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University of Basel, Switzerland

{salome.eriksson,gabriele.roeger,malte.helmert}@unibas.ch

Abstract

While traditionally classical planning concentrated on finding
plans for solvable tasks, detecting unsolvable instances has
recently attracted increasing interest. To preclude wrong re-
sults, it is desirable that the planning system provides a certifi-
cate of unsolvability that can be independently verified. We
propose a rule-based proof system for unsolvability where a
proof establishes a knowledge base of verifiable basic state-
ments and applies a set of derivation rules to infer the unsolv-
ability of the task from these statements. We argue that this
approach is more flexible than a recent proposal of inductive
certificates of unsolvability and show how our proof system
can be used for a wide range of planning techniques.

Introduction

The classical planning problem is defined as finding a se-
quence of actions which reaches a goal state from a given
initial state, or to prove that such a sequence does not ex-
ist. Most current planning systems focus on how to find
plans as fast as possible, with little attention paid to proving
the non-existence of plans until recently. The Unsolvabil-
ity IPC (Muise and Lipovetzky 2016) was held in an effort
to remedy this and resulted in many interesting new tech-
niques such as dead-end potentials (Seipp et al. 2016) or an
incremental learning algorithm inspired by clause learning
for satisfiability problems (Steinmetz and Hoffmann 2017).

In the SAT community it is common practice that a solver
that identifies a formula as unsolvable can generate a proof
of unsolvability that can be verified independently by an-
other program. In our previous work (Eriksson, Röger, and
Helmert 2017) we introduced a similar notion of unsolv-
ability certificates for planning problems. These so-called
inductive certificates have several desirable properties: they
are complete in the sense that for every unsolvable task there
exists a certificate that certifies unsolvability; they are effi-
ciently verifiable in the sense that an independent verifier
can validate certificates in polynomial time in the certificate
size; and they are fairly general in the sense that a number of
commonly used planning techniques can be modified to gen-
erate certificates of the required form with polynomial over-
head. The list of supported planning algorithms includes
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blind search, symbolic search and heuristic search with cer-
tain heuristics.

However, these certificates also have undesirable proper-
ties. In particular, they are quite monolithic in the sense that
they contain no or little substructure. This makes them com-
plex to understand and reason about. For example, debug-
ging an algorithm that produces invalid certificates of this
form is quite difficult because it is hard to pinpoint a human-
understandable (in particular, reasonably-sized) reason for
invalidity. Most importantly, the certificates are not compo-
sitional. For example, while our previous approach could
create certificates of unsolvability for A∗ with merge-and-
shrink heuristics and for A∗ with the h2 heuristic, it could
not create certificates of unsolvability for A∗ with both of
these heuristics because the two heuristics require incom-
patible forms of representation.

In this paper we introduce computer-verifiable proofs of
unsolvability as a new, compositional form of unsolvabil-
ity certificates which addresses these shortcomings. Proofs
consist of basic statements that can be verified immediately
and derivation steps that use knowledge derived in previ-
ous proof steps to generate new knowledge. The approach
is compositional in the sense that different subproofs can
be easily combined, and it is easy to point out at which ex-
act step an invalid proof fails. Apart from theory, we also
provide an implementation of a proof verifier and proof-
generating variants of several planning algorithms from the
literature, including ones our previous approach cannot deal
with.

Background

We consider propositional STRIPS planning tasks (Fikes and
Nilsson 1971), which are given by a tuple Π = 〈V,A, I,G〉
consisting of a finite set of state variables V , a finite set of
actions A, the initial state I ⊆ V and the goal specification
G ⊆ V . We write the size of the representation of Π as ‖Π‖.

A state s ⊆ V is given by the variables that are true in s.
The set of all states is S(Π) = 2V . The set of goal states is
SG(Π) = {s ∈ S(Π) | G ⊆ s}.

An action a ∈ A is represented by a triple a =
〈pre(a), add(a), del(a)〉 with pre(a), add(a), del(a) ⊆ V .
It is applicable in state s if pre(a) ⊆ s, in which case the
resulting successor state is s[a] = (s \ del(a)) ∪ add(a).

For state s and action sequence π, applying π in s results
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in state s[π] defined by s[〈〉] = s and s[π′〈a〉] = s[π′][a].
(This requires that a is applicable in s[π′].) An s-plan for
state s is an action sequence π such that s[π] ∈ SG(Π). We
say that s-plan π traverses state s′ if s′ = s[π′] for some
prefix π′ of π. An I-plan is also just called a plan for Π.
The task is unsolvable if there is no I-plan.

For a set S′ ⊆ S(Π) of states and a set A′ ⊆ A of ac-
tions, the progression of S′ w.r.t. A′ is S′[A′] = {s[a] | s ∈
S′, a ∈ A′, a applicable in s}, containing all successors of
state in S′ via actions in A′. The regression of S′ w.r.t. A′
is [A′]S′ = {s | s[a] ∈ S′, a ∈ A′, a applicable in s}, con-
taining all predecessors of S′ via A′.

Proof System

A proof in the proposed proof system consists of two parts:
a collection of basic statements that need to be verified in-
dividually and a derivation based on these statements that
shows that the task is unsolvable. The derivation consists of
a sequence of derivation steps, which instantiate a prespeci-
fied set of derivation rules that are universally true and hence
do not need to be verified again. The verifier only needs to
confirm that the premises of all derivation steps have been
established and that the derivation rules have been instanti-
ated correctly.

We first introduce a useful set of derivation rules and the
form of basic statements they require. In the following sec-
tion, we discuss how to efficiently verify these statements.

Derivation Rules

Our proof system is based on the notion of dead states.
These are states that cannot be traversed by any plan.

Definition 1 (Dead state). A state s is dead if no plan tra-
verses s. A set of states is dead if all its elements are dead.

There are two reasons why a state might be dead: there is
no s-plan, or s is unreachable from the initial state I . If a
state s is both reachable from I and there exists an s-plan,
then it is possible to construct a plan that traverses s.

In general, it is PSPACE-complete to decide whether a
given state is dead because a planning task is solvable iff I
is not dead. But in principle, all planning systems that prove
a task unsolvable use some techniques that can be used to
argue that the initial state or the set of goal states are dead.
In the following, we identify rules that allow making this
underlying argumentation explicit for a wide range of tech-
niques. We first discuss and prove correctness of these rules
separately and then give an overview of all derivation rules.

The first three rules follow directly from the definition of
dead state sets as sets of dead states.

• ∅ is dead

• The union of dead state sets is dead.

• Subsets of dead state sets are dead.

The next rules define sufficient criteria for unsolvability
and will form the end of each derivation:

Theorem 1. If the initial state is dead or all goal states are
dead, then the task is unsolvable.

Proof. If the initial state is dead, no action sequence can be
a plan because every plan must traverse the initial state.

If all goal states are dead, no action sequence can be a
plan because every plan must traverse a goal state.

The following rules build the core of the proof system.
They identify state sets as dead that cannot be left except
via dead states or that cannot be reached from the outside,
except from dead states. For progression, we can state the
following rules:

Theorem 2. Let S be a set of states and S′ a dead set of
states such that all successors of states s ∈ S are in S or S′,
i.e., S[A] ⊆ S ∪ S′.

(i) If S ∩ SG(Π) is dead, then S is dead.

(ii) If I ∈ S, then S is dead.

Proof. For any plan π = 〈a1, . . . , an〉 traversing a state
from S we can show that the plan will never leave S again.
More formally, if I[〈a1, . . . , ai〉] ∈ S for some i ≤ n, then
I[〈a1, . . . , aj〉] ∈ S for all i ≤ j ≤ n.

For i = n we have nothing to show. Otherwise, consider
s = I[〈a1, . . . , ai+1〉]. From S[A] ⊆ S ∪ S′ we know that
s ∈ S ∪ S′. But since S′ is dead and s is part of a plan and
thus cannot be dead, we conclude that s ∈ S. Applying this
argument iteratively proves the claim.

(i) By contradiction: assume that S ∩ SG(Π) is dead and
S is not dead. Then a plan π traversing a state in S exists.
We have shown that I[π] ∈ S. Because π is a plan, we
also get that I[π] ∈ SG(Π) and that I[π] is not dead. This
contradicts the fact that S ∩ SG(Π) is dead.

(ii) From I ∈ S we know that no plan leaves S, and hence
s /∈ S cannot be traversed by a plan. Hence S is dead.

For regression, we can formulate similar rules:

Theorem 3. Let S be a set of states and S′ a dead set of
states such that all predecessors of states s ∈ S are in S or
S′, i.e., [A]S ⊆ S ∪ S′.

(i) If S ∩ SG(Π) is dead, then S is dead.
(ii) If I /∈ S, then S is dead.

Proof. Similarly to progression, we can argue that if a
plan π = 〈a1, . . . , an〉 traverses a state from S, it cannot
have traversed a state from S earlier, or more formally: if
I[〈a1, . . . , ai〉] ∈ S for some i ≤ n, then for all j ≤ i we
get I[〈a1, . . . , aj〉] ∈ S and in particular I[〈〉] = I ∈ S.

(i) If S ∩SG(Π) is dead, then all plans must end in a goal
state in S. With the above argument the plans traverse only
states from S, so S is dead.

(ii) If a plan traverses a state from S, then I is in S. As
I /∈ S, there cannot be such a plan, and hence S is dead.

The next rules describes a connection between progres-
sion and regression.

Theorem 4. S[A] ⊆ S′ iff [A]S′ ⊆ S.
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Proof. If S[A] ⊆ S′, then all transitions originating from a
state in S lead to a state in S′. This means that for all states
not in S′ (i.e., s ∈ S′) their predecessors cannot lie in S and
hence [A]S′ ⊆ S.

If [A]S′ ⊆ S, then all transitions leading to a state in S′

originate from a state in S. This means that for all states in
S, their successors must lie in S′ and hence S[A] ⊆ S′.

We are now ready to list all derivation rules. They in-
clude the basic properties of dead sets (D1–D3) and the rules
proved in Theorems 1–4 (D4–D11).

Definition 2. Proof system – derivation rules

D1 ∅ is dead.
D2 If S is dead and S′ is dead, then S ∪ S′ is dead.
D3 If S ⊆ S′ and S′ is dead, then S is dead.
D4 If {I} is dead, then the task is unsolvable.
D5 If SG(Π) is dead, then the task is unsolvable.
D6 If S[A] ⊆ S ∪S′, S′ is dead and S ∩SG(Π) is dead,

then S is dead.
D7 If S[A] ⊆ S ∪ S′, S′ is dead and {I} ⊆ S,

then S is dead.
D8 If [A]S ⊆ S ∪S′, S′ is dead and S ∩SG(Π) is dead,

then S is dead.
D9 If [A]S ⊆ S ∪ S′, S′ is dead and {I} ⊆ S,

then S is dead.
D10 If [A]S ⊆ S′, then S′[A] ⊆ S.

D11 If S[A] ⊆ S′, then [A]S′ ⊆ S.

The derivation rules serve as templates for derivation
steps used in a proof. Derivation steps are obtained by re-
placing the set placeholders (S, S′, S′′) in a rule by set ex-
pressions. A set expression can be a set variable (X , X ′
etc.), the constant sets ∅, {I} or SG(Π), or formed from set
expressions S and S′ by union (S∪S′), intersection (S∩S′),
complement (S), progression (S[A]) or regression ([A]S).

The knowledge base on which the rules operate consists
of atomic statements of the form “S ⊆ S′” or “S is dead”,
where S and S′ are set expressions. (We use {I} ⊆ S and
{I} ⊆ S in the rules above instead of the more natural I ∈ S
and I /∈ S to not require another form of atomic statement.)
A derivation step may be applied if all its premises have been
previously derived in the knowledge base. Applying it adds
its consequence to the knowledge base. Deriving the special
statement “the task is unsolvable” concludes the proof.

As is usual in proof calculi, applying a derivation rule is
a purely syntactic operation where the set expressions and
statements are not interpreted. For example, if a rule premise
requires the statement S[A] ⊆ S ∪ S′, it is not sufficient to
know S[A] ⊆ S′′ for some set S′′ that happens to contain
exactly the elements of S ∪ S′. The premise needs to be
derived precisely for the set expression S ∪S′. This way the
verification of derivation rules is a simple lookup with no
added complexity which might arise when interpreting set
expressions.

Basic Statements

In addition to applying derivation rules, a proof of unsolv-
ability needs some kind of initial knowledge base as a start-
ing point. (After all, none of the derivation rules depend on
the specific planning task in question, and of course unsolv-
ability cannot be proven without appealing to any properties
of the planning task.)

In the proposed proof system the initial knowledge base is
specified by introducing set variables to which specific sets
of states are assigned (using representations discussed in the
next section) and basic statements about these set variables
that need to be verified.

A proof then consists of two parts. The first part is an
initial knowledge base of basic statements, where set vari-
ables are interpreted according to their definition. The sec-
ond part is a derivation based solely on syntactic application
of derivation rules. In the derivation, set expressions are
seen as abstract expressions rather than concrete sets, and
the derivation steps must be ordered such that for each rule
application the premise has already been established before
(either by basic statements or earlier rule applications).

As mentioned before, our knowledge bases consist of
statements of the form “S ⊆ S′” and “S is dead”, where
S and S′ are set expressions. Because proofs should be ef-
ficiently verifiable, we only allow an efficiently verifiable
subset of these statements as basic statements. Our intent
here is to be minimalist and not include basic statements
that can easily be derived from other, “more basic” state-
ments. Specifically, we only allow basic statements of the
form S ⊆ S′, and these only for limited set expressions S
and S′. The following definition lists the permitted basic
statements, where X , X ′ and X ′′ are set variables and L
and L′ are atomic set term literals (set variables X , set con-
stants ∅, {I} or SG(Π), or the complements of set variables
or constants).

Definition 3. Proof system – basic statements

B1 L ⊆ L′

B2 X ⊆ X ′ ∪X ′′

B3 L ∩ SG(Π) ⊆ L′

B4 X[A] ⊆ X ∪ L

B5 [A]X ⊆ X ∪ L

Representation of State Sets

The actual representation of the sets that the set variables
refer to is important for two reasons. Firstly, we need
to be able to represent large sets compactly; otherwise,
polynomial-sized unsolvability proofs can only exist for
planning tasks that can be proven unsolvable by a form of
blind explicit-state search (progression or regression).

Secondly, we must be able to verify the basic statements
B1–B5 in polynomial time in the representation size of the
sets involved and the planning task, or else the overall veri-
fication algorithm will not be polynomial in its input.

Following our model from Eriksson et al. (2017), we use
restricted classes of logical formulas and formula-like struc-
tures to obtain compact set representations, where a formula
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ϕ over the state variables represents all states that are satis-
fying assignments for ϕ. Specifically, we consider the fol-
lowing four representations for state sets:

• explicit sets of states

• (reduced ordered) BDDs (Bryant 1985)

• Horn formulas (conjunctions of Horn clauses)

• 2CNF formulas (conjunctions of unary or binary clauses)

For example, to show that BDDs are a suitable representa-
tion for basic statements B2 (X ⊆ X ′ ∪X ′′), we must show
that if state sets X , X ′ and X ′′ are represented as BDDs,
then the test X ⊆ X ∪ X ′′ can be performed in polyno-
mial time in the representation size (number of nodes) of the
BDDs involved.

The results in this section can be generalized to other
forms of representations by making use of concepts from
the area of knowledge compilation (Darwiche and Marquis
2002), but for space reasons we focus on the four represen-
tations above in the following.

Homogeneous Representations

For statements B2–B5, we only permit homogeneous repre-
sentations, i.e., the different set variables involved in these
statements must be of the same representation. (For BDDs,
this also means that they must use the same variable order.)
To bridge between different representations, we permit mix-
ing different representations for B1, which we discuss later.

We first prove the following lemma:

Lemma 1. The following entailment queries for CNF for-
mulas can be answered in polynomial time (unless stated
otherwise, all formulas may be general CNF formulas):

(a) ϕ |= ϕ′, where ϕ is Horn or 2CNF
(b) ϕ |= ϕ′ ∨ ϕ′′, where ϕ is Horn or 2CNF
(c) ϕ |= ϕ′ ∨ ¬ϕ′′, where ϕ and ϕ′′ are Horn
(d) ϕ |= ϕ′ ∨ ¬ϕ′′, where ϕ and ϕ′′ are 2CNF

Proof. (a): We have ϕ |= ϕ′ iff ϕ |= c for all clauses c of ϕ′
iff ϕ∧¬c is unsatisfiable for all clauses c of ϕ′. This can be
tested in polynomial time because ϕ ∧ ¬c is a Horn/2CNF
formula if ϕ is a Horn/2CNF formula. (Note that ¬c is a
conjunction of literals and hence both Horn and 2CNF.)

(b): Transform ϕ′ ∨ ϕ′′ into a CNF formula. This can be
done in time O(‖ϕ′‖ · ‖ϕ′′‖) because ϕ′ ∨ ϕ′′ =

∧
i c

′
i ∨∧

j c
′′
j ≡ ∧

i

∧
j(c

′
i ∨ c′′j ). Then apply (a).

(c) + (d): We have ϕ |= ϕ′ ∨ ¬ϕ′′ iff ϕ ∧ ϕ′′ |= ϕ′. The
formula ϕ ∧ ϕ′′ is Horn/2CNF, so apply (a).

We are now ready to prove our results. We use symbols
like ϕ to refer to the set representations (explicit sets, BDDs,
Horn/2CNF formulas), which we also treat as logical formu-
las, and we use �ϕ� to refer to the represented set of states.

Explicit sets can be converted into BDDs in polynomial
time, so whenever an operation is efficiently possible with
BDDs, it is also efficiently possible with explicit sets.

Theorem 5. For homogeneous representations as explicit
sets, BDDs, Horn or 2CNF formulas, the statement

B2 �ϕ� ⊆ �ϕ′� ∪ �ϕ′′�

can be verified in polynomial time.

Proof. We need to test ϕ |= ϕ′ ∨ ϕ′′. For BDDs, this is
equivalent to testing that ϕ∧¬(ϕ′ ∨ϕ′′) is the empty BDD,
and all logical connectives and emptiness tests are polyno-
mial operations for BDDs. This also covers explicit sets. For
Horn and 2CNF, we apply Lemma 1.

The remaining statements are more complex because they
involve not just set variables but more general set term lit-
erals, which can include set constants (∅, {I}, SG(Π)) and
complements. However, all set constants can be represented
compactly as BDDs, Horn and 2CNF formulas, so it is suffi-
cient to cover set variables and complemented set variables.

Theorem 6. For homogeneous representations as explicit
sets, BDDs, Horn or 2CNF formulas, the statements

B3a �ϕ� ∩ SG(Π) ⊆ �ϕ′�

B3b �ϕ� ∩ SG(Π) ⊆ �ϕ′�

B3c �ϕ� ∩ SG(Π) ⊆ �ϕ′�

B3d �ϕ� ∩ SG(Π) ⊆ �ϕ′�

can be verified in polynomial time.

Proof. For BDDs (and hence also for explicit sets), all cases
are polynomial because they involve a bounded number of
Boolean operations and an emptiness test.

For Horn/2CNF, let γ be a formula describing the goal:
�γ� = SG(Π). Note that γ is Horn and 2CNF (it is a con-
junction of atoms). We must test ϕ∧ γ |= ϕ′ and the related
queries with ¬ϕ instead of ϕ and/or ¬ϕ′ instead of ϕ′.

(a): ϕ ∧ γ |= ϕ′ is an entailment test for a Horn/2CNF
formula (ϕ ∧ γ is Horn/2CNF) and hence polynomial.

(b): We have ¬ϕ∧γ |= ϕ′ iff ¬ϕ∧γ∧¬ϕ′ is unsatisfiable.
We can rewrite this formula as ¬ϕ∧¬ϕ′∧γ ≡ ¬(ϕ∨ϕ′)∧γ,
which is unsatisfiable iff γ |= ϕ ∨ ϕ′. This can be tested in
polynomial time by Lemma 1(b).

(c): ϕ∧γ |= ¬ϕ′ holds iff ϕ∧γ∧ϕ′ is unsatisfiable. This
is a Horn/2CNF formula, so polynomially testable.

(d): ¬ϕ ∧ γ |= ¬ϕ′ holds iff ϕ′ ∧ γ |= ϕ (contraposition
with background knowledge γ), so this reduces to (a).

We continue with the results for B4 and B5.

Theorem 7. For homogeneous representations as explicit
sets, BDDs, Horn or 2CNF formulas, the statements

B4a �ϕ�[A] ⊆ �ϕ� ∪ �ϕ′�

B4b �ϕ�[A] ⊆ �ϕ� ∪ �ϕ′�

B5a [A]�ϕ� ⊆ �ϕ� ∪ �ϕ′�

B5b [A]�ϕ� ⊆ �ϕ� ∪ �ϕ′�

can be verified in polynomial time.
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Proof. We can test the statements by individually testing
each action. For example, for (4a) we test �ϕ�[{a}] ⊆
�ϕ� ∪ �ϕ′� for all a ∈ A.

For (4a) and (4b), Theorem 4 of Eriksson et al. (2017)
describes how to express the test �ϕ�[{a}] ⊆ �ψ� as an en-
tailment test of the form α(ϕ, a) |= ψ, where α(ϕ, a) is a
BDD/Horn formula/2CNF formula if ϕ is and can be com-
puted in polynomial time. They do not consider an arbitrary
formula ψ, but the proof generalizes directly to this case.

It remains to test α(ϕ, a) |= ψ, where ψ = ϕ ∨ ϕ′ for
part (a) and ψ = ϕ ∨ ¬ϕ′ for part (b). This is possible in
polynomial time for Horn/2CNF formulas (Lemma 1) and
also for BDDs.

The same approach works for (5a) and (5b) with trivial
changes to the argument.

Bridging Representation Formalisms

To conclude this section, we consider the remaining basic
statement B1 of the form L ⊆ L′. This statement is some-
what different in that we allow to use different representa-
tions for L and L′ – for example, BDDs for L and Horn
formulas for L′. This freedom is important to permit proofs
where different subproofs need different representation for-
malisms for efficient reasoning.

Like for the previous rules, it is sufficient to consider the
cases where L and L′ are set variables or complemented set
variables (rather than constants or their complements).

Theorem 8. For homogeneous representations as explicit
sets, BDDs, Horn or 2CNF formulas, the statements

B1a �ϕ� ⊆ �ϕ′�

B1b �ϕ� ⊆ �ϕ′�

B1c �ϕ� ⊆ �ϕ′�

B1d �ϕ� ⊆ �ϕ′�

can be verified in polynomial time.
Moreover, B1a can also be verified in polynomial time for

all combinations of representations except those where ϕ′ is
represented as a BDD and ϕ is represented as a BDD with
another variable order, a Horn formula, or a 2CNF formula.

Proof. The homogeneous representation case is covered by
the special case of Theorem 6 where all states are goal states.

For the mixed cases of B1a, all cases where ϕ′ is a Horn
or 2CNF formula can be tested by testing separately for each
clause c of ϕ′ that ϕ |= c. All considered formalisms support
clausal entailment in polynomial time.

All cases where ϕ′ is an explicit set can be tested by us-
ing efficient incremental model enumeration algorithms: see
Bryant (1986) for BDDs and Dechter and Itai (1992) for
Horn and 2CNF.

The remaining permitted case is where ϕ is an explicit set
and ϕ′ is a BDD. For this it is sufficient to explicitly test that
all elements of �ϕ� are models of ϕ′.

We remark that it is mainly for simplicity and brevity that
we only allow mixed representations in the case B1a (i.e.,
without complemented variables). Mixed representations

could also be allowed in certain other cases. For example,
all cases of B1 where the right-hand side is the complement
of an explicitly represented set are easy to verify.

Relationship to Inductive Certificates

Having completed the presentation of the proposed proof
system, we now turn to its practical uses. Firstly, we com-
pare it to our previous approach of unsolvability certificates.

All unsolvability certificates in our previous approach are
based on inductive sets, which are sets S of states that are
closed under progression, i.e., S[A] ⊆ S. The most basic
version are inductive certificates.
Definition 4 (Inductive Certificate, Eriksson, Röger, and
Helmert 2017). An inductive certificate for a state s of task
Π is given by a set S ⊆ S(Π) of states such that

1. s ∈ S,
2. S ∩ SG(Π) = ∅, and
3. S is an inductive set.
An inductive certificate for the initial state I is also called

an inductive certificate for Π.
Inductive certificates for s prove that s is dead, and induc-

tive certificates for Π prove that Π is unsolvable. We now
show that these certificates can easily be transformed into
proofs in our proof system.
Theorem 9. Given an inductive certificate for state s, we
can construct a proof in the proof system that {s} is dead
in linear time. Given an inductive certificate for Π, we can
construct a proof that Π is unsolvable in linear time.

Proof. Let S be an inductive certificate for state s.
We define the sets Xs = {s} and XS = S and use the

basic statements (1): Xs ⊆ XS (B1), (2): XS ∩ SG(Π) ⊆ ∅
(B3) and (3): XS [A] ⊆ XS ∪ ∅ (B4).

Using D1 we derive (4): ∅ is dead. Using D3 with (2), (4)
we derive (5): XS ∩ SG(Π) is dead. Using D6 with (3), (4),
(5) we derive (6): XS is dead. Finally, using D3 with (1),
(6) we derive (7): Xs is dead, establishing that {s} is dead.

If s = I , we can use {I} in place of Xs in (1) and (7) and
use D4 with (7) to show that the task is unsolvable.

We remark that our previous work showed that induc-
tive certificates are complete (i.e., exist for every unsolvable
task), which also translates to our proof system:
Corollary 1. The proposed proof system is complete.

However, this does not mean that small certificates (or
short proofs) exist in all cases. Because “regular” inductive
certificates are often not compact, we previously also intro-
duced so-called r-disjunctive and r-conjunctive certificates,
where r ∈ N is a parameter. These cannot be (easily) con-
verted into proofs in our proof system. For example, one of
the mismatches is that such certificates allow case distinc-
tions for different actions where our proof system always
considers all actions together. In future work, it would be
interesting to refine our proof system to fully cover all these
certificates.

Note, though, that even without having a direct compila-
tion from r-disjunctive/r-conjunctive certificates, our proof
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system covers all planning approaches covered in our previ-
ous work and more, as we will see in the following section.
This is because the main reason why the advanced certifi-
cates are needed is due to a lack of compositionality in their
approach, a weakness that our proof system does not share.

Applications to Current Planning Systems
In this section we present how a variety of techniques for
proving unsolvability can be augmented to produce a proof
of unsolvability in our proof system with only polynomial
overhead. We focus on approaches that are not already cov-
ered by inductive certificates.

Heuristic Search with Multiple Heuristics

Our previous approach covers heuristic search with certain
heuristics, such as A∗ with the h2 heuristic (Haslum and
Geffner 2000) or A∗ with linear merge-and-shrink heuris-
tics (Helmert et al. 2014). However, it does not cover A∗

using both heuristics, as h2 requires Horn or 2CNF certifi-
cates and merge-and-shrink requires BDD certificates, and
the two cannot be combined. For similar reasons, the ap-
proach does not cover A∗ with two merge-and-shrink heuris-
tics based on different variable orders.

With the proposed proof system, we can combine infor-
mation from an arbitrary set of heuristics as long as for
each state where h(s) = ∞ according to some heuristic
h, we can produce a proof that {s} is dead. As seen in
the previous section, this is (for example) the case when-
ever there exists an inductive certificate for s. We showed
in our previous work that compact certificates can be gen-
erated for linear merge-and-shrink heuristics (Helmert et al.
2014), PDB heuristics (Edelkamp 2001), delete relaxation
heuristics (Bonet and Geffner 2001; Hoffmann and Nebel
2001), the hm critical-path heuristics (Haslum and Geffner
2000) and landmark heuristics based on delete relaxation
(Helmert and Domshlak 2009) or the Πm compilation (Key-
der, Richter, and Helmert 2010). Below, we extend this
result to the hC critical-path heuristics that generalize hm

(Keyder, Hoffmann, and Haslum 2014). Here, we show
how information from multiple heuristics can be combined
to form an overall proof of unsolvability.

We describe a simple polynomial algorithm that produces
a proof. More efficient algorithms are possible. Let E be
the set of states expanded during search, which implies I ∈
E (except in the easy case where the initial state is already
pruned by a heuristic). Let D = {d1, . . . , dn} be the set
of successors of expanded states that were detected as dead-
ends by some heuristic. For the search algorithm to have
terminated without finding a solution, we must have E[A] ⊆
E ∪ D and E ∩ SG(Π) = ∅. We assume that we have
already proved that the singleton sets D1 = {d1}, . . . , Dn =
{dn} are dead, e.g., using inductive certificates as described
above. We use an explicit set representation for the sets Di

and for the set E.
Next, we define explicit sets C1 = {d1}, C2 = {d1, d2},

. . . , Cn = {d1, . . . , dn} and add the basic statements C1 ⊆
D1 (B1), C2 ⊆ C1 ∪D2 (B2), . . . , Cn ⊆ Cn−1 ∪Dn (B2).
We prove that all sets Ci are dead by using D3 for C1 and D2
for all other Ci. In particular, we obtain (A) “Cn is dead”.

We prove (B) “E∩SG(Π) is dead” via the basic statement
E ∩ SG(Π) ⊆ ∅ (B3) and a derivation using D1 and D3.

We add (C) “E[A] ⊆ E ∪ Cn” as a basic statement (B4).
Using (C), (A), (B) in D6, we obtain that E is dead.
From there, using a basic statement {I} ⊆ E, we derive

that {I} is dead using D3 and conclude that the task is un-
solvable using D4.

Clause-Learning State-Space Search

Steinmetz and Hoffmann (2016; 2017) describe a search al-
gorithm built upon the hC heuristic family where the heuris-
tic is incrementally improved to detect more dead-ends. We
focus on the use of the algorithm for proving unsolvability.

The algorithm can be run with or without an early termi-
nation option. Without this option, the algorithm guarantees
hC(I) = ∞ for the final heuristic. With the option, the al-
gorithm generates a depth-first search space where states are
pruned by different (increasingly stronger) variants of the
hC heuristic. Both cases are covered by our proof system
via our general argument for heuristic search with (one or
multiple) heuristics provided that we can prove that states
with hC(s) = ∞ are dead. We show that such states have
an inductive certificate that can be represented as a Horn for-
mula, from which the result follows with Theorem 9.

The heuristic hC is parameterized by a set C of conjunc-
tions, where each conjunction is a set of state variables (Key-
der, Hoffmann, and Haslum 2014; Steinmetz and Hoffmann
2017). For the following argument, it is useful to consider
hC as a heuristic with two arguments, where hC(s,G′) es-
timates the distance from state s to (sub-)goal G′. When
viewed in this way, hC is admissible and consistent in both
arguments, w.r.t. progression for s and regression for G′.

For a given state s, hC is based on admissible and consis-
tent distance estimates d(s, c) for reaching each conjunction
c ∈ C, setting hC(s,G′) = maxc∈C,c⊆G′ d(s, c).

Consider a state s with hC(s) = hC(s,G) = ∞. Let
C∞(s) = {c ∈ C | d(s, c) = ∞}. Let S = {s′ ∈ S(Π) |
c �⊆ s′ for all c ∈ C∞(s)}, i.e., S is the set of states that
hC considers reachable from s. S can be represented by the
Horn formula

∧
c∈C∞(s)

∨
v∈c ¬v.

We show that S is an inductive certificate for s. Firstly, we
have s ∈ S because conjunctions considered unreachable
from s cannot be true in s (due to the admissibility of hC).
Secondly, we have S ∩ SG(Π) = ∅: because hC(s) = ∞,
there is a goal conjunction c ⊆ G in C∞(s), and this con-
junction must be present in all goal states. Finally, we have
S[A] ⊆ S by contradiction: otherwise we could transition
from a state considered reachable from s to a state consid-
ered unreachable from s, which violates the consistency of
hC in the regression space.

Iterative Dead Pairs Calculation

Alcázar and Torralba (2015) describe an algorithm which
finds pairs of SAS+ facts {p, q} such that any state satisfying
p ∧ q is dead. In the STRIPS setting, the most faithful adap-
tation of the algorithm considers pairs of literals, i.e., p and
q can be state variables or negated state variables. Such fact
pairs are sometimes called “forward/backward mutexes”,
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but since they are not mutexes in the strict sense, we call
them dead pairs instead. A dead pair set D is a set of dead
pairs. A state is consistent with D if it contains no pair in D;
otherwise it is pruned by D. Pruned states are dead.

The algorithm by Alcázar and Torralba alternatingly per-
forms forward and backward steps. The k-th step computes
a dead pair set Dk, exploiting that Dk−1 is already a known
dead pair set (beginning with D0 = ∅). If the k-th itera-
tion is forward, the algorithm performs an h2-style reacha-
bility analysis using Dk−1 as background knowledge, i.e.,
ignoring states pruned by Dk−1. The backward iterations
are similar, but using a backward h2-style analysis.

In a forward step, the new dead pair set Dk is the
(uniquely defined) maximal set of pairs such that: (a) if I
is consistent with Dk−1, then I is consistent with Dk, and
(b) for all transitions s → s′ where s is consistent with Dk

and s′ is consistent with Dk−1, s′ is consistent with Dk.
This characterization is not apparent from the description by
Alcázar and Torralba, but it follows directly from the de-
scription of Rintanen’s (2008) invariant synthesis algorithm,
which is equivalent to h2. Note that in a STRIPS setting
the first forward iteration will find all mutex information en-
coded in the multivalued variables of a SAS+task.

Similarly, in a backward step, the new dead pair set Dk

is the (uniquely defined) maximal set of pairs such that: (a’)
all goal states consistent with Dk−1 are consistent with Dk,
and (b’) for all transitions s → s′ where s′ is consistent with
Dk and s is consistent with Dk−1, s is consistent with Dk.

Based on these characterizations, we can construct a proof
in our proof system that all states pruned by Dk are dead.
Let Sk be the set of states consistent with Dk, which can
be described by the 2CNF formula

∧
{�1,�2}∈Dk

(�1 ∨ �2),
where � denotes the complement of the literal �. We prove
that all sets Sk are dead. For k = 0, this is easily proved
from S0 ⊆ ∅ (B1) using D1 and D3.

For k > 0, we have already proved (1): Sk−1 is dead. In
a forward step, we can assume I /∈ Sk−1 or else we can
already prove unsolvability. Hence we can use the basic
statement (2): {I} ⊆ Sk (B1). From (b) we get the basic
statement (3): Sk[A] ⊆ Sk ∪ Sk−1 (B4). Using (3), (1), (2)
in D7, we derive that Sk is dead as required.

In a backward step, (a’) can be rephrased as “all goal
states not consistent with Dk are not consistent with Dk−1”,
yielding the basic statement: Sk ∩ SG(Π) ⊆ Sk−1 (B3),
which together with (1) proves (2’): Sk ∩ SG(Π) is dead
(D3). From (b’) we obtain the basic statement (3’): [A]Sk ⊆
Sk ∪ Sk−1 (B5). Using (3’), (1), (2’) in D8, we derive that
Sk is dead as required.

In summary, we can generate a compact proof in our proof
system that all states that are prunable according to the itera-
tive dead pairs algorithm are dead. Using D3, it is also easy
to extract fine-grained results of the form “All states satis-
fying �1 ∧ �2 are dead” for each dead pair {�1, �2}, which
can be converted to representations other than 2CNF (e.g.,
BDDs or Horn clauses) and used in a larger overall proof.
For example, it is not difficult to augment a proof of unsolv-
ability for explicit search to include pruning of states that
satisfy a dead pair. We conjecture that it is also possible to

extend proofs of unsolvability for certain heuristics to take
such dead pairs into account as in constrained abstraction
(Haslum, Bonet, and Geffner 2005).

Experiments

To test our proof system, we implemented a stand-alone
proof verifier and added generation of proofs to the im-
plementations of A∗ search, linear hM&S, hmax and h2 in
Fast Downward (Helmert 2006) and to the hC-based clause-
learning algorithm by Steinmetz and Hoffmann (2017) for
the setting without early termination, which generates a set
C of conjunctions with hC(I) = ∞. Both the verifier and
the proof-generating planning algorithms are publicly avail-
able.1

We also ran all planners in baseline versions without proof
generation to measure the overhead of certification. We used
time limits of 30 minutes for the planner and 4 hours for the
verifier and memory limits of 2 GiB for both. Where appli-
cable, we also tested the inductive certificate approach from
our previous work with the same limits. All experiments
are run on the same benchmark set of unsolvable planning
tasks as was used in Eriksson et al. (2017), which includes
the unsolvable tasks of the Unsolvability IPC. Detailed re-
sults from these experiments and the used benchmarks are
publicly available.2.

Table 1 shows coverage results for the tested configura-
tions, and Figure 1 shows some details on (1) planner run-
time with and without proof generation, (2) verifier runtime
as a function of input (proof) size; and (3) a comparison
to the inductive certificate approach w.r.t. certifying planner
runtime and certificate size.

Although our proof-based approach often required more
memory than the inductive certificate approach when gener-
ating proofs3, it succeeded within the given limits in more
cases. For the planning algorithms not covered by inductive
certificates, generation succeeded in almost all cases. For all
configurations almost all created certificates could be veri-
fied within the limits.

Aside from one task for DFS-CL verification failed ex-
clusively due to the time limit. The relatively low memory
usage is due to the fact that we discard formulas when we do
not need them anymore and highlights an advantage of the
composability of our approach.

The detailed results in Figure 1 (bottom) emphasize the
favorable comparison to our previous approach. For hmax

the proof-based certifying planner is an order of magnitude
faster on more challenging tasks, while for hM&S the two
are comparable. In terms of certificate size, there is little
difference for hmax, but the proof-based hM&S certificates are
often much smaller than the inductive ones. In one extreme
case, the size difference is 60 KiB vs. 19.2 GiB.

One interesting outcome of the experiment was that ini-
tially, certificate validation for the hC-based clause learning
approach showed that in two domains the generated proofs

1https://doi.org/10.5281/zenodo.1196473
2https://doi.org/10.5281/zenodo.1196476
3We suspect that building a BDD of all expanded states is the

main reason for the higher memory consumption.
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FD-hmax FD-hM&S FD-h2 FD-max(hM&S, hm) DFS-CL
base cert. ver. base cert. ver. base cert. ver. base cert. ver. base cert. ver.

3unsat (30) 15 10 (10) 10 (10) 15 10 (10) 10 (10) 5 5 5 5 5 5 5 5 5
bag-barman (20) 8 8 (8) 8 (4) 8 8 (8) 8 (4) 0 0 0 0 0 0 0 0 0
bag-gripper (25) 2 2 (2) 1 (1) 2 2 (2) 1 (1) 0 0 0 0 0 0 0 0 0
bag-transport (29) 6 6 (6) 6 (4) 7 6 (6) 6 (4) 15 15 15 8 8 8 2 2 2
bottleneck (25) 20 17 (15) 17 (15) 10 9 (8) 9 (7) 11 11 11 11 11 11 9 9 9
cave-diving (25) 7 6 (5) 6 (5) 7 7 (7) 7 (6) 2 2 2 2 2 2 6 6 6
chessboard-pebbling (23) 5 4 (3) 4 (3) 5 5 (5) 5 (4) 2 2 2 2 2 2 2 2 2
diagnosis (13) 5 5 (4) 5 (4) 4 1 (1) 1 (1) 2 2 2 2 2 2 8 8 7
document-transfer (20) 7 6 (5) 6 (5) 12 10 (10) 5 (5) 2 1 1 8 7 3 5 5 4
mystery (9) 2 1 (0) 1 (0) 2 1 (2) 1 (1) 8 8 8 8 8 8 7 7 7
nomystery (150+24) 54 33 (20) 33 (17) 54 41 (47) 40 (33) 44 40 40 52 48 48 137 137 137
over-rovers (150+20) 14 11 (8) 11 (8) 25 24 (24) 24 (20) 66 66 66 70 70 70 154 155 155
over-tpp (25+30) 22 15 (10) 15 (10) 35 23 (26) 23 (24) 9 8 8 14 14 14 32 32 31
pegsol (24) 24 24 (20) 24 (20) 24 24 (24) 24 (24) 14 14 14 14 14 14 14 14 14
pegsol-row5 (15) 5 5 (4) 5 (4) 5 5 (5) 5 (4) 3 3 3 3 3 3 4 4 4
sliding-tiles (20) 10 10 (10) 10 (10) 10 10 (10) 10 (10) 0 0 0 0 0 0 0 0 0
tetris (20) 5 5 (5) 5 (5) 5 5 (5) 5 (5) 0 0 0 5 5 5 0 0 0
total (697) 211 168 (135) 167 (125) 230 191 (200) 184 (163) 183 177 177 204 199 195 385 386 383

Table 1: Completed tasks by domain: base is the base planner, cert. the certifying planner with proof generation and ver. the
verifier. For hmax and hM&S, the numbers in parentheses are for the inductive certificates of Eriksson et al. (2017).
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Figure 1: Detailed results. Top: runtime overhead of proof generation (left) and runtime of verifier (right). Bottom: comparison
of proof certificates vs. inductive certificate regarding certifying planner runtime (left) and certificate size (right).
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were invalid. On closer inspection, it turned out that the im-
plementation of the algorithm does not actually compute hC

as defined in the paper by Steinmetz and Hoffmann (2017)
but rather a stronger variant of the heuristic augmented by
mutexes. Adding the mutex pairs to the set of conjunctions
C addressed this issue, and the results shown here are for
these proofs. We report this anecdote here because we be-
lieve it highlights the perils of accepting a claim of unsolv-
ability at face value and showcases the usefulness of inde-
pendent validation.

Conclusion

We introduced a proof system for unsolvable planning tasks
that can efficiently capture the arguments for unsolvability
implicit in a variety of planning techniques. We also im-
plemented a verifier for proofs expressed in our proof sys-
tems and developed certifying variants of several planning
algorithm implementations based on Fast Downward and the
clause-learning approach of Steinmetz and Hoffmann.

Compared to the inductive certificates suggested in our
earlier work, the main advantage of the proof system is that it
is compositional and can hence easily integrate information
from different sources.

We do not believe that the proof system is the finished
product: in future work, we would like to extend its applica-
bility to further planning techniques, and this will likely re-
quire extending it by further representation formalisms, ba-
sic statements, or derivation rules. This notwithstanding, we
believe that the basic approach underlying the proof system
is robust enough to be applied much more widely.

Acknowledgments

This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications”.

References
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