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Abstract

Permutation flowshop scheduling problem (PFSP) is a classi-
cal combinatorial optimisation problem. There exist variants
of PFSP to capture different realistic scenarios, but signifi-
cant modelling gaps still remain with respect to real-world in-
dustrial applications such as the cider production line. In this
paper, we propose a new PFSP variant that adequately mod-
els both overlapable sequence-dependent setup times (SDST)
and mixed blocking constraints. We propose a computational
model for makespan minimisation of the new PFSP variant
and show that the time complexity is NP Hard. We then de-
velop a constraint-guided local search algorithm that uses a
new intensifying restart technique along with variable neigh-
bourhood descent and greedy selection. The experimental
study indicates that the proposed algorithm, on a set of well-
known benchmark instances, significantly outperforms the
state-of-the-art search algorithms for PFSP.

Introduction

Permutation Flowshop Scheduling Problems (PFSP) are one
of the most well-known machine scheduling problems. A
PFSP has a sequence of m machines. Each machine i has a
buffer i of a given capacity ci before the machine to hold the
arriving jobs. Each buffer is a first-come-first-serve queuing
system. After the current job at machine i is completed, the
next job j from buffer i is removed from the buffer and is
then processed by machine i taking given processing time
pij . Each processed job j from machine i then goes to buffer
i + 1. The PFSP problem is to find a permutation π of a
given set of n jobs such that when the jobs are placed in
buffer 1 exactly in the permutation order and the flowshop
starts running, then the resulting makespan of processing all
jobs by all machines is minimised. Assuming [k] denotes the
kth job in the permutation π, the makespan is the time point
when the last job leaves the last machine. In a typical PFSP,
each buffer has an infinite capacity and jobs can stay in each
buffer for an unlimited period of time. There exist variants
of PFSP to capture different realistic scenarios, where each
variant poses its own scheduling challenges.

In one PFSP variant, each machine i after processing job
[k] needs sequence dependent si[k][k+1] time to be set up be-
fore processing next job [k + 1]. Note that the sequence de-
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pendent setup time (SDST) si[k][k+1] is neither part of pi[k]
nor of pi[k+1], since it depends on two successive jobs in the
permutation. SDSTs are important because these are present
in about 70% of industrial activities (Dudek, Smith, and Pan-
walkar 1974). For example, in the paper cutting industry, the
cutting machines need adjustment before starting a different
type of cutting batch. In the painting industry, cleaning must
be performed before changing the painting colors. More ex-
amples could be found in the survey by (Allahverdi 2015).

In another PFSP variant known as limited-buffer PFSP,
each buffer has a limited capacity. In yet another variant
known as blocking PFSP, each buffer capacity is zero. This
means a job might have to stay at the machine that processed
it and might thus block the machine. Formally, a machine
i < m cannot start processing an available job [k] until ma-
chine i + 1 starts processing job [k − 1]. This constraint in
the blocking PFSP is known as Release when Starting Block-
ing (RSb). Blocking PFSPs have been studied by (Ribas and
Companys 2015; Tasgetiren et al. 2017a).

Besides the traditional RSb blocking, there exists a spe-
cial blocking named Release when Completing Blocking
(RCb)1 (Martinez de La Piedra 2005), where a machine
i < m cannot start processing an available job [k] until job
[k−1] leaves machine i+1. RCb blocking is seen in real-life
industries such as waste treatment and aeronautics parts fab-
rication industries (Martinez de La Piedra 2005). In waste
treatment industries, wastes from each cargo is unloaded to
a tank and then the wastes flow to the blender. The tank is not
available for further unloading until the blending is finished
and the blended wastes completely leave the blender.

Despite existence of several PFSP variants, significant
modelling gaps still exist when real-world industrial applica-
tions are considered. In this research, we study PFSPs with
both SDSTs and mixed blocking constraints (RSb and RCb)
considering makespan minimisation as the objective. For
each machine, our model allows SDST for the next job to be
overlapping with the blocking or idle time of the machine for
the current job. Our motivation comes from real-life appli-
cations of this PFSP variant, for example, from the cider in-
dustry. The cider production process consists of seven stages
that include pressing and fermentation. Workers must set up
a machine with the right setting and ingredients before start-

1Should be renamed as Release when Leaving Blocking (RLb)
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Figure 1: PFSPs with top) RSb and RCb constraints bottom)
overlapable SDSTs, and RSb and RCb constraints

ing processing for a specific type of apple juice (thus SD-
STs). Moreover, apples of a job must stay in the stock until
the washing machine is available (RSb constraint) and the
next job must stay at the pressing stage until the current job
leaves the fermentation stage (RCb constraint).

To the best of our knowledge, there is no available re-
search on PFSPs with both overlapable SDSTs and mixed
blocking constraints, although this variant has real-world in-
dustrial applications. In this paper, we propose a computa-
tional model for PFSPs with overlapable SDSTs and mixed
blocking constraints (RSb and RCb) and next show that min-
imisation of the makespan of the PFSP variant is NP Hard.

In order to solve the studied problem, we present a very
efficient constraint-guided local search algorithm that uses a
new intensifying restart along with variable neighbourhood
descent and greedy selection. For the proposed algorithm,
we also provide a speed-up method that is similar to the one
developed by (Li, Wang, and Wu 2009). The proposed algo-
rithm is tested on a set of benchmark instances and found to
be significantly outperforming adapted state-of-the-art local
search algorithms for closely related problems.

In the rest of the paper, we propose the PFSP variant, de-
scribe the search algorithm, present the experimental results,
review the related work, and present the conclusions.

Proposed Problem Model

Under RSb, a machine cannot start processing a job until the
next machine starts processing the previous job. In Figure 1
top, machine 1 starts job 2 and job 3 when machine 2 starts
job 1 and job 2 respectively. Under RCb, a machine cannot
start processing a job until the previous job leaves the next
machine. In Figure 1 top, machine 2 starts job 2 and job
3 when job 1 and job 2 leave machine 3 respectively. RCb
constraints are more stringent than RSb constraints

Machine setup times could be part of the processing times
or could be separate. In the latter case, for a job [k], the setup
time period of machine i can be considered for overlapping
with the idle or blocking time of machine i − 1 and/or can
also be considered to be dependent on the job [k−1] on ma-
chine i (SDST). Considering our motivation from the cider
industry, in this paper, we adopt overlapable SDSTs.

In our proposed model for PFSPs with overlapable SD-
STs and mixed RSb and RCb blocking constraints, we make
one important assumption: setup operations for the next job

can be performed as soon as the machine finish the current
job regardless of the state that the current job is still on the
machine or not. Clearly, setup operations could be deferred
if there is a slack period before starting processing the next
job. However, such deferral does not pose any further com-
putational challenge. Figure 1 bottom shows the case when
SDSTs are overlapable and blocking constraints are mixed.
Sometimes blocking or idle times could be larger than SD-
STs and sometimes it is other way around. It is worth noting
that in the proposed PFSP variant, all other common flow-
shop assumptions (Baker 1974) still apply: (1) all jobs are
independent and available beforehand; (2) machines are al-
ways available and never break down; (3) jobs put on ma-
chines are processed without interruptions and cannot be
taken off until the operations to be performed are completed
by the respective machines.

Computational Formulas

Assume pij be the given processing time for job j on ma-
chine i and sijj′ be the SDST of machine i after finishing
job j and before starting job j′ �= j. Given a permutation
π of n jobs, also assume Si[k], Ci[k], and Li[k] respectively
denote the starting, completion, and leaving time points for
processing job [k] on machine i. Moreover, assume �Si[k]

and �Ci[k] respectively denote the SDST starting and com-
pletion time points before job [k] on machine i. Finally, as-
sume Bi ∈ {RSb,RCb} be the type of blocking constraint
between machines i and i + 1 since ci+1 is zero. Given a
permutation π of n jobs, the makespan Cπ = Cm[n] is the
completion time of job [n] on machine m. Makespan com-
putation for PFSPs with overlapable SDSTs and RSb and
RCb blocking constraints is far from being straightforward.
We define required formulas below.

1. Ci[k] = Si[k] + pi[k] ∀i ∈ [1,m], ∀k ∈ [1, n]

2. Li[k] = S(i+1)[k] ∀i ∈ [1,m− 1], ∀k ∈ [1, n]

Lm[k] = Cm[k] ∀k ∈ [1, n]

3. �Si[k] = Ci[k−1] ∀i ∈ [1,m], ∀k ∈ [2, n]

4. �Ci[k] = �Si[k] + si[k−1][k] ∀i ∈ [1,m], k ∈ [2, n]

5. S1[1] = 0, Si[1] = C(i−1)[1] ∀i ∈ [2,m]

S1[k] = max( �C1[k], S2[k−1]) if B1 = RSb ∀k ∈ [2, n]

S1[k] = max( �C1[k], L2[k−1]) if B1 = RCb ∀k ∈ [2, n]

Si[k] = max(C(i−1)[k], �Ci[k], S(i+1)[k−1])
if Bi = RSb ∀i ∈ [2,m− 1], ∀k ∈ [2, n]

Si[k] = max(C(i−1)[k], �Ci[k], L(i+1)[k−1])
if Bi = RCb ∀i ∈ [2,m− 1], ∀k ∈ [2, n]

Sm[k] = max(C(m−1)[k], �Cm[k]) ∀k ∈ [2, n]

Formula 1 above computes completion time point of each
job on each machine by adding the processing time period
to the starting time point. Formula 2 computes the leaving
time point of each job from each machine. A job leaves the
last machine as soon as it is finished; otherwise the leaving
time point from the current machine is the same as the start-
ing time point of the job on the next machine. Formula 3
computes SDST starting point for each job on a given ma-
chine from the completion time point of the previous job on
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the same machine. Formula 4 then adds SDST period to the
SDST starting time point to obtain SDST completion time
point. Formula 5 computes the starting time point of each
job on each machine. There is no SDST for the first machine
and there is no blocking constraint after the last machine.
For other machines, the starting time of a job is computed
i) from its completion on the previous machine, ii) from the
completion of the SDST period on the same machine, and
iii) depending on the RSB or RCB constraint, respectively
from the starting or leaving time point of the previous job on
the next machine.

An Illustrative Example

Consider the example shown in Figure 1 bottom, where the
PFSP with overlapable SDSTs and mixed blocking con-
straints has 3 machines and 3 jobs. The processing time for
each job j on each machine i is shown in the matrix |pij |
below. Also, the SDST for each pair of jobs j �= j′ on ma-
chine i is shown in the matrix |sijj′ | below. The blocking
constraints are B = 〈RSb,RCb〉.

|pij | =
2 2 1
1 1 2
1 1 2

|sijj′ | =
- 2 2
1 - 1
1 2 -

- 2 3
2 - 2
3 2 -

- 3 2
2 - 2
1 3 -

Below we show S, C, L, �S, and �C values for the permutation
of jobs π = 〈1, 2, 3〉, but, not in the order of computation.
S1[1] = 0 C1[1] = S1[1] + p1[1] = 2 L1[1] = S2[1] = 2

S2[1] = C1[1] = 2 C2[1] = S2[1] + p2[1] = 4 L2[1] = S3[1] = 4

S3[1] = C2[1] = 4 C3[1] = S3[1] + p3[1] = 5 L3[1] = C3[1] = 5

�S1[2] = C1[1] = 2 �C1[2] = �S1[2] + s1[1][2] = 4

�S2[2] = C2[1] = 4 �C2[2] = �S2[2] + s2[1][2] = 6

�S3[2] = C3[1] = 5 �C3[2] = �S3[2] + s3[1][2] = 8

S1[2] = max(�C1[2], S2[1]) = 4 C1[2] = S1[2] + p1[2] = 5

S2[2] = max(C1[2], �C2[2], L3[1]) = 6 C2[2] = S2[2] + p2[2] = 7

S3[2] = max(C2[2], �C3[2]) = 8 C3[2] = S3[2] + p3[2] = 10

L1[2] = S2[2] = 6 L2[2] = S3[2] = 8 L3[2] = C3[2] = 10

�S1[3] = C1[2] = 5 �C1[3] = �S1[3] + s1[2][3] = 6

�S2[3] = C2[2] = 7 �C2[3] = �S2[3] + s2[2][3] = 9

�S3[3] = C3[2] = 10 �C3[3] = �S3[3] + s3[2][3] = 12

S1[3] = max(�C1[3], S2[2]) = 6 C1[3] = S1[3] + p1[3] = 7

S2[3] = max(C1[3], �C2[3], L3[2]) = 10 C2[3] = S2[3] + p2[3] = 11

S3[3] = max(C2[3], �C3[3]) = 12 C3[3] = �S3[3] + p3[3] = 14

L1[3] = S2[3] = 10 L2[3] = S3[3] = 12 L3[3] = C3[3] = 14

Speed-Up Method

Given a permutation π of n jobs to be scheduled on m ma-
chines, computing Cπ from scratch requires O(nm) times.
Now, assume two permutations π and π′ such that first n′
jobs are the same in both π and π′. Therefore, for both π
and π′, Ci,[k]s are the same for k ≤ n′. We need not calcu-
late these completion time points for π′, if those are already
known for π. We only need to compute the completion time
points for the subsequent n− n′ jobs in π′. This speedup is
important for time performance of a local search algorithm.
Local search algorithms typically evaluate a large number
of potential solutions before moving from the current solu-
tion to the next solution and these current and potential so-
lution permutations very often differ from each other by a
single insertion or swap move. Using such techniques, we

can speed up the makespan calculation significantly (up to
40-50% time saving), particularly in the large instances hav-
ing large numbers of jobs (Li, Wang, and Wu 2009).

Time Complexity

We now provide the following lemma to show the time com-
plexity of the proposed PFSP variant.

Lemma 1 Makespan minimisation of PSFPs with overla-
pable SDSTs and mixed RSB and RCb blocking constraints
are NP Hard when m > 4.

Proof: Consider the particular instance where SDSTs are
all set to zero. Thus, the RSb-RCb-SDST-PFSP problem is
transformed to an RSb-RCb-PFSP problem that is known to
be NP Hard when m>4 (Martinez et al. 2006).

Proposed Search Algorithm

For the proposed PFSP variant, we develop an effective
constraint-guided local search (CGLS) algorithm. Three
variants CGLS1, CGLS2, and CGLS3 of the proposed al-
gorithms are shown in Algorithm 1. We design a variable
neighbourhood descent (VND) method for local search in all
variants. For initial solution construction, we use two heuris-
tics NNEH and SNEH, which are developed based on the
NEH heuristic (Nawaz, Enscore, and Ham 1983). Moreover,
for CGLS3, we use an intensifying restart method IR. We
describe the NNEH, SNEH, IR and VND in details.

Algorithm 1: CGLS1 or CGLS2 or CGLS3
1 π∗ ← VND(NNEH() or SNEH() or SNEH())
2 while not timeout do
3 π ← VND(NNEH() or SNEH() or IR(π∗))
4 if Cπ < Cπ∗ then π∗ ← π // update best
5 return π∗ // best solution so far

Processing Times in Job Sorting for NNEH

NEH (Nawaz, Enscore, and Ham 1983) is a very well-known
O(n3m) greedy constructive heuristic for PFSP. Assuming
wj =

∑m
i=1 pij , NEH first sorts jobs on the non-increasing

order of wjs to obtain a permutation πo. Let πk denote a
permutation of k jobs and thus represent a partial solution.
Starting from π0, in each iteration k, NEH then obtains k+1
permutations πk+1 by inserting job [k] of πo in all positions
of πk. NEH then selects the πk+1 with the minimum Cπk+1

to be used in the next iteration k + 1.
Sometimes NEH when adapted to other PFSP variants

outperform the original NEH. One such NEH variant (let the
name be NEH-Raj) (Rajendran 1993) for typical PFSPs uses
the non-decreasing order of wj =

∑m
i=1(m − i + 1) × pij

to sort the jobs to obtain πo and thus gives more priori-
ties to jobs with smaller processing times on earlier ma-
chines than jobs with larger processing times. Another vari-
ant NEH-WPT (Wang, Pan, and Tasgetiren 2011) uses the
non-decreasing order of wj =

∑m
i=1 pij to sort the jobs in

PFSPs with RSb blocking constraints. The intuition is that
the jobs with higher total processing times may cause to
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Figure 2: Path relinking procedure using insertion.

block the successive jobs and to yield larger blocking times
than the jobs with less total processing times. Yet another
variant NNEH (Riahi et al. 2017) uses the non-decreasing
order of wj =

∑m
i=1[γ× (m− i+1)× pij +(1− γ)× pij ]

to sort the jobs in PFSPs with mixed blocking constraints.
Thus, NNEH combines NEH-Raj with NEH-WPT but is
shown to have performed the best when γ = 0.1 i.e. when
more weight is put on NEH-WPT than NEH-Raj.

For CGLS1, we use the NNEH. However, instead of using
just γ = 0.1, in each iteration of Algorithm 1, we use a ran-
domly generated γ. A random γ produces a different initial
solution in each iteration and ensures search diversity. Note
that this option does not use SDSTs in solution construction.

Setup Times in Job Sorting for SNEH

For CGLS2 and CGLS3, we develop SNEH to incorporate
SDSTs with NNEH. First, we define (sequence independent)
average setup time �sij =

∑n,j′ �=j
j′=1 (sijj′+sij′j)/(2n−2) for

job j on machine i. Then, we redefine wj =
∑m

i=1[β×�sij+
(1 − β) × pij ] and use the non-decreasing order of wjs to
sort the jobs. Notice that β is to balance the relative weight
of setup time and processing time associated with job j on
machine i. We prefer NEH-WPT to NEH-Raj in redefining
wj since NNEH performs better with γ = 0.1, meaning
NEH-WPT is more prominent than NEH-Raj. Like NEH-
WPT, We choose the non-decreasing order of wj because
scheduling jobs with higher wj will tend to delay schedul-
ing of subsequent jobs. We will later empirically study the
effect of β values, but for now, it is sufficient to mention that
no dominating β is observed and hence we choose a random
β value in each iteration of Algorithm 1.

Path Relinking in Intensifying Restart IR

For search diversity, CGLS1 and CGLS2 respectively use
NNEH and SNEH (with random γ and β) as restart in each
iteration. In these restart methods, there is no intensification
towards the best solution found so far. We design a new in-
tensifying restart method IR for CGLS3. We use the path
relinking procedure (Glover 1997) to get a combination of
the best solution found so far and a completely randomly
generated solution.

Path relinking is usually used in population based local
search algorithms to diversify the search. For the first time,
we use path relinking in a restarting strategy to achieve
intensification within the diversification process. Assume
πs = 〈2, 3, 5, 1, 4〉 and πt = 〈3, 4, 2, 1, 5〉 in Figure 2 are
starting and target solutions respectively. When compared
lexicographically, πs and πt differ in the first position. To
match at that position, we can remove 3 from πs and in-
sert before 2 and will thus get π1 = 〈3, 2, 5, 1, 4〉. Next, π1

and πt differ at the second position. To match at that posi-
tion, we can remove 4 from π1 and insert before 2 to ob-

tain π2 = 〈3, 4, 2, 5, 1〉. Then, π2 and πt differ at the fourth
position. To match at that position, we can remove 1 from
π2 and insert before 5 to obtain πt = 〈3, 4, 2, 5, 1〉. In this
way, the path relinking procedure shown in Algorithm 2 vis-
its the intermediate solutions that share properties with πs

and πt. Path relinking returns the intermediate solution with
the least makespan.

Algorithm 2: Path relinking using insertion
1 Let πs and πt be the starting and target solutions.
2 Cπ∗ = ∞ where π∗ is the best intermediate solution.
3 πm = πs // start from πs to visit intermediate solutions.
4 for k = 1 to n do

5 if πm and πt differ at position k then

6 Assume j = job [k] in the target solution πt.
7 Remove j from πm and insert at position k.
8 if Cπm < Cπ∗ then let π∗ = πm.
9 return π∗ as the output solution

Selection of πs and πt and the operator to be used (e.g.
insertion) affect the performance of path relinking. In popu-
lation based search, two solutions from the current popula-
tions are used. In this work, we use the best solution found
so far (hence intensifying) as πs because path relinking has
been observed to be performing better when starts from the
better solution (Ribeiro, Uchoa, and Werneck 2002). For πt,
a completely random solution is generated (hence diversify-
ing). For the operator, we could use swap instead of inser-
tion, but to keep the restart procedure somewhat consistent
with the insertion-based construction algorithms NNEH and
SNEH, we use insertion.

Constraint Guided Selection for VND

Local search moves from one solution to another in quest of
a better solution in each iteration. In this process, the neigh-
bourhood operators used to generate the potential solutions
from the current solution play a crucial role. Insertion and
swap operators have been used widely when solutions are
permutations e.g. in flowshops. In insertion, typically a ran-
domly selected job is removed from the current solution and
then reinserted in all possible positions to obtain the poten-
tial solutions. In swap, a randomly selected job is swapped
with all jobs in the current solution to obtain the potential
solutions. Notice that the job selection in these operators
is done mostly randomly e.g. in algorithms by (Riahi and
Kazemi 2016; Ruiz and Stützle 2008). In this paper, instead
of random selection, we propose a constraint-guided greedy
job selection approach for insertion and swap.

Algorithm 3 presents our proposed insertion procedure
GI. First, jobs are arranged in the non-increasing order of
the total blocking time each job caused. Under blocking
constraints, machines are blocked with the current jobs un-
til subsequent machines are available. We can associate this
blocking period of the machine to the job which it is cur-
rently holding. Given a solution π, each job [k] has the
total blocking B[k] =

∑m−1
i (R(i+1)[k] − Ci[k]) where

R(i+1)[k] = S(i+1)[k] if Bi = RSb or R(i+1)[k] = L(i+1)[k]

if Bi = RCb. According to our greedy heuristic, the job
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[k] that causes the most total blocking B[k] should be se-
lected for removal and reinsertion. Our motivation to do this
is to fix the most problematic part of the current solution.
For space constraints, we do not show the greedy swap GS,
random insert RI, and random swap RS procedures, since
these could be obvious given the pseudocode of GI.

Algorithm 3: Greedy Insertion (GI)
1 Let π be the current solution.
2 Let πb be the sequence of all jobs when arranged in the

non-increasing order of the total blocking time B[k] each
job [k] in the current solution π caused.

3 for k = 1 to n do

4 Let j be the job at the k position of πb.
5 Let π′ be the solution with the lowest makespan when

n potential solutions are obtained by removing job j
from π and then inserted into all possible positions of
π.

6 if π′ has a lower makespan than π
7 let π = π′ and go to Step 2 // first improvement

Notice that in our greedy insertion GI (and so is in GS,
RI, and RS), we use the first improvement strategy rather
than the best improvement one as we accept the first poten-
tial solution better than the current solution. This is to avoid
premature convergence of the search (Resende and Ribeiro
2014) and also to improve the time performance.

Given GI, GS, RI, and RS, we can use these neighbour-
hood operators one at a time or in a mixed way. In this
work, we use one of RI and GI rather than both at the same
time. Similarly, we use one of RS and GS. Also, we use the
variable neighbourhood descent (VND) (Mladenović and
Hansen 1997) algorithm shown in Algorithm 4 as our local
search. The VND algorithm uses one operator to improve
the solution and if fails then uses the next operator. Once an
improving solution is found, the first operator is used again.
In the experimental section, we will see that with N = 2
using GS as the first operator and GI as the second operator
yields the best performance.

Algorithm 4: Variable Neighbourhood Descent
1. Let π be the current solution and 〈N1, . . . NN 〉

be a sequence of neighbourhood operator procedures.

2. Let l = 1 // to denote operator Nl will be used.

3. While l ≤ N do // we use N to be 1 or 2.

(a) Find π′ as the best neighbouring solution (in terms of
makespan) of π when operator procedure Nl is used.

(b) If Cπ′ < Cπ then π = π′, l = 1 else l = l + 1.

4. Return π as the solution.

Experimental Results

For empirical evaluation, we use 480 instances generated
by (Ruiz, Maroto, and Alcaraz 2005). These instances are
based on the 120 PFSP instances by (Taillard 1993) and
adding four SDST scenarios for each instance. The 120

PFSP instances are made up of 12 groups each compris-
ing 10 instances of the same problem size. The problem
sizes for the groups in terms of n × m combinations are:
{20, 50, 100} × {5, 10, 20}, {200} × {10, 20} and {500 ×
20}. In those instances, the job processing times pijs are
uniformly distributed in the range of [1, 100). To add SD-
STs to the 120 instances, (Ruiz, Maroto, and Alcaraz 2005)
obtained four scenarios by generating sijj′ uniformly ran-
domly in the ranges of [1, 10), [1, 50), [1, 100) and [1, 125)
and named these scenarios as SDST10, SDST50, SDST100
and SDST125, respectively. These scenarios allow us to see
the effect of having SDSTs larger and smaller than process-
ing times. To further add blocking constraints, in this work,
we consider three scenarios: RSbOnly scenario where block-
ing constraints are all RSB, RCbOnly scenario where block-
ing constraints are all RCb, and RSb-RCb scenario where
RSb and RCb are used uniformly randomly. For each solver,
we run each instance-SDST-blocking scenario combination
5 times. Using a reference makespan C∗ (which will be
clearly defined later as needed) for each instance each run,
we compute RPD = 100 × (Cπ − C∗)/C∗ and then com-
pute average RPD (ARPD) for an instance over the 5 runs.
For space constraints, a further average of ARPDs is com-
puted over all 10 instances in each group or even over all
120 instances in each SDST-blocking scenario combination.

For all experiments, we use three different timouts of
τnm milliseconds where τ ∈ {30, 60, 90}. These time-
outs give more times to instances having larger n and m.
All algorithms are implemented in programming language
C and run on the same high performance computing cluster
Gowonda at Griffith University. Each node of the cluster is
equipped with Intel Xeon CPU E5-2670 processors @2.60
GHz, FDR 4x InfiniBand Interconnect, having system peak
performance 18,949.2 Gflops.

Effect of SNEH Parameter

SNEH algorithm is run with 11 different β values on RSb-
RCb blocking scenario. Table 1 shows the ARPDs over 120
instances in each SDST scenario where C∗ for each instance
is the minimum makespan found by any of these 11 settings.
Notice that β = 0 and 1 produce statistically (t test with
α = 0.05) significantly worse results than 0.1 ≤ β ≤ 0.9.
This means combining NEH-WPT and SDSTs is useful. The
average row in Table 1 shows β = 0.1 produces the best re-
sult, but when we look at each SDST scenarios and perform
statistical tests, no dominating β is observed. We therefore
select β randomly in each iteration of Algorithm 1. Since
SNEH is a constructive heuristic and we do not run any lo-
cal search, there is no timeout in this experiment.

Table 1: ARPD of SNEH with varying β values in all SDST
scenarios but only in RSb-RCb blocking scenario

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SDST10 0.53 0.59 0.62 0.60 0.65 0.62 0.59 0.61 0.59 0.58 0.97
SDST50 0.79 0.66 0.71 0.65 0.68 0.73 0.69 0.65 0.67 0.68 1.03
SDST100 5.07 0.84 0.84 0.79 0.76 0.84 0.78 0.77 0.75 0.83 0.97
SDST125 5.38 0.85 0.87 0.90 0.86 0.84 0.83 0.93 0.85 0.97 1.07
Average 2.35 0.61 0.65 0.65 0.67 0.71 0.70 0.73 0.73 0.79 1.01
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Table 2: ARPDs of SNEH with β = 0.1, and of NNEH with
γ = 0.1 in all SDSTs but only in RSb-RCb scenario.

SDST10 SDST50 SDST100 SDST125
Instance SNEH NNEH SNEH NNEH SNEH NNEH SNEH NNEH

20×5 0.48 0.32 0.28 1.55 0.00 3.62 0.00 7.45
20×10 1.09 0.33 0.47 0.16 0.00 2.18 0.00 3.17
20×20 0.50 0.47 0.82 0.52 0.31 0.93 0.12 1.42
50×5 0.06 0.52 0.06 1.29 0.00 4.93 0.00 7.82

50×10 0.18 0.46 0.01 1.01 0.00 4.41 0.00 6.22
50×20 0.38 0.43 0.05 0.52 0.00 2.86 0.00 4.81
100×5 0.08 0.38 0.00 2.16 0.00 6.49 0.00 10.27

100×10 0.16 0.42 0.00 1.25 0.00 4.00 0.00 6.17
100×20 0.09 0.26 0.00 0.97 0.00 3.77 0.00 5.18
200×10 0.07 0.35 0.00 2.20 0.00 6.05 0.00 8.21
200×20 0.05 0.40 0.00 1.32 0.00 4.32 0.00 5.98
500×20 0.01 0.33 0.00 2.03 0.00 5.10 0.00 7.15
Average 0.26 0.39 0.14 1.25 0.03 4.05 0.01 6.15

Table 3: Potential neighbourhood sequences
Case 1 2 3 4 5 6 7 8 9 10 11 12
N1 GI GS RI RS GI GI GS GS RI RI RS RS
N2 – – – – GS RS GI RI GS RS GI RI

Knowing the best performance of NNEH with γ = 0.1
and that of SNEH with β = 0.1, in Table 2, we com-
pare these on RSb-RCb blocking scenarios on each instance
group and in each SDST scenarios. Here, C∗ is the mini-
mum makespan obtained from the results of the two settings
compared. We see that in all SDST scenarios, SNEH outper-
forms NNEH, specially on large instances (when n ≥ 50).
However, t-tests with α = 0.05 confirms the better per-
formance of SNEH in SDST50, SDST100, and SDST125
scenarios. SNEH designed to consider SDSTs is not signifi-
cantly better in SDST10 scenario, because of the relative dis-
tribution of the processing times [1, 100) and SDSTs [1, 10).

Effect of Variable Neighbourhood

Performance of the VND in Algorithm 4 depends on
〈N1, . . . , NN 〉 the sequence of neighbourhood operators
used. Given GI, GS, RI, RS, we consider N = 1 or 2 be-
cause we take at most one of two insertions GI and RI, and
at most one of two swaps GS and RS. This gives us 12 possi-
ble neighbourhood operator sequences as shown in Table 3.

In these experiments, we consider the first construction
option with NNEH as our baseline case and use τ = 30
in obtaining the timeout periods. The reference makespan
C∗ is the lowest makespan obtained after all experiments
performed for this paper (including solver comparison stage
with τ = 90). Table 4 shows the results for all 12 neigh-
bourhood sequences. The ARPDs are computed from the 40
instances (10×4 SDST scenarios) in each group in RSb-RCb
blocking scenario. We see that cases 1-4 have the worst re-
sults. This indicates that using two neighbourhood operators
increase the performance. Moreover, cases 1-2 being better
than cases 3-4 confirms the efficiency of greedy job selection
over random job selection. Cases 10 and 12 comprises op-
erators both having randomness and are found to producing
much worse results. Case 7 obtains the best result where the

Table 4: Effect of variable neighbourhood.
Instances Neighbourhood structure cases

n×m 1 2 3 4 5 6 7 8 9 10 11 12
20×5 0.42 0.45 0.46 0.45 0.29 0.33 0.26 0.31 0.32 0.37 0.33 0.38
20×10 0.62 0.66 0.77 0.88 0.43 0.48 0.39 0.49 0.49 0.58 0.49 0.54
20×20 0.55 0.63 0.68 0.60 0.36 0.42 0.34 0.44 0.43 0.50 0.45 0.47
50×5 1.94 1.93 2.22 2.28 1.14 1.26 1.14 1.42 1.42 1.83 1.53 1.61

50×10 1.65 1.58 1.72 2.09 1.08 1.25 0.99 1.28 1.19 1.47 1.35 1.48
100×5 1.16 1.34 1.27 1.28 0.79 0.87 0.72 0.83 0.92 1.08 0.98 0.98

100×10 1.49 1.59 1.65 2.02 1.01 1.01 0.91 1.05 1.11 1.29 1.19 1.31
100×20 2.00 2.27 2.41 2.54 1.25 1.38 1.24 1.50 1.55 1.87 1.71 1.82
200×10 1.17 1.34 1.26 1.62 0.73 0.78 0.71 0.91 0.87 1.01 0.89 0.94
200×20 2.08 2.24 2.15 2.79 1.38 1.48 1.27 1.56 1.58 1.93 1.58 1.70
500×20 0.86 0.98 0.91 0.93 0.59 0.66 0.53 0.64 0.69 0.82 0.68 0.72

avg 1.33 1.43 1.49 1.65 0.87 0.96 0.81 0.99 1.01 1.21 1.06 1.14

neighbourhood operator sequence is 〈GS, GI〉 and we use
this as our final setting. Statistical significance of the perfor-
mance differences is confirmed by t tests with α = 0.05. Se-
quence 〈GS, GI〉 is better than sequence 〈GI, GS〉 because
insertion in construction and swap as the first operator in
VND perhaps create a better supplementary combination in
terms of the search space explored. We observed that for
〈GS, GI〉, on an average against every 100 GS invocation in
the VND algorithm, GI is invoked about 20-30 times.

Comparison of Solvers

We compare our three solver variants CGLS1 (NNEH with
random γ and VND with 〈GS,GI〉), CGLS2 (SNEH with
random β and VND with 〈GS,GI〉) and CGLS3 (SNEH
with random β at the beginning and then PathRelinking
based intensifying restart, and VND with 〈GS,GI〉). Since
there exists no algorithm for the proposed PFSP variant,
we adapt state-of-the-art local search algorithms for related
problems and compare our solvers with those. In partic-
ular, we adapted Iterated Greedy Algorithm (IGA) (Ruiz
and Stützle 2008) for PFSPs with SDSTs, and Greedy Ran-
domised Adaptive Search Procedure (GRASP) (Ribas and
Companys 2015) for PFSPs with RSb. Adaptation requires
only using the model and the makespan computation while
components of the search algorithms remain the same.

IGA: This is a single solution based local search algo-
rithm (Ruiz and Stützle 2008) that uses a greedy perturbation
instead of a random one. This algorithm uses NEH algorithm
as the initial solution, a random insertion based local search
and a simulated annealing based acceptance criterion.

GRASP: This algorithm (Ribas and Companys 2015)
uses two heuristics in the construction phase and in the local
search phase uses a random insertion and a random swap.

Table 5 shows the ARPD values over 120 instances for
each SDST-blocking scenario combinations. We see that
CGLS3 outperforms all other solvers in all but 2 cases.

To confirm the statistical significance of the results in Ta-
ble 5, we show the 99% confidence interval plot in Figure 3.
Overlapping of confidence intervals for two methods means
there is no significant difference between the two methods.
As can be seen, CGLS3 is significantly better than the other
algorithms. Moreover, CGLS2 that uses SDSTs in SNEH
significantly outperforms other algorithms except CGLS3.
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Figure 3: Comparison using 99% confidence interval.

Table 5: ARPD of algorithms for different scenarios.
Blocking SDST τ Algorithm
scenario scenario IGA GRASP CGLS1 CGLS2 CGLS3

RSb-RCb

SDST10
30 0.67 0.82 0.68 0.59 0.53

60 0.48 0.57 0.50 0.49 0.39

90 0.34 0.42 0.36 0.40 0.28

SDST50
30 0.70 0.93 0.79 0.61 0.59

60 0.51 0.65 0.57 0.50 0.42

90 0.37 0.49 0.42 0.41 0.31

SDST100
30 0.87 1.14 1.00 0.74 0.70

60 0.67 0.83 0.73 0.63 0.50

90 0.50 0.60 0.54 0.51 0.37

SDST125
30 1.15 1.39 1.24 0.87 0.79

60 0.79 1.03 0.89 0.70 0.59

90 0.55 0.75 0.65 0.56 0.43

RSb

SDST10
30 0.67 0.93 0.71 0.68 0.48

60 0.49 0.68 0.52 0.52 0.35

90 0.36 0.49 0.39 0.38 0.26

SDST50
30 0.81 1.17 0.95 0.61 0.61

60 0.60 0.83 0.71 0.57 0.44

90 0.44 0.62 0.52 0.46 0.31

SDST100
30 1.09 1.47 1.14 0.81 0.76

60 0.79 1.05 0.87 0.64 0.56

90 0.55 0.77 0.63 0.54 0.39

SDST125
30 1.31 1.88 1.51 0.96 0.94

60 1.00 1.34 1.09 0.80 0.69

90 0.71 0.98 0.78 0.65 0.50

RCb

SDST10
30 0.76 0.88 0.72 0.54 0.50

60 0.51 0.58 0.47 0.43 0.33

90 0.34 0.39 0.32 0.36 0.22

SDST50
30 0.94 1.18 0.91 0.63 0.73
60 0.63 0.80 0.60 0.51 0.49

90 0.42 0.52 0.42 0.41 0.32

SDST100
30 1.34 1.36 1.27 0.88 0.98
60 0.87 0.93 0.86 0.68 0.64

90 0.58 0.62 0.59 0.56 0.42

SDST125
30 1.47 1.53 1.54 0.93 0.92

60 0.95 0.98 0.99 0.79 0.76

90 0.63 0.67 0.66 0.63 0.50

Figure 4 top shows the performance of the algorithms over
different timeouts. For space constraints, we only show three
representative cases. It is observed that each algorithm im-
proves with larger timeouts. Overall, CGLS3 achieves better
performance than other algorithms.

While so far we presented summarised results over groups
of instances, Figure 4 middle shows detailed results on each
of the 120 instances when RSb-RCb and SDST125 scenario
combination is used. Clearly CGLS3 significantly outper-
forms other algorithms. However, ARPDs of all solvers in-
creases in the large problem instances, particularly when
n ≥ 50. For space constraints, we do not show such
instance-wise detailed results for other scenarios.

Since there is no lower bound for the studied problem, we
compare our results with some lower bounds of makespan
obtained by using related problems. When optimal values
are not known, lower (or upper) bounds are often obtained
by relaxing some constraints and solving the relaxed prob-
lems. Assuming no blocking constraints, we can transform
our proposed PFSP variant to the PFSP variant only with
SDSTs. Then, making further assumption that SDSTs are
all zero, we can obtain typical PFSPs. Given the 120 in-
stances by (Taillard 1993), unfortunately, no optimal solu-
tion is known either for PFSPs or for PFSPs with SDSTs.
Nevertheless, it is obvious that given a problem instance, op-
timal makespan for the typical PFSP version will be smaller
than the optimal makespan for the PFSP variant with SD-
STs, which will be smaller than the optimal makespan for
the PFSP variant with SDSTs and mixed blocking con-
straints. In the absence of optimal values for the mentioned
PFSP variants, we compare our results with the best known
makespan values of the typical PFSPs (Tasgetiren et al.
2017b) and PFSPs with SDSTs (Ruiz and Stützle 2008).
However, we note that these comparisons are just indica-
tive and not definitive. Figure 4 bottom shows these results.
Notice that the more the SDST periods the wider the gap be-
tween the best known makespans for typical PFSPs and that
for PFSPs with SDSTs; which is expected. Interestingly, the
more the SDST periods, the closer the gap between CGLS3
produced makespans for our proposed variant and the best
known makespan for PFSPs with SDSTs. Overlapping of
SDSTs and blocking times is behind this.

Related Work
Although the realistic nature, SDST-PFSP have not yet been
studied well. (Gupta and Darrow 1986) proposed heuristics
for only two machine problems while (Ruiz, Maroto, and Al-
caraz 2005) proposed genetic and memetic algorithms, and
(Ruiz and Stützle 2008) developed an insertion-based iter-
ated greedy search procedure using the well-known NEH-
based algorithm (Nawaz, Enscore, and Ham 1983) in ini-
tialisation, insertion operator in local search, and a greedy
strategy in perturbation. Recently, (Vanchipura, Sridharan,
and Babu 2014) proposed a variable neighbourhood descent
(VND) algorithm employing two different heuristics in ini-
tialisation while (Sioud and Gagné 2018) proposed an en-
hanced migrating bird optimization (MBO) algorithm. A
comprehensive review of scheduling research with setup
times has been provided by (Allahverdi 2015).
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Figure 4: Top: Sample performance of the algorithms over different timeouts; Middle: ARPDs of 120 PFSP instances with
SDST125 and RSb-RCb when τ = 90; Bottom: Comparison against lower bounds of makespan obtained from related problem.

For RSb-PFSP, a number of methods i.e. a differential
evolution algorithm (Wang et al. 2010), a GRASP algorithm
(Ribas and Companys 2015), and an iterated greedy algo-
rithm (Tasgetiren et al. 2017a) have been presented. On the
other hand, for RCb-PFSP, an integer linear programming
(ILP) model (Martinez de La Piedra 2005), an electromag-
netism like (EM) algorithm (Yuan and Sauer 2007), and a
genetic algorithm (Sauvey and Sauer 2012) have been found.

Recently, RSb-RCb-PFSP has attracted much attention.
For example, a genetic algorithm (Trabelsi, Sauvey, and
Sauer 2012), a bee colony algorithm (Khorramizadeh and
Riahi 2015), and a scatter search algorithm (Riahi et al.
2017) have been presented.

A very recent work by (Takano and Nagano 2017) pro-
posed a Mixed Integer Linear Programming (MILP) model
for PFSPs with SDSTs and only RSb constraints, and pre-
sented a branch-bound algorithm for small instances with at
most 10 machines and at most 20 jobs.

As we can see, flowshops with both overlapable SDSTs
and mixed RSb-RCb blocking constraints (or even flowshop
with both SDSTs and only RCb blocking) has not been stud-
ied yet, despite being a realistic problem. In this work, we
provide the computational model and propose constraint-
guided local search (CGLS) algorithms that embed the na-
ture of the constraints (SDST and blocking constraints) into
the search. This is one of the most logical steps, given the
proposed PFSP variant is NP Hard.

Conclusions

In this paper, we considered a permutation flowshop
scheduling problem (PFSP) with two simultaneous and real
constraints: sequence-dependent setup times (SDST) and
RSb-RCb blocking constraints. To the best of our knowl-
edge, this is the first attempt to model these two constraints,
and we described a computational model for makespan min-
imisation of the problem. We further developed constraint-
guided local search algorithms. We conducted a detailed ex-
periment with a total of 480 benchmark instances. The re-
sults show that the proposed algorithms significantly outper-
form adapted state-of-the-art methods for related problems.
We expect to extend this approach to more complex con-
straints for a wide range of real world production lines.
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