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Abstract

Online solvers for partially observable Markov decision pro-
cesses have been applied to problems with large discrete state
spaces, but continuous state, action, and observation spaces
remain a challenge. This paper begins by investigating double
progressive widening (DPW) as a solution to this challenge.
However, we prove that this modification alone is not suf-
ficient because the belief representations in the search tree
collapse to a single particle causing the algorithm to converge
to a policy that is suboptimal regardless of the computation
time. This paper proposes and evaluates two new algorithms,
POMCPOW and PFT-DPW, that overcome this deficiency
by using weighted particle filtering. Simulation results show
that these modifications allow the algorithms to be successful
where previous approaches fail.

1 Introduction

The partially observable Markov decision process (POMDP)
is a flexible mathematical framework for representing sequen-
tial decision problems (Littman, Cassandra, and Kaelbling
1995; Thrun, Burgard, and Fox 2005). Once a problem has
been formalized as a POMDP, a wide range of solution tech-
niques can be used to solve it. In a POMDP, at each step in
time, an agent selects an action that causes the state to change
stochastically to a new value. The agent seeks to maximize
the expectation of the reward, which is a function of the state
and action. However, the agent cannot directly observe the
state, and makes decisions based only on observations that
are stochastically generated by the state.
Solving large POMDPs generally requires the use of on-

line methods (Silver and Veness 2010; Somani et al. 2013;
Kurniawati and Yadav 2016). One widely used online algo-
rithm is partially observable Monte Carlo planning (POMCP)
(Silver and Veness 2010), which is an extension to Monte
Carlo tree search that implicitly uses an unweighted particle
filter to represent beliefs in the search tree.
POMCP and other online methods can accomodate contin-

uous state spaces, and there has been recent work on solving
problems with continuous action spaces (Seiler, Kurniawati,
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Figure 1: Tree Structure Comparison. Each square is an ac-
tion node, and each circle is an observation node. Each black
dot corresponds to a state particle with the size representing
its weight. In continuous observation spaces, POMCP will
create a tree that is too wide and shallow to be useful, and
the beliefs in a POMCP-DPW tree will degenerate to a sin-
gle particle, while POMCPOW maintains weighted particle
mixture beliefs.

and Singh 2015). However, there has been less progress on
problems with continuous observation spaces. This paper
presents two similar algorithms which address the challenge
of solving POMDPs with continuous state, action, and ob-
servation spaces. The first is based on POMCP and is called
partially observable Monte Carlo planning with observation
widening (POMCPOW). The second solves the belief-space
MDP and is called particle filter trees with double progressive
widening (PFT-DPW).
Two challenges make tree search difficult in continuous

spaces. First, since the probability of sampling the same real
number twice from a continuous random variable is zero, the
width of the planning trees explodes on the first step, causing
them to be too shallow to be useful (see Fig. 1). POMCPOW
and PFT-DPW resolve this issue with a technique called dou-
ble progressive widening (DPW) (Couëtoux et al. 2011). The
second issue is that, even when DPW is applied, the belief
representations used by current solvers collapse to a single
state particle, resulting in overconfidence. As a consequence,
the solutions obtained resemble QMDP policies, and there is
no incentive for information gathering. POMCPOW and PFT-
DPW overcome this issue by using the observation model to
weight the particles used to represent beliefs.
This paper proceeds as follows: Section 2 contains back-

ground references, Section 3 presents the new algorithms,
and Section 4 gives experimental results. More detail is con-
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tained in the extended version of the paper (Sunberg and
Kochenderfer 2018).

2 Background

Due to space restrictions, most background is left to the ex-
tended paper (Sunberg and Kochenderfer 2018). This text
assumes familiarity with POMDPs, with S , A, and O denot-
ing the state, action, and observation spaces, T , Z , andR the
transition, observation, and reward models, γ the discount
factor, andG a generative model. It also assumes prior knowl-
edge of Monte Carlo tree search (MCTS) and upper confi-
dence trees (UCT) (Browne et al. 2012), DPW (Couëtoux
et al. 2011), POMCP (Silver and Veness 2010), and particle
filtering (Thrun, Burgard, and Fox 2005).
A variety of offline and online techniques are available for

solving POMDPs (Kaelbling, Littman, and Cassandra 1998;
Thrun 1999; Kurniawati, Hsu, and Lee 2008; Bai, Hsu,
and Lee 2014; Brechtel, Gindele, and Dillmann 2013;
Platt et al. 2010; Van Den Berg, Patil, and Alterovitz
2012; Agha-Mohammadi, Chakravorty, and Amato 2011;
Melchior and Simmons 2007; Prentice and Roy 2009;
Bry and Roy 2011; Ross et al. 2008; Silver and Veness 2010;
Somani et al. 2013; Kurniawati and Yadav 2016; Pas 2012).
However, there remains a need for simple, general purpose
online POMDP solvers that can handle continuous spaces,
especially continuous observation spaces.

3 Algorithms

This section presents several MCTS algorithms for continu-
ous POMDPs including the new POMCPOW and PFT-DPW
approaches. The three algorithms in this section share a com-
mon outer structure shown in the extended version (Sunberg
and Kochenderfer 2018). The difference is in the SIMULATE
procedure.
The following variables are used in the listings and text:

h represents a history (b, a1, o1, . . . ak, ok), and ha and hao
are shorthand for histories with a and (a, o) appended to
the end, respectively; d is the depth to explore; Q is a value
function estimate; C is a list of the children of a node (along
with the reward in the case of PFT-DPW);N is a count of the
number of visits; andM is the number of times that a history
has been generated. The list of states associated with a node
is denoted B, and W is a list of weights corresponding to
those states.

3.1 POMCP-DPW

The first algorithm is POMCP with double progressive widen-
ing (POMCP-DPW), listed in Algorithm 1. DPW prevents
excessive widening by rejecting some simulated observations.
In the case of a rejection (line 12), the tree search is continued
with a previously simulated observation (line 13) and a state
is sampled from the associated belief (line 14).
This algorithm obtained remarkably good solutions for a

very large autonomous freeway driving POMDP with mul-
tiple vehicles (Sunberg, Ho, and Kochenderfer 2017). To
our knowledge, that is the first work applying progressive
widening to POMCP.
Unfortunately, on continuous observation spaces, POMCP-

Algorithm 1 POMCP-DPW
1: procedure SIMULATE(s, h, d)
2: if d = 0
3: return 0
4: a ← ACTIONPROGWIDEN(h)
5: if |C(ha)| ≤ koN(ha)αo

6: s′, o, r ← G(s, a)
7: C(ha) ← C(ha) ∪ {o}
8: M(hao) ← M(hao) + 1
9: append s′ to B(hao)
10: ifM(hao) = 1
11: return r + γROLLOUT(s′, hao, d)
12: else
13: o ← select o ∈ C(ha) w.p. M(hao)∑

o M(hao)

14: s′ ← select s′ ∈ B(hao) w.p. 1
|B(hao)|

15: r ← R(s, a, s′)
16: total ← r + γSIMULATE(s′, hao, d− 1)
17: N(h) ← N(h) + 1
18: N(ha) ← N(ha) + 1

19: Q(ha) ← Q(ha) + total−Q(ha)
N(ha)

20: return total

DPW is suboptimal. In particular, the planner maximizes the
QMDP value (Definition 1). This is expressed formally for a
modified version of POMCP-DPW in Theorem 1 below.
Definition 1 (QMDP value). Let QMDP(s, a) be the optimal
state-action value function assuming full observability start-
ing by taking action a in state s. The QMDP value at belief
b, QMDP(b, a), is the expected value of QMDP(s, a) when s is
distributed according to b.

Theorem 1 (Modified POMCP-DPW convergence to
QMDP). If a bounded-horizon POMDP meets the following
conditions: 1) the state and observation spaces are continu-
ous with a finite observation probability density function, and
2) the regularity hypothesis is met, then modified POMCP-
DPW will produce a value function estimate, Q̂, that con-
verges to the QMDP value for the problem. Specifically, there
exists a constant C > 0, such that after n iterations,

∣
∣
∣Q̂(b, a)−QMDP(b, a)

∣
∣
∣ ≤

C

n1/(10dmax−7)

exponentially surely in n, for every action a.
The extended version of this paper (Sunberg and Kochen-

derfer 2018) contains a proof of this theorem that leverages
work by Auger, Couetoux, and Teytaud (2013). It also pro-
vides a complete description of the modified algorithm. The
key idea is that belief nodes will contain only a single state
particle (see Fig. 1) because the generative model will (with
probability one) produce a unique observation o each time it
is queried. Thus, for every generated history h, only one state
will ever be inserted into B(h) (line 9, Algorithm 1), and
therefore h is merely an alias for that state. Since each belief
node corresponds to a state, the solver is actually solving the
fully observable MDP except at the root node, leading to a
QMDP solution.
As a result of Theorem 1, modified POMCP-DPW will

plan a QMDP policy (see Corollary 1 of Auger, Couetoux,
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Algorithm 2 POMCPOW
1: procedure SIMULATE(s, h, d)
2: if d = 0
3: return 0
4: a ← ACTIONPROGWIDEN(h)
5: s′, o, r ← G(s, a)
6: if |C(ha)| ≤ koN(ha)αo

7: M(hao) ← M(hao) + 1
8: else
9: o ← select o ∈ C(ha) w.p. M(hao)∑

o M(hao)

10: append s′ to B(hao)
11: append Z(o | s, a, s′) toW (hao)
12: if o /∈ C(ha) � new node
13: C(ha) ← C(ha) ∪ {o}
14: total ← r + γROLLOUT(s′, hao, d− 1)
15: else
16: s′ ← select B(hao)[i] w.p. W (hao)[i]∑m

j=1 W (hao)[j]

17: r ← R(s, a, s′)
18: total ← r + γSIMULATE(s′, hao, d− 1)

19: N(h) ← N(h) + 1
20: N(ha) ← N(ha) + 1

21: Q(ha) ← Q(ha) + total−Q(ha)
N(ha)

22: return total

and Teytaud (2013)). For many problems this is a very use-
ful solution, but since it neglects the value of information,
it is suboptimal for problems where information gather-
ing is important (Littman, Cassandra, and Kaelbling 1995;
Kochenderfer 2015). Modified POMCP-DPW, POMCP-
DPW, DESPOT, and ABT all share the characteristic that a
belief node can only contain multiple states if they generated
exactly the same observation. The experiments in Section 4
show that POMCP-DPW and DESPOT plan with similar per-
formance to QMDP, and this is presumably the case for ABT
as well.

3.2 POMCPOW

POMCPOW (Algorithm 2) is a new algorithm with weighted
particle beliefs that expand gradually as more simulations
are added. Since the number of particles in each belief node
is related to the number of times the node is visited, nodes
that are more likely to be reached by the optimal policy have
richer belief representations. At each step, the simulated state
is inserted into the weighted particle collection that represents
the belief (line 10), and a new state is sampled from that be-
lief (line 16). Figure 1 shows the tree structure contrast from
POMCP-DPW. Because the resampling in line 16 can be effi-
ciently implemented with binary search, the computational
complexity is O(nd log(n)).

3.3 PFT-DPW

Another approach for solving continuous POMDPs online is
MCTS-DPW on the equivalent belief MDP using particle fil-
ters to approximate the generative model. This new approach
will be referred to as particle filter trees with double progres-
sive widening (PFT-DPW). It is shown in Algorithm 3, where
GPF(m)(b, a) is a particle filter belief update performed with
a simulated observation and m state particles. The authors

Algorithm 3 PFT-DPW
1: procedure SIMULATE(b, d)
2: if d = 0
3: return 0
4: a ← ACTIONPROGWIDEN(b)
5: if |C(ba)| ≤ koN(ba)αo

6: b′, r ← GPF(m)(b, a)
7: C(ba) ← C(ba) ∪ {(b′, r)}
8: total ← r + γROLLOUT(b′, d− 1)
9: else
10: b′, r ← sample uniformly from C(ba)
11: total ← r + γSIMULATE(b′, d− 1)

12: N(b) ← N(b) + 1
13: N(ba) ← N(ba) + 1

14: Q(ba) ← Q(ba) + total−Q(ba)
N(ba)

15: return total

are not aware of any previous mention of this algorithm, but
it is very likely that MCTS with particle filters has been used
before without double progressive widening under another
name.
PFT-DPW differs from POMCP and POMCPOW because

it relies on simulating approximate belief trajectories instead
of state trajectories. The primary shortcoming of this algo-
rithm is that the number of particles in the filter,m, must be
chosen a-priori and is static throughout the tree. Fortunately,
the experiments in Section 4 show that it is often easy to
choosem in practice.

3.4 Observation Distribution Requirement

It is important to note that, while POMCP, POMCP-DPW,
and DESPOT only require a generative model of the problem,
both POMCPOW and PFT-DPW also require Z . We think
that this is a reasonable requirement for two reasons. First,
this requirement is no more stringent than the requirement
for a standard importance resampling particle filter. Second,
given the implications of Theorem 1, it is difficult to imagine
a tree-based decision-making algorithm or a robust belief up-
dater that does not require some way of measuring whether a
state belongs to a belief or history. In practice, using POMCP
or DESPOT to repeatedly observe and act in an environment
already requires more than a generative model. For example,
Silver and Veness (2010) use heuristic particle reinvigoration
in lieu of Z .

4 Experiments

Numerical simulation results are shown in Ta-
ble 1. The Julia code (https://github.com/zsunberg/
ContinuousPOMDPTreeSearchExperiments.jl) uses the
POMDPs.jl framework (Egorov et al. 2017). Additional
detail is provided the extended paper (Sunberg and
Kochenderfer 2018).

4.1 Laser Tag

The Laser Tag benchmark is taken directly from the work
of Somani et al. (2013) and included for the sake of calibra-
tion. DESPOT outperforms the other methods. The score for
DESPOT differs slightly from that reported by Somani et al.
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Table 1: Experimental Results

Laser Tag (D, D, D) Light Dark (D, D, C) Sub Hunt (D, D, C) VDP Tag (C, C, C)

POMCPOW −10.3± 0.2 56.1± 0.6 69.2± 1.3 29.3± 0.8
PFT-DPW −11.1± 0.2 57.2± 0.5 77.4± 1.1 27.2± 0.8
QMDP −10.5± 0.2 −6.4± 1.0 28.0± 1.3
POMCP-DPW −10.6± 0.2 −7.3± 1.0 28.3± 1.3 16.4± 1.0
DESPOT −8.9± 0.2 −6.8± 1.0 26.8± 1.3
POMCPD −14.1± 0.2 61.1± 0.4 28.0± 1.3 14.7± 0.9
DESPOTD 54.2± 1.1 27.4± 1.3 14.3± 1.0

The three C or D characters after the solver indicate whether the state, action, and observation spaces are continuous or discrete, respectively.
Solvers with a superscript D were run on a version of the problem with discretized action and observation spaces.

(2013) likely because of bounds implementation differences.
POMCP performs much better than reported by Somani et al.
(2013) because this implementation uses a state-based rollout
policy.

4.2 Light Dark

In the Light Dark domain, the agent moves over integers
trying to find 0 and take a specific action there, but it only
receives accurate measurements in the “light” region around
10. QMDP and solvers predicted to behave like QMDP at-
tempt to move directly to the origin, while POMCPOW and
PFT-DPW perform better. Discretization allows POMCP and
DESPOT to perform well in this one dimensional case but
fails in subsequent problems with more observation dimen-
sions.
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Figure 2: Example Light Dark trajectories.

4.3 Sub Hunt

In Sub Hunt, a submarine attempts to track and destroy an
enemy sub. S and A are discrete so that QMDP can be used
to solve the problem for comparison. The sub can choose
to use active sonar to get better measurements at the cost of
alerting the other submarine to its presence and reducing the
probability of a successful engagement. The optimal strategy
includes using the active sonar. Previous approaches have
difficulty choosing to use active sonar because of the reduced
engagement success rate and thus behave similarly to QMDP.

4.4 Van Der Pol Tag

Van Der Pol tag has continuous state, action, and observation
spaces. In this problem an agent moves through 2D space
with obstacles to try to tag a target that moves according
to the Van Der Pol differential equations. This problem has
several challenging features that might be faced in real-world
applications. First, the state transitions are more computation-
ally expensive because of the numerical integration. Second,
the continuous state space and obstacles make it difficult to
construct a good heuristic rollout policy, so random rollouts
are used. POMCPOW and PFT-DPW outperform the other
solvers in this case.

5 Conclusion
In this paper, we proposed new general-purpose online
POMDP algorithms able to solve problems with continu-
ous state, action, and observation spaces. This is a qual-
itative advance in capability over previous solution tech-
niques. This study has yielded several insights. We explained
why POMCP-DPW and other solvers are unable to choose
costly information-gathering actions in continuous spaces,
and showed that POMCPOW and PFT-DPW can overcome
this challenge.
The theoretical properties of the algorithms remain to be

proven. Additionally, better ways for choosing continuous
actions (Seiler, Kurniawati, and Singh 2015; Mansley, Wein-
stein, and Littman 2011) would provide an improvement.
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