
Scalability of Route Planning Techniques

Johannes Blum, Sabine Storandt
Julius-Maximilians-Universität Würzburg

97072 Würzburg, Germany
{blum,storandt}@informatik.uni-wuerzburg.de

Abstract

In this paper, we thoroughly analyze the scaling behavior
of several state-of-the-art route planning techniques for road
networks, all of which rely on preprocessing. One goal is to
determine which technique is most suitable to be used on
huge networks. To be able to conduct scalability studies in
a clean way, we first describe a new kind of road network
generator that allows to produce road networks even larger
than that of our planet with similar properties as real net-
works. We then carefully implement several preprocessing-
based route planning techniques, as contraction hierarchies,
hub labels and transit nodes, to study their space consump-
tion as well as their search spaces in different sized networks.
This allows to derive functions that describe their empirical
scaling behavior for the first time. We also compare our func-
tions to existing theoretical bounds. We show that several of
our results can not be sufficiently explained by the theoretical
investigations conducted so far. Hence our results encourage
a further look for road network models that allow for better
predictions.

Introduction

In the last decade, several new acceleration techniques for
shortest path planning in road networks have been proposed.
The most successful ones rely on preprocessing. Here, in
an initial phase, auxiliary data is created which later on can
be used to reduce the search spaces of planning techniques
without compromising the optimality of the found route.

Incarnations of this scheme are, for example, contraction
hierarchies [CH] (Geisberger et al. 2012), hub labels [HL]
(Abraham et al. 2011b) and transit nodes [TN] (Bast et al.
2007). All of these techniques are used as building blocks in
plenty of applications and research projects, for route plan-
ning and location-based services as well as in navigation
systems. Indeed, all these techniques have their merits as
they offer different trade-offs between space consumption
and query time as shown in (Bast et al. 2016): On the West-
ern Europe network (18 million nodes, 42.5 million directed
edges), the space consumption of CH is about 0.4 GB; for
TN it’s 6 times higher, for HL 47 times higher. Regarding
query times, HL needs on average 0.56 μs to compute the
shortest path; query times for TN are higher by a factor of

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4, and by a factor of 196 for CH. The explicit numbers are
listed in Table 1. So the empirical observations indicate that
wrt query time, we have CH > TN > HL and wrt space
consumption we have CH < TN < HL. A natural question
is, whether these relations are generally true (invariant of the
scale of the network) – or, if there is some network size n for
which the current observations no longer hold. Of course,
comparisons on a single instance can not provide conclusive
results here.

Theoretical investigations were conducted as an attempt
to capture and predict the scaling behavior of shortest path
planning techniques. For example, a parametrized analy-
sis depending on a graph parameter called highway dimen-
sion h was performed in (Abraham et al. 2010). The analy-
sis, however, reveals similar space consumption values and
search space sizes for all three, CH, HL and TN. So far, it
remains unclear if this difference between theory and prac-
tice can be explained by asymptotic bounds versus finite
networks, or if the notion of highway dimension is not fine-
grained enough to differentiate between the scaling behavior
of these techniques sufficiently. The goal of this paper is to
shed light on these questions.

Related Work

The empirical justification of route planning techniques usu-
ally stems from the investigation of country or continen-
tal sized networks. Typical benchmarks besides the West-
ern Europe graph are the U.S. road network (TIGER data,
24 million nodes, 58 million edges) or networks extracted
from OpenStreetMap as Germany (20 million nodes, 42
million edges) or Europe (175 million nodes, 348 mil-
lion edges), see e.g. (Bast et al. 2007; Delling et al. 2011;
Abraham et al. 2011b; Geisberger et al. 2012; Bast et al.
2016). However, none of these papers features a scalability
study conducted on different sized networks. Therefore, the
only functions that describe the behavior of route planning
techniques in dependency of the network size n are based on
theoretical investigations.

Such investigations rely on certain assumptions about the
structure of the road network. Besides the highway dimen-
sion h (Abraham et al. 2010), also the so called skeleton di-
mension k (Kosowski and Viennot 2017) and the tree width
t (Bauer et al. 2013) could be instrumented as parameters
to derive theoretical search space size and space consump-

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

20

CH TN HL
query space query space query space

graph practical results
Western Europe 110 μs 0.4 GiB 2.09 μs 2.5 GiB 0.56 μs 18.8 GiB
model theoretical results
highway dimension h O(h logD) O(nh logD) O(h2) O(hn+m) O(h logD) O(nh logD)
skeleton dimension k - - - - O(k logD) O(nk logD)
tree width t O(t log n) O(nt log n) - - - -
minor closed O(

√
n) O(n log n) - - - -

bounded growth O(
√
n log n) O(n logD) O(

√
n log4 n) O(n

√
n log n) O(

√
n) O(n

√
n)

Table 1: Overview of practical and theoretical results for different shortest path speed-up techniques, with n, m and D ≤ n
denoting the number of nodes, the number of edges, and the diameter of the road network.

tions bounds. These bounds are listed in Table 1. How-
ever, the values for h, k and t are unknown for any large
road network, which makes it difficult to judge the qual-
ity of the obtained bounds. Other models used are minor-
closed graphs with O(

√
n) separators (Bauer et al. 2013)

and bounded growth of the graph metric (Blum, Funke, and
Storandt 2018), see also Table 1.

Contribution

In the first part of the paper, we present a new road network
generator which cuts tiles from real networks and fits them
together in order to produce arbitrary large road networks
of compact shape. The resulting networks are the basis for
our scalability studies. We then discuss different preprocess-
ing schemes for CH, TN and HL and provide implementa-
tion details of the methods used in our study. Afterwards
we conduct experiments on (generated) road networks with
the number of nodes ranging from 2,000 to almost a billion.
We use curve fitting methods to turn these experimental re-
sults into functions that describe the scaling behavior of the
considered techniques. We then compare our functions to
the functions derived from theoretical investigations. This
allows to judge the quality of the used road network models.
The main insights gained by our study are:

• CH and HL are both useful in huge networks. CH exhibits
the lowest space consumption among the three considered
techniques and HL the smallest query times independent
of the scale of the network. Surprisingly, TN is dominated
by HL in huge networks, as it has a higher space consump-
tion as well as higher query times. Hence TN should not
be applied to huge networks.

• The road network model based on the highway dimension
h is not suitable to explain the different scaling behav-
ior of CH and HL that was observed in our experiments.
Furthermore, the bounds for space consumption obtained
from the highway dimension h or the tree width t are too
loose for CH.

• Theoretical bounds based on minor closed graphs, graphs
with bounded growth or graphs with skeleton dimension
k (partially) match our empirical results pretty well. Still,
we observe some gaps between theory and practice which
should be investigated in future work.

A New Paradigm for Road Network

Generation

To enable sound scalability studies, we need access to road
networks of different size. Usually, cut outs of real road net-
works are used for this purpose. But we argue, that this is
not sufficient here. First of all, the planet road network as
available in OSM1 contains only about 600 million nodes,
and these nodes are distributed over many unconnected or
only sparsely connected components. Secondly, due to the
silhouette of real road networks, one runs quickly into bor-
der affects – which leads to an artificial reduction of search
space sizes of route planning techniques. To avoid such dis-
tortions and to be able to consider even larger networks than
those available at the moment, we want to generate road net-
works of compact shape and arbitrary size.

Existing Road Network Generators

Simple models for generating road networks are e.g. grid
graphs or unit disk graphs. But they lack the hierarchy of
slow and fast roads usually present in large road networks. In
(Eppstein and Goodrich 2008), road networks were charac-
terized as multi-scale dispersed graphs and modeled as sub-
graphs of disk intersection graphs. It was proven that in such
non-planar geometric graphs, shortest paths and Voronoi di-
agrams can be computed in linear expected time. In (Eisen-
stat 2011), nested quad trees were proposed to model road
networks but with the primary goal of analyzing maximum
flows. The graph generator presented in (Abraham et al.
2010) is custom-tailored to produce networks with constant
highway dimension. There, the road network is constructed
in an online fashion, always connecting a new node to the so
far existing network following a specific protocol. To model
the hierarchy, a speedup parameter is defined that makes
travel times on longer edges proportionally quicker.

In (Bauer et al. 2010), most of these generators were
implemented and tested against a newly designed genera-
tor based on recursive Voronoi cell computations. Proper-
ties as node degree distribution, distance distributions and
speedups for selected route planning techniques were mea-
sured with the help of a small scalability study (up to half a
million nodes). It was experimentally shown that the sophis-
ticated generators perform well for most considered aspects.

1openstreetmap.org

21

But the highway dimension related generator produced too
dense networks and the scalability studies revealed too large
speed-ups for CH when using the Voronoi-based genera-
tor. Furthermore, most of these generators require to fix a
large number of parameters manually. We will follow a com-
pletely different approach, where we do not generate road
networks from scratch. Instead, we bootstrap our generator
with tiles cut from real road networks and recombine them
to derive road networks larger than that of our planet – with
a compact shape, and with similar properties as the original
networks.

Road Networks as Jigsaw Puzzles

Our network generator requires a road network as input
where for every node its coordinates and for every edge
the corresponding road type (e.g. motorway or living street)
and traversal speed (or distance) are given. All of this infor-
mation is available for road networks extracted from OSM.
We distinguish between critical and non-critical road types,
where critical roads such as motorways are the most impor-
tant and fastest ones in the network.

From the input network we cut out square shaped tiles at
random positions and combine them on a grid that is filled
bottom-up from left to right. In every tile we insert portals
at all positions where an edge was cut by the tile boundary,
these portals are the places where we connect the whole net-
work by inserting edges between neighboring tiles on the
grid. To smooth the transitions between tiles, they are not
placed seamlessly next to each other, but with a small gap
(see Figure 1). To create sensible networks, we place only
similar tiles next to each other. For that, we keep a supply
of already cut out tiles. When we place a new tile into the
grid, we consider the portals along the neighboring tiles that
have already been placed and select a tile from the supply ac-
cording to the following criteria. First of all, we want every
portal corresponding to an edge of a critical road type to be
connected to a portal of the same road type. The remaining
portals are connected whenever possible according to their
relative positions (avoiding crossings). To quantify the sim-
ilarity of two tiles, we introduce a cost for connecting them:
Connecting two portals of the same type comes with no cost,
connecting two portals of different types and turning a portal
into a dead-end has cost 1. The total cost of connecting two
tiles can be computed by means of dynamic programming
as in the common algorithm for the computation of the Lev-
enshtein distance of two strings. So when a new tile is to be
placed into the grid, we choose that tile from our supply that
exhibits the least total cost to its neighbors. If necessary, we
break ties by the total offset along the boundary (in terms of
euclidean distance) that all portals to be connected exhibit.

Reasonable road types and traversal speed of the inserted
inter-tile edges are derived from the portals that they con-
nect. Previous road generators did not produce road types,
and travel times were derived from very simple models. With
our approach we can interfere sensible values for all edges.
Moreover, only two parameters need to be set for our gen-
erator, namely the tile size and the size of the network to
generate.

Figure 1: Two neighboring tiles that have been connected
via some of their portals. Green roads are critical.

Performance of Route Planning Techniques

To conduct scalability studies, and to make fair compar-
isons, we need to implement the preprocessing-based route
planning techniques carefully and then measure their space
consumption and their search space sizes on a variety of in-
put networks. But for each of the techniques (CH, TN, HL),
different preprocessing schemes were proposed in previous
work. As different preprocessing schemes might also result
in different scaling behavior, we ideally would implement
and evaluate all of them. Unfortunately, the preprocessing
schemes used in the highway dimension dependent theoreti-
cal analysis require the extraction and storage of all shortest
paths in the network, and the computation of hitting sets on
these shortest paths. This is totally impractical in larger net-
works. While exact hitting set computation can be replaced
by an approximate solution (at the cost of a factor of log n in
the space consumption and the search space sizes), even the
extraction of all shortest paths requires superquadratic time
and uses quadratic space in n (Abraham et al. 2013).

Hence, in the following, we focus on preprocessing
schemes which are applicable to real-world road networks
of continental size and larger.

Contraction Hierarchies

The original CH construction scheme (Geisberger et al.
2012) relies on node contraction: A node v is deleted from
the graph, and shortcut edges are inserted between neigh-
bors of v if they are necessary to preserve the pairwise
shortest path distances. The preprocessing phase of CH con-
sists of contracting all nodes in some order. In the end, a
new graph G+(V,E ∪ E+) is constructed, with E+ be-
ing the set of shortcut edges that were inserted during the
contraction process. So the space consumption of CH is de-
termined by |E+|. Let rank(v) be the rank of a node in
the contraction order. An edge (v, w) is called upward if
rank(v) < rank(w). The upward graph G↑(s) of a node
s is formed by all paths consisting of only upward edges
emerging from s in G+. In an undirected graph, an s-t-query
is answered via a bidirectional Dijkstra run on G↑(s) and
G↑(t), respectively. Both runs settle the node that was con-
tracted last on the original shortest path from s to t in G.
Hence identifying p such that ds(p) + dt(p) is minimized
leads to correct query answering. Any contraction order is
valid, but the space consumption and the search space sizes
depend on the chosen permutation. In practice, always con-
tracting the node next that minimizes the graph size after the

22

contraction works well; more complicated selection func-
tions were also tested.

A treewidth t based analysis of CH (Bauer et al. 2013) in-
spired a different CH construction scheme based on nested
dissections, which also performs very well in practice
(Dibbelt, Strasser, and Wagner 2014). There, the contrac-
tion order is determined top-down by identifying a small
balanced cut in the network, let the cut vertices be the ones
contracted last and then recurse on the two network parts.

Transit Nodes

TN differs from other speedup techniques as it guarantees
correct shortest path distances only for ’long’ queries where
the source and the target are sufficiently far from each other.
For ’short’ queries a fall-back algorithm has to be used, e.g.
Dijkstra. The idea behind TN is that all shortest paths from
a node v to all ’far away’ destinations pass through some
small set of so-called access nodes AN(v) (e.g. slip roads
of nearby interstates). The union of all access nodes forms
the transit node set T . For every pair of transit nodes, the
shortest path distance is precomputed and stored in a look-
up table. In addition, every node stores the distances to all
its access nodes. So the total space consumption can be ex-
pressed as |T |2 +

∑
v∈V |AN(v)|. A ’long’ s-t-query re-

duces to check all access node distances of s and t and
the respective distances between them in the look-up ta-
ble, all of which is precomputed. Hence the query time is
in |AN(s)|+ |AN(s)| · |AN(t)|+ |AN(t)|.

In practice, the most efficient method for TN computation
is based on CH (Arz, Luxen, and Sanders 2013). Here, the
c nodes with the highest rank in the contraction order are
declared transit nodes. Access node computation then also
makes use of the CH graph.

Hub Labels

In the HL approach, every node v gets assigned a set of
labels L(v). A label is a node w, together with the dis-
tance dv(w). The goal is to find concise label sets which
fulfill the cover property, that is, for every s, t ∈ V the la-
bel set intersection L(s) ∩ L(t) contains a node w on the
shortest path from s to t. If this is the case, queries can
be answered by simply summing up ds(w) + dt(w) for all
w ∈ L(s) ∩ L(t) and keeping track of the minimum. Com-
puting L(s) ∩ L(t) can be done by a merging-like step as-
suming the label sets are presorted by node IDs. Hence the
query time is in O(|L(s)| + |L(t)|), while the space con-
sumption is in O(

∑
v∈V |L(v)|).

CH-based Hub Labels In (Abraham et al. 2011a), it was
observed that hub labels can also be computed based on CH.
More precisely, choosing the nodes in G↑(v) as L(v) for
each v ∈ V leads to a correct HL data structure. A label
w of v is however useless if its shortest path distance from
v in G↑(v) exceeds the one in G. By performing a one-to-
all shortest path computation from v in both G↑(v) and G,
such labels can be identified and subsequently pruned, which
reduces the label sizes further in practice.

Skeleton-based Hub Labels In (Kosowski and Vien-
not 2017), a randomized preprocessing algorithm for HL
was introduced, which in expectation uses O(k logD) la-
bels per node and thus has a total space consumption of
O(nk logD). It assigns a random value to every edge and
chooses for every pair of nodes (v, u) a hub ηv(u) as the
edge of minimal random value among the middle dv(u)/6
edges of the shortest v-u-path. The label of a node v is then
constructed as the set of all hubs ηv(u) – note that this ap-
proach uses edges as labels instead of nodes.

To compute the label set of a node v, the authors of
(Kosowski and Viennot 2017) propose to iterate over the
shortest path tree of v by non-decreasing distance, while
keeping a sliding window for the middle r/6 edges of ev-
ery active branch at distance r. In every step, the window
belonging to the current branch is moved away from v and
the minimum edge is chosen. By storing every sliding win-
dow in a balanced binary search tree, this operations can be
performed in O(log r) time on a window of size r/6. Note
however that a window needs to be split when it is moved
over a node where the shortest path tree branches. If this
is handled by cloning the whole window in Ω(r) time, the
algorithm might take Ω(Dn) time where D denotes the di-
ameter.

Therefore we suggest to traverse the shortest path tree in
a depth-first search instead. Again we keep a sliding win-
dow for the current branch, which moves forwards and back-
wards when descending and ascending, respectively. During
this process, only one sliding window is required that can be
accessed and modified in O(log n) time, so the total runtime
is O(n log n).

Experiments

We implemented the road network generator in C++, as well
as the route planning techniques CH, TN and HL using a
node-based graph representation and the following prepro-
cessing and query answering schemes. For CH we use the
greedy preprocessing scheme described in (Geisberger et al.
2012) that always contracts a node minimizing the number
of shortcuts to be inserted. For TN we select the 5

√
n nodes

of highest rank in the contraction order as transit nodes. For
HL we use both the CH-based approach from (Abraham et
al. 2011a) with subsequent pruning and the skeleton-based
approach from (Kosowski and Viennot 2017).

Experiments were conducted on a AMD Opteron 6272
CPU (32 cores clocked at 2.1 GHz) with 264 GB main mem-
ory, running Ubuntu 16.04.2 (kernel 4.4.0). We used the
GNU C++ compiler 5.4.0 with optimization level 3. All ex-
periments were based on the OSM road network of Germany
(in the following just “Germany”) consisting of about 23.9
million nodes and 24.6 million undirected edges that are or-
ganized in 15 road categories. Shortest paths were computed
wrt travel time.

Validation of the Road Network Generator

To evaluate our generator we created different sized net-
works and also varied the tile size. For determining a good
tile size, we first created 10 different networks of dimension

23

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

motorway primary secondary tertiary unclassified residential service

R
e

la
ti
v
e

 n
e

tw
o

rk
 l
e

n
g

th

Road type

Germany
tile size 5 km x 5 km

tile size 10 km x 10 km
tile size 25 km x 25 km
tile size 50 km x 50 km

Figure 2: Relative network length of road types.

degree
network 0 1 2 3 4 ≥ 5
Germany 0.0% 6.5% 75.5% 15.6% 2.2% 0.3%
Generated 0.0% 6.2% 76.1% 15.3% 2.2% 0.3%

Table 2: Relative frequency of node degrees in a network
generated with a tile size of 25 km × 25 km

1000 km×1000 km for each tile size of 5 km×5 km, 10 km×
10 km, 25 km × 25 km and 50 km × 50 km. It turned out
that tiles with a size about 25km × 25 km produced the
best results. Larger tiles were more difficult to fit together
and smaller tiles did not preserve the road network struc-
ture well. With 25km × 25 km tiles, important aspects of
the original road network, as e.g. the distributions of node
degrees (see Table 2) and road types (see Figure 2 for a com-
parison between different tile sizes) are well preserved.

The largest network we generated contains about 778 mil-
lion nodes and 834 million edges. Its construction required
110 minutes and reached a peak memory consumption of 7.5
GB. This is clearly more efficient than both sophisticated
approaches evaluated in (Bauer et al. 2010), where the au-
thors reported a runtime of 150 minutes and 63 minutes and
a peak memory consumption of 21 GB and 8.4 GB for the
generation of networks with less than 50 million nodes us-
ing the Voronoi-based generator and the approach proposed
in (Abraham et al. 2010), respectively.

An example of a network generated with our approach can
be found in Figure 3.

Performance Study

To study the performance of route planning techniques on
networks of different sizes, we used our largest generated
network with roughly 800 million nodes and recursively cut
out squares, reducing the number of nodes in every step by
a factor of four until we stopped at about 2 000 nodes. To
show that the results are truthful (and to further validate our
generator), we also include results on cutouts of Germany.
There, the largest square we could cut contained about 11

Figure 3: Cut-out of a road network generated with our ap-
proach.

million nodes. For networks with up to 7 · 105 nodes, we re-
port the average over 4 instances (for both Germany and the
generated network), to avoid strong distortions by ’unlucky’
selection.

On the resulting networks we measured important perfor-
mance aspects of CH, TN and HL. In particular, for CH, we
provide the ratio of the number of inserted shortcuts and the
number of original edges |E+|/|E|, as well as the average
number of nodes |V ↑| and edges |E↑| in the search space.
For TN, we measured the average number of access nodes
|AN |, and the radius r that determines the minimum dis-
tance between the source and target vertex such that the TN
approach will return the shortest path distance for sure. For
HL, we measure the average label size |HL| per node sub-
divided by the used preprocessing technique (CH-based or
skeleton-based). All results are collected in Table 3.

We observe that the results on the generated instances are
very close to the ones obtained on Germany. In particular,
there is no overestimation on larger instances and the results
differ by less than a factor of 2.5. Hence we deem the gener-
ated networks suitable as basis for our scalability analysis.

Curve Fitting

To evaluate the scalability of the route planning techniques,
we tried to fit the data points obtained from our performance
study to f(x) = a · log2(x)b (polylogarithmic growth) and
g(x) = c · xd (polynomial growth)2. These functions cover
the bounds from the theoretical investigations. For example,
if h, t or k would be constant, then search spaces for CH
and HL would be in O(log n) and the space consumption in
O(n log n). If, on the other hand h, k, t ∈ O(

√
n) (which is

their known value in uniformly weighted grid graphs), then
search spaces would be in O(

√
n log n) and the space con-

sumption in O(n
√
n log n).

We use the gnuplot implementation of the Marquardt-

2We also tried more complicated models with additional terms
but obtained very similar results.

24

Germany Generated
CH TN HL CH TN HL

n |E+|
|E| |V ↑| |E↑| |AN | r |HL1| |HL2| |E+|

|E| |V ↑| |E↑| |AN | r |HL1| |HL2|
2× 103 0.76 14 26 2 18 12 100 0.74 15 28 2 19 13 105
1× 104 0.79 26 57 2 37 18 167 0.78 23 59 2 42 17 163
4× 104 0.81 43 154 3 75 26 265 0.79 41 147 3 81 26 257
2× 105 0.82 82 479 4 135 40 387 0.79 74 379 4 158 37 349
7× 105 0.83 175 1521 5 271 58 514 0.79 149 1106 5 333 54 482
2× 106 0.83 393 5032 8 582 90 675 0.80 300 3010 8 536 76 630
1× 107 0.82 929 15611 20 1054 121 904 0.80 562 7335 12 1081 103 780
5× 107 - - - - - - - 0.79 1185 21300 21 2253 149 953
2× 108 - - - - - - - 0.79 2547 63223 45 4057 213 1243
8× 108 - - - - - - - 0.79 5188 160193 88 7459 295 1405

Table 3: Average search space sizes (over 1,000 random queries) and space consumption for different route planning techniques:
ratio |E+|/|E|, number of nodes in upward graph (|V ↑|), number of edges in upward graph (|E↑|), number of access nodes
(|AN |), radius to furthest access node in seconds (r), number of hub labels for CH-based preprocessing (|HL1|) and skeleton-
based preprocessing (|HL2|)

Levenberg algorithm3 for fitting. The algorithms works in
an iterative fashion, always judging the current choice of pa-
rameters by the sum of squared residuals between the input
data point and the function values, and then modifying the
parameters slightly in a direction that might improve the fit-
ting quality. After the procedure converged, the following
quality measures are provided:
• Final sum of squares of residuals (SSR), that is, the re-

maining squared gaps between the data points and the
fitted function (the smaller the SSR the better the fitting
quality).

• Asymptotic standard errors (ASE) for each parameter
which are approximations to the standard deviations that
can be derived directly from the variance-covariance ma-
trix. Intuitively, the larger the standard deviation the larger
the possible fluctuations of the parameter around the out-
putted mean. The ASE is prone to be overly optimistic but
still provides a sound way to compare different parameter
choices (the smaller the ASE the better the confidence in
the parameter choice).

We also attempt to simplify the fitting results. For example,
if a parameter is returned to be 0.489666754 we rerun the fit-
ting procedure after fixing the parameter to be 0.5, and com-
pare the quality of the two runs. If the differences turns out
to be negligible (that is, the SSR value got worse by at most
a factor of 4), we will also report the results for the simpler
(rounded) parameter. We deem this to be a natural approach,
as the experiments to compute the input data points as well
as the fitting procedure might induce small fluctuations any-
way, and the ASE implies that there is a (small) range of
parameter choices and not only a single value that works.

Fitting Results

For every column in Table 3, we performed curve fitting to
the polylogarithmic function f(x) and the polynomial func-
tion g(x). In the following, we discuss the results for each
of the route planning techniques individually.

3http://gnuplot.sourceforge.net/docs 4.2/node82.html

CH

shortcut to original edge ratio |E+|/|E|
f(n) a b ASE(a) ASE(b) SSR

0.669 0.022 2.3% 33.6% 0.001
refit b=0 0.785 0.3% 0.002
g(n) c d ASE(c) ASE(d) SSR

0.748 0.001 0.9% 42.5% 0.002
refit d=0 0.785 0.3% 0.002

number of nodes in search space |V ↑|
f(n) a b ASE(a) ASE(b) SSR

·10−11 9.770 59.5% 1.8% 18255
g(n) c d ASE(c) ASE(d) SSR

0.134 0.516 7.2% 0.7% 2847
refit d=0.5 0.180 0.6% 10245

number of edges in search space |E↑|
f(|V ↑|) a b ASE(a) ASE(b) SSR

10−7 10.565 19.0% 0.7% 2.2·106
g(|V ↑|) c d ASE(c) ASE(d) SSR

1.828 1.331 8.9% 0.8% 2.8·106

Table 4: Fitting results for CH.

Contraction Hierarchies The fitting results for CH are
summarized in Table 4. For the ratio of shortcut edges and
original edges, we already observe by a glance on Table 3
that the value does not seem to depend on the number of
nodes n in the network, but rather appears to be a global
constant. This is reflected in our fitting experiments: While
the initial curve fitting resulted in slightly positive exponents
b and d when using f(n) or g(n), respectively, refitting after
fixing b = 0 or d = 0 results in almost the same SSR value.
Hence we conclude that the function describing the ratio is
most likely the constant function 0.785.

For the number of nodes in the search space, the best fit
in the polylogarithmic model is f(n) = 10−11 log2(n)

9.77.
Note that a = 10−11 can also be interpreted as a change of
the log base. Nevertheless this function does not look natu-
ral at all. This observation is strengthened by the high ASE
value for a and the large SSR term. In contrast, the polyno-
mial model initially return the function g(n) = 0.134·n0.516

with much smaller ASE values for both parameters (only

25

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1x108 2x108 3x108 4x108 5x108 6x108 7x108 8x108

nu
m

be
r o

f n
od

es
 in

 se
ar

ch
 sp

ac
e

number of nodes in network

data
polylog t with 10 data points

polylog t with 6 data points
polynom t with 10 data points

polynom t with 6 data points

Figure 4: Average CH search space size in dependency of n.
The plot shows the data points as well as the fitted functions
for the different models and input sizes.

7.2% for c compared to 59.5% for a) and an SSR value
which is more than 5 times smaller than the one obtained
in the polylogarithmic model. Refitting after setting d to
0.5 results in a larger SSR value but still leads to a better
quality than the polylogarithmic model in all aspects. Hence
we conclude that the growth of the number of nodes in the
search space of CH is most likely well described by 0.18

√
n.

To further support the evidence that the polynomial model
is the correct one, we also performed the fitting using only
the first six data points, that is, only up to n = 2.7 · 106.
The resulting functions are plotted in Figure 4. We observe
that the function derived in the polynomial model for 6
data points is still a good fit for all 10 data points. In fact,
the functions for 6 and 10 data points differ only slightly:
g6(n) = 0.211 · n0.489 and g10(n) = 0.134n0.516 and both
produce small SSR values after refitting with d = 0.5 being
fixed. In contrast, the function f6(n) in the polylogarithmic
model (lowest plot line in Figure 4) is not a good fit for all
10 data points at all. The exponent b was only 6.499 for f6
while it is 9.77 for f10. This shows that the polylogarith-
mic model is not stable and most likely the exponent would
chnge again if we would investigate even larger networks. In
summary, the polynomial model clearly seems to fit best.

The number of edges in the search space |E↑| was not
evaluated with respect to n but instead with respect to |V ↑|,
the number of nodes in the search space. We chose this
different evaluation approach because it can be easily de-
duced that |V ↑| − 1 ≤ |E↑| ≤ |V ↑|2 (the lower bound
is true as the search space induces a connected graph, the
upper bound is trivially true as there can be no more than
quadratically many edges in the graph induced by the search
space). Hence we already know that the polynomial model
has to be the correct one. Nevertheless, the polylogarith-
mic model also produces a fit with small ASE and SSR
values. However, again, the resulting function f(|V ↑|) =
10−7 log2(|V ↑|)10.565 is not intuitive at all – and meaning-
less, given that we know that the polynomial model is valid
here. The polynomial model suggest that the dependency of
|E↑| and |V ↑| can be roughly described by |E↑| = 2|V ↑|1.3,
which is far from the quadratic upper bound (which often is

TN

number of access nodes |AN |
f(n) a b ASE(a) ASE(b) SSR

10−12 8.903 160.6% 5.3% 48
g(n) c d ASE(c) ASE(d) SSR

0.006 0.470 34.3% 3.6% 24
refit d=0.5 0.003 1.8% 32

radius r
f(n) a b ASE(a) ASE(b) SSR

10−9 8.205 41.2% 1.5% 28575
g(n) c d ASE(c) ASE(d) SSR

0.900 0.441 10.7% 1.2% 20660

Table 5: Fitting results for TN.

HL

number of hub labels (CH-based) |HL1|
f(n) a b ASE(a) ASE(b) SSR

10−4 4.157 47.3% 3.4% 325
g(n) c d ASE(c) ASE(d) SSR

2.00 0.244 3.9% 0.8% 22
refit d=0.25 1.79 0.5% 45

number of hub labels (skeleton-based) |HL2|
f(n) a b ASE(a) ASE(b) SSR

0.196 2.629 21.4% 2.5% 4918
refit b=2.5 0.298 1.2% 7393
g(n) c d ASE(c) ASE(d) SSR

49.73 0.166 16.9% 5.5% 27954

Table 6: Fitting results for HL.

used in theoretical analyses).

Transit Nodes The fitting results for TN are summarized
in Table 5. We first looked for a function that described
the number of access nodes in dependency of the network
size. The polylogarithmic model produces again a function
with a very small coefficient but a large exponent, which are
accompanied by a large ASE value for a. The polynomial
model produces an SSR value that is half of the SSR value
for f(n), and the ASE values are smaller as well. As the ini-
tially produced value for d is close to 0.5 we rerun the fitting
after rounding d. The resulting function g(n) = 0.003

√
n

still exhibits a low SSR value.
A closer look on Table 3 reveals, that the radius r is al-

ways larger than the number of nodes in the search space
of CH, hence the growth function is likely to be polynomial
here as well. And indeed, fitting to g(n) leads to lower ASE
and SSR values than f(n).

Hub Labels The fitting results for HL are summarized in
Table 6. We clearly observe from the results given in Table
3 that the CH-based hub label sets HL1 are superior to the
skeleton-based hub labels HL2, as they are smaller on aver-
age in all considered networks.

For CH-based hub labels, the polynomial model is the
clear winner. The SSR value is smaller by a factor of al-
most 15 and the ASE values are significantly smaller as well.
Even after fixing d = 0.25, we only get an SSR value of 45,
hence our function fits the data very well. We conclude that

26

CH TN HL (CH-based) HL (Skeleton-based)
query space query space query space query space

fitted functions O(
√
n) O(n) O(n) O(n

√
n) O(n0.25) O(n1.25) O(log2.5 n) O(n log2.5 n)

Table 7: Search spaces and space consumption of the route planning techniques derived from our scalability study.

g(n) = 1.8n0.25 appears to be a good description for the
growth of the hub label sizes for HL1.

For HL2, although the label sizes are larger compared
to HL1, the polylogarithmic model produces a smaller SSR
value than the polynomial model, even after fixing b = 2.5.
The ASE value for a is rather large, though. Hence it is diffi-
cult to decide if the polylogarithmic model is really superior.
When we fitted all data points except the one with largest
n, the SSR for the polynomial model decreased by a fac-
tor of 3 whereas for the polylogarithmic model it remained
nearly unchanged. This might give further evidence that the
label sizes grow indeed polylogarithmicly. If this is the case,
the skeleton-based preprocessing would outperform the CH-
based approach in very large networks (n > 6.7× 1013).

Comparison to Theoretical Bounds

From the functions we derived by curve fitting, we can de-
duce the search space sizes in a query and the space con-
sumption of the CH, TN and HL data structures: For CH, the
search space is defined as two times the number of nodes in
V ↑, and the space consumption as the number of shortcuts
|E+|. For TN, the search space equals |AN |2 and the space
consumption n|AN |+Θ(n). For HL, the query time is linear
in |HL| and the space consumption is n|HL|. The respective
functions are provided in Table 7.

We observe that CH and HL are incomparable, as CH ex-
hibits a lower space consumption but HL a better query time.
TN however is dominated by CH and HL, as the query times
and the space consumption turn out to be worse. We want
to stress here, though, that we only tested one out of many
different preprocessing schemes for TN here. Other prepro-
cessing schemes might result in better running times and/or
space consumption bounds, especially considering that the
radius for long queries can be chosen very differently.

If we now compare Table 7 to the theoretical bounds given
in Table 1, we make the following observations: If our bound
for the search space size of CH is correct, then the bounds
depending on the highway dimension h and the tree width t
would be valid for h, t ∈ O(

√
n). But this would result in a

predicted space consumption of O(n
√
n log n) in both mod-

els which is huge compared to the linear space consump-
tion function we derived. For TN search spaces it yields
O(h2) = O(n), hence this would also imply h ∈ O(

√
n).

Assuming such an h value, the theoretical space consump-
tion would be O(n

√
n) which matches our fitted function

perfectly. For HL1, to match our bounds, the highway and
the skeleton dimension only need to be in O(n0.25). Then
the search space and the space consumption function would
coincide. However, the analysis in dependency of h predicts
the same growth behavior of the search spaces for both, CH
and HL, while our analysis indicates that the search spaces
induced by HL are significantly smaller – at least for the

tested preprocessing schemes. If our bounds for HL2 are cor-
rect, this implies that k grows at most polylogarthmicly in n
as we applied the same preprocessing here that was devel-
oped for the theoretical analysis.

The bounds derived for minor closed graphs and graphs
with bounded growth fit our functions for CH very well. In
fact, they differ at most by a factor of log n from our results.
For TN, the bounded growth model predicts better query
times and for HL worse query times and space consump-
tion bounds, but the preprocessing schemes analyzed there
also differ from the ones we implemented here.

In summary, some of our derived functions are matched
by the theoretical predictions (at least if the parameters h, k,
and t assume suitable values) while others can hardly be ex-
plained by existing models for road networks. It would be
helpful to know the values of h, t, k of large road networks
in order to make the comparison of the models more conclu-
sive. But so far, their true values have not been investigated
and at least for h and t exact computation is NP-hard.

Conclusions and Future Work

We provided a scalability study for the three state-of-the-
art route planning techniques in road networks, contraction
hierarchies, transit nodes and hub labels, considering their
most common practical preprocessing schemes. Based on
experiments on (generated) road networks of different size,
we derived for the first time empirical functions that de-
scribe the search space sizes and the space consumption of
these techniques. Our results encourage the search for road
networks models in which the preprocessing schemes used
in practice become analyzable, which unfortunately is not
the case for most of the road network models considered so
far. In practice, additionally many engineering approaches
are used to reduce the space consumption and the query
times further. It would be interesting to see if these meth-
ods only shave off constant factors of the running time or
whether they really change the scaling functions. In future
work, also other road networks should be investigated (e.g.
the US network with a lot of grid substructures, and net-
works from other sources than OpenStreetMap). Finally, to
be able to study even larger networks (which might result
in more truthful functions), new versions of the preprocess-
ing schemes need to be developed that are more efficient in
terms of space consumption and preprocessing time.

References

Abraham, I.; Fiat, A.; Goldberg, A. V.; and Werneck, R. F.
2010. Highway dimension, shortest paths, and provably ef-
ficient algorithms. In Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 782–
793. SIAM.

27

Abraham, I.; Delling, D.; Fiat, A.; Goldberg, A. V.; and Wer-
neck, R. F. 2011a. VC-dimension and shortest path algo-
rithms. In Proceedings of the 38th International Colloquium
on Automata, Languages, and Programming (ICALP), vol-
ume 6755 of Lecture Notes in Computer Science, 690–699.
Springer.
Abraham, I.; Delling, D.; Goldberg, A. V.; and Werneck,
R. F. 2011b. A hub-based labeling algorithm for shortest
paths in road networks. In Proceedings of the 10th Interna-
tional Conference on Experimental Algorithms (SEA), vol-
ume 6630 of Lecture Notes in Computer Science, 230–241.
Springer.
Abraham, I.; Delling, D.; Fiat, A.; Goldberg, A. V.; and Wer-
neck, R. F. 2013. Highway dimension and provably efficient
shortest path algorithms. Technical Report MSR-TR-2013-
91, Microsoft Research.
Arz, J.; Luxen, D.; and Sanders, P. 2013. Transit node
routing reconsidered. In Proceedings of the 12th Interna-
tional Symposium on Experimental Algorithms (SEA), vol-
ume 7933 of Lecture Notes in Computer Science, 55–66.
Springer.
Bast, H.; Funke, S.; Sanders, P.; and Schultes, D. 2007.
Fast routing in road networks with transit nodes. Science
316(5824):566–566.
Bast, H.; Delling, D.; Goldberg, A. V.; Müller-Hannemann,
M.; Pajor, T.; Sanders, P.; Wagner, D.; and Werneck, R. F.
2016. Route planning in transportation networks. In Algo-
rithm Engineering. Springer. 19–80.
Bauer, R.; Krug, M.; Meinert, S.; and Wagner, D. 2010.
Synthetic road networks. In Proceedings of the 6th Inter-
national Conference on Algorithmic Aspects in Information
and Management (AAIM), volume 6124 of Lecture Notes in
Computer Science, 46–57. Springer.
Bauer, R.; Columbus, T.; Rutter, I.; and Wagner, D. 2013.
Search-space size in contraction hierarchies. In Proceedings
of the 40th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), volume 7965 of Lec-
ture Notes in Computer Science, 93–104. Springer.
Blum, J.; Funke, S.; and Storandt, S. 2018. Sublinear search
spaces for shortest path planning in grid and road networks.
In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence. AAAI Press.
Delling, D.; Goldberg, A. V.; Nowatzyk, A.; and Werneck,
R. F. 2011. PHAST: Hardware-accelerated shortest path
trees. In Proceedings of the 25th IEEE International Sympo-
sium on Parallel and Distributed Processing (IPDPS), 921–
931. IEEE.
Dibbelt, J.; Strasser, B.; and Wagner, D. 2014. Customizable
contraction hierarchies. In Proceedings of the 13th Interna-
tional Symposium on Experimental Algorithms (SEA), vol-
ume 8504 of Lecture Notes in Computer Science, 271–282.
Springer.
Eisenstat, D. 2011. Random road networks: The quadtree
model. In Proceedings of the 8th Workshop on Analytic Al-
gorithmics and Combinatorics (ANALCO), 76–84. SIAM.
Eppstein, D., and Goodrich, M. T. 2008. Studying (non-

planar) road networks through an algorithmic lens. In Pro-
ceedings of the 16th ACM SIGSPATIAL International Sym-
posium on Advances in Geographic Information Systems
(ACM-GIS), 16. ACM.
Geisberger, R.; Sanders, P.; Schultes, D.; and Vetter, C.
2012. Exact routing in large road networks using contrac-
tion hierarchies. Transportation Science 46(3):388–404.
Kosowski, A., and Viennot, L. 2017. Beyond highway di-
mension: Small distance labels using tree skeletons. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 1462–1478. SIAM.

28

