulo their “en-
velope strategy” which, like for GSSS, we omit here).

It is easy to see that any SSSS is a GSSS, and therefore
this definition is safe: SSSS conditions (i) and (ii) obviously
imply the corresponding GSSS conditions; SSSS condition
(iii 2) collects all syntactic circumstances under which a and
a′ may interfere – a definition with much history in plan-
ning, e.g. action interference in Graphplan (Blum and Furst
1997); SSSS condition (iii 1) is sound because actions with
incompatible preconditions can never be jointly applicable.

The implementation of syntactic stubborn set definitions,
i. e. Definition 5 and the related definitions below (Defini-
tion 5 and Definition 9) is straightforward, see e. g. (Alk-
hazraji et al. 2012). The computation follows a fix-point
procedure starting with actions from (i) and then iterating
items (ii) and (iii) until no more new actions have to be in-
cluded. An important choice point is the selection of g in
(i) and (ii). A common strategy, that we also adopt here, is
to stick to the same g for as long as possible (intuitively, to
avoid oscillation between different subgoals).

Syntactic Weak Stubborn Sets (SWSS)

In his original work on stubborn sets, Valmari (1989) in-
troduced not only strong stubborn sets, but also a variant
called weak stubborn sets (WSS). That variant has also been
adopted to planning, but no empirical evaluation has been
published yet.1 As WSS sometimes yield superior results
in our setting, we consider them in our experiments. The
difference between strong and weak stubborn sets is orthog-
onal to our contribution, and we do not wish to claim any
involvement in its design.

We give only the syntactic form of WSS, i. e., SWSS. The
only difference to SSSS lies in condition (iii) of Definition 5.
In a SWSS, for every a ∈ (S ∩ A|s), S is required to con-
tain all a′ ∈ A where either eff a ∦ eff a′ or eff a ∦ prea′ .
That is, one considers effect-precondition interference only
from a to a′, not vice versa; in exchange, one has to drop the
precondition-compatibility filter prea ‖ prea′ . It is not dif-
ficult to show that SWSS also yield a safe pruning method.

1Personal communication with Martin Wehrle.

Planning with Resources

A resources-FDR (R-FDR) task is a tuple ΠR = (V,R, R̂,
A, sI , s∗). Here, V , A, sI , and s∗ are exactly as in FDR. R
is the set of resource variables. The domain of r ∈ R is the
non-negative reals R+

0 up to R̂(r), the resource’s maximum
capacity, specified by R̂ : R
→ R+

0 . A state now defines
a complete assignment to V ∪ R. We will often refer to the
value of a resource variable in a state as its level.

Each action a is now also associated with a function δa :
R
→ R, whose value is added to s(r) when a is applied. If
δa(r) < 0, we say that a consumes r; if δa(r) > 0, we say
that a produces r. The set of all consumers and producers of
r is denoted Cons(r) and Prod(r). An action a is applicable
in state s if prea ⊆ s and its application would not yield any
resource violations, i. e., 0 ≤ s(r) + δa(r) ≤ R̂(r). The
remainder of the semantics is defined in the obvious manner.

We denote the fragment of R-FDR where only consump-
tion is permitted, i. e., δa(r) ≤ 0 for all a and r, by Con-
sOnly. This will play a major role as a simpler yet prac-
tically relevant setting. The dual case, ProdOnly, can be
easily compiled into ConsOnly.

Note that R-FDR disallows (a) resources with infinite ca-
pacity and (b) refill actions that set a resource level back
to its (finite) capacity. Furthermore, one may (c) consider
over-production, beyond a resource’s capacity, as a refill in-
stead of disabling the respective action. All of these can, in
principle, be handled, but are omitted for the sake of sim-
plicity. Basically, handling (a) is trivial but does not match
the finite-state FDR setting we consider later; (b) and (c) can
be handled by syntactic incompatibility notions suitable for
refills. We will briefly discuss this below, referring to these
cases as InfCapacity, ReFill, and OverProd, respectively.

Stubborn Sets with Consumed Resources

As the GSSS concepts are formulated relative to states and
state transitions, not syntax, they are not limited to FDR
planning. In particular, Definitions 1 – 3 of GSSS and their
ingredients can in principle be applied as-is to R-FDR.

It is interesting to consider interference, Definition 1, in
this context. The level of a resource r in any state s always
ranges between 0 and maximum capacity, 0 ≤ s(r) ≤ R̂(r).
Given this, and given the commutativity of addition and sub-
traction, production vs. consumption of the same resource r
never causes two applicable actions a1, a2 to interfere in s.
Matters are different if both a1 and a2 affect r in the same
way: if both are consumers, they disable each other in s if
s(r) is too low for both; if both are producers, they disable
each other in s if s(r) is too high for both.

Consider the following example, which shows that the
current GSSS definition is unnecessarily conservative when
considering resources.

Example 1 Consider the R-FDR task ΠR where V =
{v1, v2} contains two Boolean variables, sI(vi) = 0,
s∗(vi) = 1, there is a single resource R = {r} with
R̂(r)=sI(r)=2, and A={a1, a2} where preai

={}, eff ai
=

{vi=1}, cost cai
= 1, and δai

(r) = −1. Obviously, a1 and
a2 can be applied in any order to solve this task.

290

Yet GSSS are unable to exploit the permutability of a1 and
a2, as the set SOpt of states on optimal plans includes states
on which the two actions disable each other. Concretely,
consider the (strongly optimal) plan π = 〈a1, a2〉, and the
states sI , s1, s2 traversed by that plan. Then a1 and a2 dis-
able each other in s1 ∈ SOpt , as applying any one of them
reduces the level of r from 1 to 0. Given this, whenever our
GSSS contains one of the two actions, it must contain the
other action as well due to interference in states in SOpt .

Importantly, this issue arises only because condition (iii)
of Definition 3 considers too many states and actions. Re-
consider the GSSS safety proof. Let π = 〈a1, . . . , an〉 be
a strongly optimal plan traversing states s0, . . . , sn, and let
ak be the minimum-index action contained in our GSSS.
To show that ak cannot interfere with any preceding action
ai, the proof employs as prerequisite that s0, . . . , sk−2 ∈
SOpt . But then, why should SOpt also contain the states
sk−1, . . . , sn? It suffices for ai and ak to be non-interfering
in the state si−1 where ai is applied. In Example 1, with
ak = a2 and ai = a1 there is no need for SOpt to contain s1
and s2 because the only state relevant to the proof argument
is s0 – in which a1 and a2 do not disable each other. This
gives us a slightly generalized notion of GSSS:

Definition 6 (Generalized GSSS) Let ΠR be an R-FDR
task, and s be a solvable non-goal state. For a ∈ A,
let SOpt [a] be the set of all states t where there exists a
strongly optimal plan π = 〈a1, . . . , an〉 for s visiting states
s0, . . . , sn, with a = ak and t = si−1 for some 1 ≤ i < k ≤
n. Let AOpt [a] be the set of actions containing a1, . . . , ak−1

for all such π. A set S ⊆ A is a generalized GSSS for s if:

(i) S contains at least one action from at least one strongly
optimal plan for s.

(ii) For every a ∈ (S \ A|s), S contains a necessary en-
abling set for a.

(iii) For every a ∈ (S ∩ A|s), S contains all a′ ∈ AOpt [a]
that interfere with a in any state t ∈ SOpt [a].

This definition is identical to Definition 3 except of con-
dition (iii) where SOpt is replaced by SOpt [a] and A by
AOpt [a]. With the arguments given above, this modification
is safe:

Proposition 1 (Generalized GSSS Safety) Let ΠR be an
R-FDR task, s be a solvable non-goal state, and S be a gen-
eralized GSSS for s. Then S is safe in s.

Note that Definition 6 does not rely on any resource-
variable specifics, and thus directly applies to FDR tasks
as well. Practically speaking, however, since the syntactic
approximation in Definition 5 abstracts away SOpt anyway,
this generalization is of rather limited use there.

For R-FDR tasks though that improvement turns out to be
very important. Let ΠR = (V,R, R̂,A, sI , s∗) be a Con-
sOnly R-FDR task, s be a solvable non-goal state, and a ∈
A|s. Consider any strongly optimal plan π = 〈a1, . . . , an〉
for s visiting the states s0, . . . , sn where ak = a for some
1 ≤ k ≤ n. Consider any action ai in the prefix before a.

Due to the absence of resource production, it immediately
follows that every state sj , where 0 ≤ j < i, must provide
enough resources to apply both ai and a. In other words,
if ai and a interfere in some sj , then this cannot be due to
resource consumption, but rather they must interfere at FDR
level. This immediately entails that, in the syntactic approx-
imation of interference of R-FDR actions, the resource vari-
ables can be simply ignored. Intuitively, the initial state must
supply sufficient resources for all actions in the plan, so the
resources are irrelevant to plan permutability.

Denote by ΠR|V := (V,A, sI |V , s∗) the FDR-projection
of ΠR. We obtain the following definition of syntactic SSS
for ConsOnly R-FDR tasks:

Definition 7 (C-SSSS) Let ΠR be a ConsOnly R-FDR task,
and s be a solvable non-goal state. A set S ⊆ A is a C-SSSS
for s if S is an SSSS for s|V in ΠR|V .

That every C-SSSS satisfies condition (iii) of Definition 6
follows from the arguments given above. For the other two
conditions, it should be easy to see the approximations in
Definition 5 on the FDR projection still imply the respective
conditions in Definition 6. We obtain:

Proposition 2 (C-SSSS Safety) Let ΠR be a ConsOnly R-
FDR task, s be a solvable non-goal state, and S be a C-SSSS
for s. Then S is a generalized GSSS for s.

A syntactic weak stubborn set variant of Definition 7, C-
SWSS, is defined accordingly.

Stubborn Sets with Producible Resources

Turning our attention to the full scope of R-FDR, observe
first that, in the presence of resource production, matters are
not that simple anymore. The level of resources may de-
crease and increase arbitrarily along a plan. Hence, in the
safety proof setup, action ak may interfere with a preceding
action ai in the plan prefix.

Example 2 Consider the R-FDR task ΠR that is like the
one from Example 1, except that R̂(r) = sI(r) = 1, there
is an additional Boolean variable vp with sI(vp) = 0, and
action ap with precondition {vp = 0}, effect {vp = 1}, cost
cap = 1, and δap(r) = 1.

Consider now the plan π = 〈a1, ap, a2〉, traversing states
sI , s1, s2, s3. Say that ak = a2 is already contained in our
generalized GSSS S under construction, and consider the
prefix action ai = a1. Then ak and ai disable each other in
the state sI to which ai is applied – something that can never
happen in ConsOnly, as argued in the previous section.

A simple solution to this is to consider consume-consume
action pairs to be syntactically incompatible, i. e., keeping
the previous definition of generalized GSSS and fixing its
syntactic approximation through a broader notion of incom-
patibility. However, this loses the ability to detect commuta-
tivity between consumers. In Example 2, we collect a1 into
S and thus are unable to prune anything in sI .

The alternative, in the example, is to catch ap instead of
a1, i. e., collect ap into S. The underlying reasoning is that

291

our action ak = a2 consumes resource r. If that consump-
tion causes interference with another consumer in the prefix,
then the prefix must also contain an r-producer to re-enable
ak. We can catch that producer (in the example: ap), making
it the new minimal-index shared action between π and S.

Definition 8 (R-GSSS) Let ΠR be an R-FDR task, and s
be a solvable non-goal state. For a ∈ A, let SOpt [a] and
AOpt [a] be defined as in Definition 6. A set S ⊆ A is an
R-GSSS for s if:

(i) S contains at least one action from at least one strongly
optimal plan for s.

(ii) For every a ∈ (S \ A|s), S contains a necessary en-
abling set for a.

(iii) For every a ∈ (S ∩ A|s):
(a) S contains all a′ ∈ AOpt [a] that interfere with a

in t|V in ΠR|V , for some t ∈ SOpt [a].
(b) S contains all a′ ∈ AOpt [a] that produce (con-

sume) a resource consumed (produced) by a.

This definition modifies Definition 6 in the manner hinted
at above. It collects in condition (iii) those a′ that (a) inter-
fere with a at the FDR level; or that (b) may be required in
support of a on the prefix for attaining a suitable resource
level. Observe that (iii b) diverges significantly from the
common notions of stubborn sets, in that we catch support-
ers for an applicable action.

Theorem 1 (R-GSSS Safety) Let ΠR be an R-FDR task, s
be a solvable non-goal state, and S be an R-GSSS for s.
Then S is safe in s.

Proof. We adapt WH14’s proof. As before, let π =
〈a1, . . . , an〉 be a strongly optimal plan for s of which at
least one action is contained in S; such π must exist with
Definition 8 (i). Let k be the minimal index with ak ∈ S.

Applicability of ak is shown with Definition 8 (ii) as
before. Due to Definition 8 (iii b), none of the actions
a1, . . . , ak−1 produces (consumes) a resource consumed
(produced) by ak, or else that action would be contained in
S in contradiction to the minimality of k.

In the same way as before, we can show with Definition 8
(iii a) that ak does not interfere with any ai where 1 ≤ i < k
in any of the states s0, . . . , si−1, at the FDR level.

Given this, π can be permuted, moving ak to the front:
interferences with respect to the plan prefix πk up to ak, as
may result from consuming resources r consumed by ak,
cannot occur because r is never produced on πk so r’s initial
level must be sufficient. Similarly for r produced by ak. All
other dependencies are left intact by the permutation. �

To make Definition 8 practical, we need to approximate
its conditions, similarly as done in SSSS relative to GSSS.
For (i) and (iii a), we can use the exact same techniques as
for SSSS. For (iii b), we simply include all actions that pro-
duce (consume) a resource consumed (produced) by a. This
leaves condition (ii), which (in difference to ConsOnly) can-
not be used as-is because a necessary enabling set as per
Definition 2 may need to include, e. g., resource-producing

actions in order to enable resource-consuming ones. Taking
the latter into account, we obtain:

Definition 9 (R-SSSS) Let Π be an FDR task, and s be a
solvable non-goal state. A set S ⊆ A is an R-SSSS for s if:

(i) There exists g ∈ (s∗\s) s.t. {a′ ∈ A | g ∈ eff a′} ⊆ S.
(ii) For every a ∈ (S \ A|s):

(a) Either there exists g ∈ (prea \ s) s.t. S contains
{a′ ∈ A | g ∈ eff a′};

(b) or there exists r ∈ R such that either s(r) +
δa(r) < 0 and S contains Prod(r), or s(r) +

δa(r) > R̂(r) and S contains Cons(r).
(iii) For every a ∈ (S ∩ A|s):

(a) S contains all a′ ∈ A where prea ‖ prea′ , and
eff a ∦ eff a′ or eff a ∦ prea′ or eff a′ ∦ prea.

(b) S contains all a′ ∈ A that produce (consume) a
resource consumed (produced) by a.

Proposition 3 (R-SSSS Safety) Let ΠR be an R-FDR task,
s be a solvable non-goal state, and S be an R-SSSS for s.
Then S is an R-GSSS for s.

As before, the syntactic approximation of strong stubborn
sets in Definition 9 can be replaced with one of weak stub-
born sets. We refer to the outcome as an R-SWSS.

We remark that, in the ConsOnly special case, Defini-
tion 8 simplifies to Definition 6. In contrast, for R-FDR
tasks in general, both definitions constitute the basis for two
alternative stubborn set computations. More specifically, the
difference between both definitions leads to a different treat-
ment of resource variables in the approximation of condition
(iii). While in Definition 9 (iiib), resource-supporters are
considered also for applicable actions; the approximation of
Definition 6 (iii) requires to take into account interference
on the resource variables. To implement the latter, we ex-
tend the FDR compatibility check by additionally treating
two actions syntactically incompatible if both consume (or
replenish) the same resource variable. We denote the result-
ing approximation by I-SSSS, respectively I-SWSS.

Consider finally InfCapacity, ReFill, and OverProd. For
InfCapacity, our definitions and arguments remain valid (the
only difference is that Definition 9 (ii b) will include only
producers). Regarding ReFill and OverProd, a refill effect is
not commutative with either of consumption or production,
and may disable production. In ReFill this applies to all re-
fill effects, in OverProd it applies to those whose application
exceeds capacity. A simple fix to our techniques consists in
capturing all these potential interferences through the obvi-
ous syntactic incompatibilities. It remains an open question
whether there are more fine-grained practical solutions.

FDR Resources and their Automatic Detection

Resources often come naturally in discrete form (e. g. the
number of persons fitting into an elevator), or can be en-
coded as such. To make our techniques amenable to such
resources, we next identify circumstances under which an
FDR state variable can be interpreted as such. We then show

292

how such FDR resource variables can be automatically iden-
tified, enabling the use of our techniques under strict IPC
settings, and broadening their scope to non-obvious/non-
intended FDR resources.

We need a few further notations. Assume v ∈ V . We
denote by A|v ⊆ A the set of all actions a where either
prea(v) or eff a(v) is defined. We say that a, a′ ∈ A are v-
equivalent, denoted a ≈v a′, if prea|V\{v} = prea′ |V\{v},
eff a|V\{v} = eff a′ |V\{v}, and ca = ca′ . We will interpret
v-equivalent actions as ones that differ only in the resource
level addressed. The definition then reads:

Definition 10 (FDR Resource Variable) Let Π be an FDR
task, and v ∈ V . We say that v is an FDR resource variable
if (i) s∗(v) is not defined; (ii) for all a ∈ A, prea(v) is
defined iff eff a(v) is defined; and (iii) there exist functions
μ : Dv
→ R+

0 and δ : A|v
→ R such that:

(a) For all a ∈ A|v: δ(a) = μ(eff a(v))− μ(prea(v)).
(b) For all a, a′ ∈ A|v: if a ≈v a′ then δ(a) = δ(a′).
(c) For all d ∈ Dv and a ∈ A|v s.t. 0 ≤ μ(d) + δ(a) ≤

μmax, where μmax := maxd∈Dv
μ(d): there exists a′ ∈

A|v with a′ ≈v a and prea′(v) = d.

We say that v is a consume-only resource variable if the
above holds for a function δ : A|v
→ R−

0 .

Condition (i) simply demands that there is no goal on
resources, as in R-FDR. To understand condition (ii), ob-
serve that implicit resource preconditions in R-FDR arise
from non-zero consumption or production, preventing the
resource from going below 0 or above its capacity. In the
central condition (iii), we demand the existence of a function
μ mapping the values of the FDR variable v to suitable re-
source levels, along with a matching function δ mapping the
actions affecting v to their consumption/production. Con-
ditions (iii a) – (iii c) ensure that this works as intended.
First, with (a) we impose that v-affecting actions can be
interpreted as consuming/producing the difference between
their precondition/effect resource levels. Second, treating v-
equivalent actions a as ones that differ only in the level of v
before/after applying a – which in R-FDR would be repre-
sented as a single action – we impose (b) to ensure that this
interpretation makes sense. Third, since v-equivalent actions
are assumed to represent a single R-FDR action, (c) ensures
that a suitable FDR action exists for all legal resource levels.

It is easy to see that FDR resource variables can be equiv-
alently replaced with R-FDR continuous resource variables.
In our FD-based implementation, however, we don’t use
such a translation. Instead, our stubborn set techniques han-
dle FDR resource variables as if they were R-FDR resources.
We apply exactly the definitions stated before, and obtain
exactly the safety properties stated before.

Given Definition 10, one can identify resources in FDR
by processing each v ∈ V in turn, and testing whether v
satisfies the definition. But how to automatically conduct
that test? Conditions (i) and (ii) are easy. Condition (iii) is
more difficult, in that we need to test the existence of suitable
μ and δ. It turns out that this can be done in polynomial time,
via the LP encoding shown in Figure 1.

Variables:
μd ∈ R+

0 for d ∈ Dv

δa ∈ R−
0 for a ∈ A|Cv

δa ∈ R+
0 for a ∈ A|Pv

μmax ∈ R+
0

Constraints:
1. μprea(v)

− μeff a(v)
= δa for a ∈ A|v

2. δa = δa′ for a, a′ ∈ A|v where a ≈v a′
3. μmax ≥ μd for d ∈ Dv

4. μd + δa < 0 for a ∈ A|Cv and d ∈ Dv

s.t. � ∃ a′ where a′ ≈v a and prea′(v) = d
5. μd + δa > μmax for a ∈ A|Pv and d ∈ Dv

s.t. � ∃ a′ where a′ ≈v a and prea′(v) = d

Figure 1: LP testing existence of μ and δ satisfying condi-
tions (iii a – c). A|Cv (A|Pv) are the consumers (producers).

Constraints 1. and 2. of this LP are straightforward en-
codings of conditions (iii a) respectively (iii b). The role of
constraint 3. is to define μmax. The more interesting chal-
lenge is to encode (iii c): when there does not exist a suit-
able a′, the reason can be either (A) μ(d) + δ(a) < 0 or (B)
μ(d)+δ(a) > μmax. Per se, this is a disjunction. Our key to
addressing this is the observation that, as we shall explain in
a moment, the actions A|v affecting v can be partitioned into
consumers A|Cv and producers A|Pv , up front before creating
the LP. Given this, the disjunction disappears as (A) pertains
only to consumers and (B) pertains only to producers. Con-
straint 4. models (iii c) for the former, constraint 5. models
(iii c) for the latter.

So how do we obtain the required partitioning into the
A|Cv and A|Pv action classes? It turns out that it suffices to
pick an arbitrary action a0 ∈ A|v , and fix its class arbitrar-
ily: the remaining class memberships follow from this single
decision, for any variable v that satisfies Definition 10.

Denote the set of actions v-equivalent to an action a by
[a]v . Assume we fix a0 to be a consumer. With condition
(iii b), all a′0 ∈ [a0]v are consumers as well. With condition
(iii a), each such a′0 constrains its effect value to be smaller
than its precondition value. With condition (iii c), a suitable
a′0 exists for every feasible value d, so that [a0]v induces a
total ordering over these d. The same happens if we fix a0 to
be a producer instead, we just get the inverse order. By the
same arguments, any set [a]v of v-equivalent actions induces
an ordering over the touched values d. Now, since every [a]v
must tackle all feasible values d, it is easy to see that, for any
[a]v and [a′]v , the touched value subsets must overlap. So if
we fix the ordering in [a0]v , then transitively we fix it in all
[a]v , and therewith we fix the partitioning into consumers
and producers.

Experiments

We implemented our techniques in Fast Downward (FD)
(Helmert 2006). The FDR resource variable detection uses
CPLEX for the LP tests. All experiments were run on a clus-
ter of Intel E5-2660 machines running at 2.20 GHz, with
time (memory) cut-offs of 30 minutes (4 GB).

293

SSSS previous state of the art strong stubborn set
C-SSSS SSSS ignoring resources in ConsOnly
R-SSSS SSSS catching resource-supporters in R-FDR
I-SSSS SSSS catching resource-interferers in R-FDR

Table 1: Strong stubborn set acronyms. Acronyms for weak
stubborn set variants are defined similarly.

We consider optimal planning, satisficing planning, and
proving unsolvability. Our baseline solver configurations for
these categories are A∗ with LM-cut (Helmert and Domsh-
lak 2009); greedy best-first search with hFF (Hoffmann and
Nebel 2001) and a dual queue for preferred operators; and
A∗ with hmax (Bonet and Geffner 2001). We evaluate the
baseline itself, its enhancement with the previous state of
the art in strong and weak stubborn set pruning, and its en-
hancement with our new techniques. For ease of reference,
Table 1 gives an overview of our stubborn set acronyms.

We consider all STRIPS benchmarks of all IPCs; the
Unsolvability-IPC (UIPC) 2016 benchmarks; the RCP
benchmarks by Nakhost et al. (2012); and unsolvable vari-
ants of the latter (Steinmetz and Hoffmann 2016).

We next report about the performance of resource variable
detection, then we discuss our results in optimal planning,
satisficing planning, and proving unsolvability. Throughout,
we do not include data for SWSS, as their performance is
dominated by, and almost identical to, that of SSSS.

Resource Variable Detection

As resource detection must be a run as a preprocess before
our techniques can even be attempted, we experimented with
an overall time limit of 10s. Once the time limit is reached,
the algorithm stops, reporting only the resources identified
up to this point. Consider Table 2. Clearly, resource de-
tection is usually fast and the time limit hardly impedes its
performance. For consumed-only resource variables, indeed
the only difference is in IPC TPP (the small difference in Di-
agnosis is due to non-determinism in FD’s pre-processor).
For producible resource variables, the difference is some-
what larger, with less resource variables identified in six do-
mains, most notably in BagTransport.

Observe that Table 2 contains quite a few domains with
non-obvious/non-intended resources. Some examples are:
In Childsnack cooking ingredients are considered resources
that are consumed when preparing meals. In Bottleneck, the
consumed resources are grid cells which become impassable
once visited. In ChessBoard and PegSolRow5, cells are re-
sources that can be either freed (produced) or occupied (con-
sumed) by pegs. There are also several cases where one-time
only consumable resources are detected. The corresponding
FDR variables are used for example in Pipesworld to en-
code in the initial state pipes holding incompatible fluids. In
Thoughtful, such variables encode in the initial state the po-
sition of a card on top of another card, not complying with
valid orders. The only domain with intentional resources
– to our knowledge – missing from Table 2 is Zenotravel,
where “fly” and “zoom” actions have different consumption
yet are fuel-equivalent, i. e., violate Definition 10 (iiib).

Henceforth, we assume that resource variable detection is

time limit 10 sec. no time limit
Domain # t ≥ 1 C P t ≥ 1 C P

IPC
Childsnack 40 1.26 100 26.5 0.0 1.26 100 26.5 0.0
Elevators 100 0.48 100 0.0 4.5 1.51 100 0.0 4.5
Freecell 80 2.31 100 4.0 2.0 1.00 100 4.0 2.0
Mprime 35 4.22 91 0.0 4.3 7.50 100 0.0 5.6
Mystery 30 3.49 93 10.4 4.3 5.21 93 10.4 5.5
NoMystery 40 0.41 100 1.0 0.0 0.41 100 1.0 0.0
Openstacks 140 1.40 100 0.0 1.0 1.42 100 0.0 1.0
ParcPrinter 70 0.26 100 8.0 0.0 0.27 100 8.0 0.0
Pathways 30 0.23 100 5.2 0.0 0.23 100 5.2 0.0
Pipesworld-Tankage 50 4.44 100 0.0 40.3 5.12 100 0.0 41.6
Pipesworld-NoTankage 50 0.32 28 0.4 0.0 0.34 28 0.4 0.0
Rovers 40 1.12 100 19.0 6.4 1.12 100 19.0 6.4
Thoughtful 20 1.45 100 24.4 1.0 1.47 100 24.4 1.0
TPP 30 3.91 100 24.2 73.6 4.50 100 26.4 81.6
Transport 140 1.66 100 0.0 3.1 1.66 100 0.0 3.1
Woodworking 100 0.31 61 3.2 0.0 0.33 61 3.2 0.0

UIPC
BagBarman 20 1.35 20 0.0 0.2 1.36 20 0.0 0.2
BagTransport 29 5.34 100 0.0 56.4 103.64 100 0.0 893.4
Bottleneck 25 0.89 100 33.2 0.0 0.91 100 33.2 0.0
CaveDiving 25 0.58 100 0.0 6.0 0.63 100 0.0 6.0
ChessBoard 23 6.11 100 30.0 205.0 7.67 100 30.0 266.0
Diagnosis 20 1.26 55 41.1 2.8 1.17 55 41.0 2.8
NoMystery 24 0.58 100 1.0 0.0 4.89 100 1.0 0.0
PegSolRow5 15 3.35 93 0.0 120.9 3.12 93 0.0 120.9
Rovers 20 0.45 100 4.4 1.0 0.46 100 4.4 1.0
TPP 30 0.45 100 1.0 0.0 0.41 100 1.0 0.0

RCP: Nakhost et al. (2012), Steinmetz and Hoffmann (2016)
NoMystery 360 0.29 100 1.7 0.0 0.30 100 1.7 0.0
Rovers 360 0.35 100 2.0 1.7 0.36 100 2.0 1.7
TPP 55 2.50 100 1.0 0.0 2.54 100 1.0 0.0

Table 2: Resource detection results (domains with at least
one detected resource). “t”: average runtime in seconds;
“≥ 1”: % instances where at least one resource variable was
detected; “C”: average number of consumed-only such vari-
ables; “P”: average number of producible such variables.

run with the 10s time limit. We consider only those bench-
marks where at least one resource variable is found.2 We in-
clude this additional preprocess in our techniques only, and
we count it as part of overall runtime.

Optimal Planning

Consider Table 3. Our new techniques, R-SSSS and R-
SWSS, clearly perform best overall. Both are useful in
Openstacks, where SSSS is detrimental. In RCP NoMystery,
the same applies to R-SWSS. Both techniques manage to re-
duce state space size significantly in Pathways, an advantage
which disappears in coverage due to the runtime overhead.
In IPC Rovers and Woodworking, both techniques inherit
the advantages of SSSS; in ParcPrinter that is so for R-SSSS
only. The largest advance occurs in RCP TPP, where the do-
main of the single (consume-only) resource variable is par-
ticularly large, strongly reducing the number of action pairs
considered to be incompatible. R-SSSS never has worse
coverage than either of the baseline and SSSS; it also domi-

2Where no FDR resource variable is detected, we could use an
arbitrary planning technique (e.g. previous stubborn set methods).
We choose to not report about such cases at all, as that would only
obscure those results where something interesting happens.

294

Coverage Eval Runtime
Domain # B S RS RW S RS RW S RS RW

IPC
Childs* 20 0 0 0 0
Elevat 50 40 40 40 40 1.6 1.2 1.5 1.4 1.0 1.1
Freec 80 15 14 15 15 1.0 1.0 1.0 0.4 0.9 0.8
Mprime 29 21 21 21 21 1.0 1.0 1.0 1.1 0.8 0.6
Mystery 28 19 20 20 20 1.1 1.0 1.0 0.8 0.4 0.4
NoMyst* 20 14 14 14 14 1.0 1.0 1.2 0.8 1.1 1.2
Openst 70 40 36 45 45 1.3 2.5 2.5 0.5 1.3 1.4
ParcPr* 50 31 50 50 31 13.9 13.9 1.0 1.0 1.0 0.4
Pathway* 30 5 5 5 5 2.1 28.7 31.9 1.2 4.8 1.7
PipesT 50 12 11 12 12 1.0 1.0 1.0 1.0 0.7 0.6
PipesNoT* 14 1 1 1 1 1.0 1.0 1.0 0.9 0.9 1.0
Rovers 40 7 9 9 9 2.0 2.2 2.3 1.5 1.5 2.1
TPP 30 6 6 6 6 1.0 1.0 1.0 1.0 0.3 0.7
Transp 70 23 23 23 23 1.0 1.0 1.0 1.0 0.7 0.6
Woodwor* 20 11 19 19 19 14.9 17.0 17.0 4.9 1.9 2.5
Zenot 20 13 13 13 13 1.1 1.1 1.1 0.7 1.0 0.5∑

621 258 282 293 274
RCP (Nakhost, Hoffmann, and Müller 2012)

NoMyst* 210 66 60 66 68 1.0 1.0 1.2 0.7 1.0 1.1
Rovers 210 0 0 0 0
TPP* 30 0 0 26 26∑

450 66 60 92 94

Table 3: Optimal planning. “*” marks ConsOnly. “Eval”:
reduction factor in number of evaluations, relative to base-
line. “Runtime”: reduction factor in total runtime. “B”:
Baseline, A∗ with LM-cut; “S”: SSSS; “RS”: R-SSSS (C-
SSSS if ConsOnly); “RW”: R-SWSS (C-SWSS if Con-
sOnly). Eval and Runtime show geometric averages over
commonly solved instances. Best results shown in bold.

nates R-SWSS except in RCP NoMystery.
Regarding I-SSSS and I-SWSS, these are not included in

Table 3, and neither in the tables below, as their performance
is almost identical to that of R-SSSS and R-SWSS respec-
tively. The disadvantage of I-SSSS and I-SWSS in treating
common consumption of a resource as syntactic incompati-
bility seems to be counterbalanced by not having to include
producers for applicable consumers.

Satisficing Planning

Stubborn set pruning has, in classical planning, previously
been evaluated for optimal planning only. Yet it can be use-
ful for satisficing planning too, in cases where known search
heuristics are weak. This can be expected, in particular, in
resource-constrained planning with delete relaxation heuris-
tics, where forward search spaces are full of dead-end states
not detected by the heuristic function. Our results show that,
indeed, this is the case. Table 4 shows the data.

Like in optimal planning, R-SSSS is dominant overall,
with best overall coverage in both benchmark sets. Further,
our new techniques exhibit advantages in Openstacks and
Pathways, and inherit the strengths of SSSS in ParcPrinter
(R-SSSS only) and Woodworking. In IPC Rovers, that is no
longer true; no stubborn set technique helps here anymore.

In Elevators and Mystery, the advantage of SSSS, which
is present yet small for optimal planning, becomes more pro-
nounced. In IPC NoMystery, on the other hand, SSSS is now
detrimental while our new techniques are not.

Coverage Eval Runtime
Domain # B S RS RW S RS RW S RS RW

IPC
Childs* 20 9 9 9 9 1.3 1.1 1.7 1.2 1.0 1.6
Elevat 50 11 12 11 11 1.7 1.0 1.3 1.6 0.8 0.9
Freec 80 80 78 80 80 1.0 1.0 1.0 0.4 0.8 0.8
Mprime 29 29 29 29 29 1.1 1.0 1.0 0.7 0.5 0.5
Mystery 28 20 23 21 21 1.1 1.1 1.1 0.6 0.4 0.4
NoMyst* 20 13 11 13 13 1.0 1.0 1.2 0.4 0.8 1.1
Openst 70 6 6 7 7 1.2 1.9 1.9 0.9 2.5 1.6
ParcPr* 50 27 50 50 27 155.8 155.8 0.9 9.7 3.3 1.0
Pathway* 30 23 24 26 26 1.3 2.6 3.3 0.7 0.5 0.4
PipesT 50 32 32 33 33 1.0 1.0 1.0 0.7 0.5 0.5
PipesNoT* 14 10 10 10 10 1.0 1.0 1.0 1.0 0.7 0.7
Rovers 40 40 39 38 38 1.4 1.7 1.7 0.8 0.7 0.8
Thought 20 10 10 10 10 1.0 1.2 1.2 0.8 1.1 0.8
TPP 30 30 30 30 30 1.0 1.0 1.0 0.7 0.5 0.4
Transp 70 23 23 23 23 1.0 1.0 1.0 0.7 0.6 0.7
Woodwor* 41 41 41 41 41 3.2 3.3 3.3 1.1 1.0 1.0
Zenot 20 20 20 20 20 1.0 1.0 1.0 0.6 1.0 0.8∑

719 473 499 501 478
RCP: Nakhost et al. (2012)

NoMyst* 210 125 102 126 126 1.1 1.1 1.4 0.2 0.9 1.0
Rovers 210 18 9 22 22 1.7 3.1 3.1 0.4 1.7 1.3
TPP* 30 10 10 26 26 1.0 2.2 2.2 0.4 1.1 1.1∑

450 153 121 174 174

Table 4: Satisficing planning. Abbreviations as in Table 3;
baseline is greedy best-first search with hFF and a dual queue
for preferred operators. Best results shown in bold.

The most consistent gains for our new methods occur on
the RCP benchmarks. In NoMystery, our methods yield a
small advantage, and in Rovers and TPP the advantage is
huge. SSSS, in comparison, is mostly detrimental here.

Using R-SSSS is not as risk-free as in optimal planning,
but still the cases where we lose coverage are rare. Relative
to the baseline, this happens only in IPC Rovers; relative to
SSSS, it happens in Elevators, Mystery, and IPC Rovers.

Proving Unsolvability

We finally consider proving unsolvability. Stubborn set tech-
niques have been employed for that purpose by some sys-
tems in the 2016 Unsolvability-IPC (UIPC) competition.
But otherwise, this purpose has not been evaluated in the
literature on stubborn sets in planning. Consider Table 5.

Both R-SSSS and R-SWSS clearly dominate overall cov-
erage. In UIPC Bottleneck and TPP, and Diagnosis and No-
Mystery to a smaller degree, our techniques yield an advan-
tage whereas SSSS yields none or is detrimental. In Chess-
Board, SSSS has the advantage. In RCP, we obtain a huge
advantage in TPP, and a small one in NoMystery. Both R-
SSSS and R-SWSS lag behind in coverage only rarely (in
BagBarman vs. the baseline and in ChessBoard vs. SSSS).

Conclusion

We have shown that continuous resources, and their discrete
FDR counterparts, have commutativity properties that can
be exploited in stubborn set pruning. Empirically, this sel-
dom hurts, and sometimes yields dramatic benefits.

An obvious piece of further work are experiments on
PDDL benchmarks with continuous resources (IPC’02),

295

Coverage Eval Runtime
Domain # B S RS RW S RS RW S RS RW

UIPC 2016
BagBar 4 4 0 4 4
BagTran 29 6 6 6 6 1.0 1.0 1.0 0.6 0.6 0.7
Bottlen* 25 21 21 25 25 1.0 204.3 204.3 1.2 1.5 1.7
CavDiv* 25 7 7 7 7 1.0 1.4 1.8 0.6 0.9 1.5
ChessBo 23 5 6 5 5 2.3 1.1 1.1 0.9 0.4 0.3
Diagno* 20 7 7 8 8 1.7 2.3 2.2 1.0 0.8 0.8
NoMyst* 24 2 2 2 2 1.0 1.0 2.4 0.9 2.7 1.6
PegRow5 14 4 4 3 3 1.0 1.0 1.0 6.0 0.7 0.4
Rovers 20 7 7 7 7 1.3 1.3 1.3 0.4 1.0 0.9
TPP* 30 16 14 21 21 1.0 36.9 42.6 0.5 1.6 2.2∑

214 79 74 88 88

Unsolvable RCP: Steinmetz and Hoffmann (2016)
NoMyst* 150 53 42 55 55 1.4 1.2 1.4 0.3 0.8 0.8
Rovers 150 7 7 8 7 1.6 1.6 1.6 0.5 1.5 1.0
TPP* 25 5 2 18 18 1.0 372.5 372.5 0.6 20.3 21.0∑

325 65 51 81 80

Table 5: Proving unsolvability. Abbreviations as in Table 3;
baseline is A∗ with hmax. Best results shown in bold.

though the implementation and comparison basis there is far
less advanced than for PDDL level 1. Beyond the immediate
horizon, our work shows the benefits of tackling resources
explicitly in stubborn set pruning, which suggests the inves-
tigation of other search reduction methods specifically for
planning with resources. This may be interesting, e. g., for
dominance pruning and symmetry reduction.

Acknowledgments. This work was partially supported
by the German Research Foundation (DFG), under grant
HO 2169/5-1, “Critically Constrained Planning via Partial
Delete Relaxation”, and was partially supported by the Ger-
man Federal Ministry of Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and
Accountability (CISPA, grant no. 16KIS0656).

References

Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M. 2012.
A stubborn set algorithm for optimal planning. In Raedt, L. D., ed.,
Proceedings of the 20th European Conference on Artificial Intelli-
gence (ECAI’12), 891–892. Montpellier, France: IOS Press.
Blum, A. L., and Furst, M. L. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90(1–2):279–298.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A hybrid LP-
RPG heuristic for modelling numeric resource flows in planning.
Journal of Artificial Intelligence Research 46:343–412.
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In Cesta, A., and
Borrajo, D., eds., Proceedings of the 6th European Conference on
Planning (ECP’01), 109–120. Springer-Verlag.
Edelkamp, S.; Leue, S.; and Lluch-Lafuente, A. 2004. Partial-
order reduction and trail improvement in directed model checking.
International Journal on Software Tools for Technology Transfer
6(4):277–301.
Ghallab, M., and Laruelle, H. 1994. Representation and control
in IxTeT, a temporal planner. In Hammond, K., ed., Proceedings

of the 2nd International Conference on Artificial Intelligence Plan-
ning Systems (AIPS’94), 61–67. Chicago, IL: AAAI Press, Menlo
Park.
Godefroid, P., and Wolper, P. 1991. Using partial orders for the
efficient verification of deadlock freedom and safety properties. In
Proceedings of the 3rd International Workshop on Computer Aided
Verification (CAV’91), 332–342.
Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. In Cesta, A., and Borrajo, D., eds., Proceedings
of the 6th European Conference on Planning (ECP’01), 121–132.
Springer-Verlag.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Gerevini,
A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the 19th International Conference on Automated Planning and
Scheduling (ICAPS’09), 162–169. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Koehler, J. 1998. Planning under resource constraints. In Prade,
H., ed., Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI’98), 489–493. Brighton, UK: Wiley.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk approach. In
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B., eds., Pro-
ceedings of the 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS’12), 181–189. AAAI Press.
Seipp, J.; Pommerening, F.; Sievers, S.; and Wehrle, M. 2016. Fast
downward aidos. In UIPC 2016 planner abstracts, 28–38.
Srivastava, B.; Kambhampati, S.; and Do, M. B. 2001. Planning
the project management way: Efficient planning by effective in-
tegration of causal and resource reasoning in realplan. Artificial
Intelligence 131(1-2):73–134.
Steinmetz, M., and Hoffmann, J. 2016. Towards clause-learning
state space search: Learning to recognize dead-ends. In Schuur-
mans, D., and Wellman, M., eds., Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI’16). AAAI Press.
Valmari, A. 1989. Stubborn sets for reduced state space genera-
tion. In Proceedings of the 10th International Conference on Ap-
plications and Theory of Petri Nets, 491–515.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets: Gen-
eralized algorithms and selection strategies. In Chien, S.; Do, M.;
Fern, A.; and Ruml, W., eds., Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS’14).
AAAI Press.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R. 2013.
The relative pruning power of strong stubborn sets and expansion
core. In Borrajo, D.; Fratini, S.; Kambhampati, S.; and Oddi, A.,
eds., Proceedings of the 23rd International Conference on Auto-
mated Planning and Scheduling (ICAPS’13). Rome, Italy: AAAI
Press.
Winterer, D.; Alkhazraji, Y.; Katz, M.; and Wehrle, M. 2017. Stub-
born sets for fully observable nondeterministic planning. In Pro-
ceedings of the 27th International Conference on Automated Plan-
ning and Scheduling (ICAPS’17). AAAI Press.

296

