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Abstract

This paper describes how explicit resource reasoning is added
within an existing temporal planning framework that uses
timelines as plan representation. The work is grounded on a
recent formalization of timeline-based planning that here is
extended to model and reason over resources. The formal ac-
count is then fully implemented as an extension of the PLAT-
INUM planner and tested to demonstrate its new capabilities.

Introduction

Planning and Scheduling (P&S) address the same prob-
lem focusing on two different aspects. Planning concerns
the synthesis of actions an agent must perform to achieve
some objectives (which actions to perform). Scheduling con-
cerns the sequencing of a set of known actions in order
to satisfy some temporal and/or resource requirement con-
straints (when to perform actions). Very often in the litera-
ture the two processes are considered as separate and dis-
tinct phases of a solving process. Some planning frame-
works (Ghallab and Laruelle 1994; Barreiro et al. 2012;
Fratini et al. 2011) have proposed their integration in a uni-
fied solving process. Under such a perspective, they are part
of the same solving mechanism and therefore an agent can
interleave P&S decisions during plan generation. Some-
how for quite some time such a capability has been pur-
sued as key for adapting planners behavior to the features
of different real-world scenarios and generate more effec-
tive solutions. Despite several interesting results a clean uni-
form management of P&S is still to be achieved, especially
with respect to the management of reservoir resources. This
work extends some recent formal results on timeline-based
planning (Cialdea Mayer, Orlandini, and Umbrico 2016;
Umbrico, Orlandini, and Cialdea Mayer 2015) and pur-
sues the integrated management of discrete and reservoir re-
sources in the public domain temporal planner called PLAT-
INUM (Umbrico et al. 2017). This work provides the fol-
lowing contributions: (a) a formal definition of resource
management problem consistent with (Cialdea Mayer, Or-
landini, and Umbrico 2016) and (b) the implemented coun-
terpart of the resource management formalization as an ex-
tension of PLATINUM. An experimental analysis is re-
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ported and discussed in order to show how PLATINUM
works with resources. A final section completes the paper
by identifying key directions for future improvements.

The Theoretical Standpoint

This section extends the formal framework presented in
(Cialdea Mayer, Orlandini, and Umbrico 2016) to include
the definition of resources and related constraints. Such an
extension amalgamates concepts consistent with previous
works like (Drabble and Tate 1994; Cesta and Stella 1997;
Cesta, Oddi, and Smith 1998; Laborie 2003). The considered
class of resources is quite general, i.e., it includes the reser-
voir resources (see also (Lehrer 1993)). A reservoir resource
is a multi-capacity resource that can be consumed and/or
produced by activities. A reservoir has a capacity ranging in
a given interval and may have an initial level. The typical ex-
ample of a reservoir is a fuel tank. Special kinds of reservoir
resources are discrete ones. A discrete resource is used over
some time interval: a certain quantity of resource is con-
sumed at the start time of an activity and the same quantity
is released at its end time. From the theoretical standpoint,
the treatment of the most general class of resources therefore
includes discrete ones, although in practice the treatment of
the latter ones can be easier. We first report the basic no-
tions regarding flexible timelines and plans (Cialdea Mayer,
Orlandini, and Umbrico 2016).

A timeline-based planning domain contains the character-
ization of a set of state variables, representing the compo-
nents of a system. A state variable x is characterized by the
set of values it may assume, denoted by values(x), possi-
ble upper and lower bounds on the duration of each value,
and rules governing the correct sequencing of such values.
A timeline for a state variable is made up of a finite sequence
of valued intervals, called tokens, each of which represents a
time slot in which the variable assumes a given value. In gen-
eral, timelines may be flexible, i.e., the start and end times of
each of its tokens are not necessarily fixed time points, but
may range in given intervals. For the sake of generality, tem-
poral instants and durations are taken from an infinite set of
non negative numbers T, including 0. The notation T

∞ will
be used to denote T ∪ {∞}, where t < ∞ for every t ∈ T.
Tokens in a timeline for the state variable x are denoted by
expressions of the form xi, where the superscript indicates
the position of the token in the timeline. Each token xi is
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characterized by a value vi ∈ values(x), that will be de-
noted by val(xi), an end time interval [ei, e′i] referred to as
end time(xi), and a duration interval [di, d′i] (as usual, the
notation [x, y] denotes the closed interval {t | x ≤ t ≤ y}).
The start time interval start time(xi) of the token xi is [0, 0]
if xi is the first token of the timeline (i.e. i = 1), other-
whise, if i > 1, start time(xi) = end time(xi−1). So, a
token has the form xi = (vi, [ei, e

′
i], [di, d

′
i]) and a timeline

is a finite sequence of tokens x1, . . . , xk. The metasymbol
FTL (FTLx) will henceforth be used to denote a time-
line (for the state variable x), and FTL to denote a set of
timelines. A scheduled timeline is a particular case where
each token has a singleton [t, t] as its end time, i.e., the end
times are all fixed. A schedule of a timeline FTLx is essen-
tially obtained from FTLx by narrowing down token end
times to singletons (time points) in such a way that the dura-
tion requirements are fulfilled. In general, STL (or STLx)
and STL will be used as meta-variables for scheduled time-
lines and sets of scheduled timelines, respectively. In a given
timeline-based domain, the behavior of state variables may
be restricted by requiring that time intervals with given state
variable values satisfy some temporal constraints. Such con-
straints are stated as a set of synchronization rules which
relate tokens on possibly different timelines through tempo-
ral relations between intervals or between an interval and a
time point. Such relations refer to token start or end points,
that will henceforth be called events.
Definition 1 (Events and temporal relations). Let FTL be
a set of timelines and tokens(FTL) the set of the tokens in
FTL. The set Υ(FTL) of the events in FTL is the set con-
taining all the expressions of the form start time(xi) and
end time(xi) for xi ∈ tokens(FTL).

A temporal relation has one of the following forms:
p ≤[lb,ub] p

′ p ≤[lb,ub] t t ≤[lb,ub] p

where p, p′ ∈ Υ(FTL), t, lb ∈ T and ub ∈ T
∞.

Intuitively, p ≤[lb,ub] p′ states that the token start/end
point denoted by p occurs from lb to ub time units before
that denoted by p′; p ≤[lb,ub] t states that the token start/end
point denoted by p occurs from lb to ub time units before
the time point t and the third relation that it occurs from lb
to ub time units after t. Temporal relations are used to state
the synchronization rules of the planning domain. Here, it is
sufficient to say that such rules allow to state requirements of
the following form: for every token xi

0 where the state vari-
able x0 assumes the value v0, there exist tokens xi1

1 , . . . , xin
n

where the state variables x1, . . . , xn hold some given speci-
fied values, and all these tokens are related one to another by
some given temporal relations. Unconditioned synchroniza-
tion rules are also allowed, and are useful for stating both
domain invariants and planning goals.

When considering planning problems with resource con-
straints, beyond the set of state variables and the set of syn-
chronization rules that must be satisfied, the specification of
a timeline-based planning domain must contain a character-
ization of these resources. It consists of a set R of resource
names, and each r ∈ R is associated to its capacity, i.e., an
interval of values the resource may assume. Usually, assum-
ing that resource values are in R, such an interval is given by

specifying the minimal and maximal value the resource may
assume. State variables and resources will be referred to as
the system components. The domain specification contains
also information on what affects each resource value. We
assume here that the value of a resource may change only at
token start and end times, i.e., that it cannot increase or de-
crease during the development of an activity which affects
it. In other terms, the change of resource availability at the
start or end time of a token is considered to be instantaneous:
continuous changes are not handled. In the domain specifi-
cation the influence of activities on resources is described
by saying which values affect a given resource (either con-
suming or producing it) at their start or end times, i.e., at
the start or end time of tokens with those values. The ex-
pression used to state these facts has one of the following
forms: start time(v) affectsd r, stating that, when a token
with value v starts the resource r increases the value d (if
d < 0, the resource is reduced); or end time(v) affectsd r,
which means that the same happens at the token end time.
Definition 2 (Resources). A set of resources Res is modeled
by a pair (R, range), where R is a set of identifiers called
resources, and range : R → (R ∪ {−∞}) × (R ∪ {∞})
is a function mapping each resource r ∈ R to an inter-
val [rmin, rmax], with rmin < rmax. A resource event is
an expression of either the form start time(v) affectsd r or
end time(v) affectsd r, where v ∈ values(x) for some state
variable x, r is a resource name and d ∈ R, d �= 0. A re-
source specification for a set of state variables SV is a triple
(R, range,ResE), where (R, range) is a set of resources
and ResE a set of resource events involving resources in
R and values of state variables in SV .

The intended meaning of resource ranges of the forms
[−∞, rmax] or [rmin,∞] is that there is no bound to the re-
source consumption or production, respectively. When con-
sidering a set ResE of resource events, it is assumed that
for any resource r and value v, there exists at most a value
d such that start time(v) affectsd r ∈ ResE, and at most
a value d′ such that end time(v) affectsd′ r ∈ ResE. The
definition of a planning domain given in (Cialdea Mayer,
Orlandini, and Umbrico 2016) is then extended by adding a
resource specification (R, range,ResE) to its components
SV (a set of state variables) and S (a set of synchroniza-
tion rules). A planning problem, beyond the components al-
ready introduced in (Cialdea Mayer, Orlandini, and Umbrico
2016), also specifies a resource initializer, i.e., a function
establishing the initial amount of each resource. The initial
value of each resource may in fact vary in different problems
for the same planning domain.
Definition 3 (Resource initializer). A resource initializer
init : R → R is a function assigning an allowed initial
value to each resource: for all r ∈ R, with range(r) =
[rmin, rmax], rmin ≤ init(r) ≤ rmax.

The next step is to characterize those sets of scheduled
timelines that are valid with respect to a given planning do-
main. They must obviously satisfy all the synchronization
rules of the domain (see (Cialdea Mayer, Orlandini, and Um-
brico 2016) for the formal definition), but also the resource
specification: whenever a token start or end time modifies
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some resource, the value of the latter must neither drop be-
low its minimum, nor raise above its maximum. To this aim,
the behavior of each resource in parallel to the temporal evo-
lution of a given set STL of scheduled timelines has to be
defined and it is called the resource profile.

Let (R, range,ResE) be a resource specification for
a given set of state variables SV . When a set of time-
lines for SV is considered, the meaning of resource
events can be concretized and projected to the tokens in
the timelines. If xi is a token in a given set of time-
lines, the following abbreviations will be used in the se-
quel: start time(xi) affectsd r means that ResE contains
start time(val(xi)) affectsd r, and end time(xi) affectsd r
stands for end time(val(xi)) affectsd r ∈ ResE. When
considering a given resource specification (R, range,ResE)
and a set FTL of timelines, it is sometimes necessary to sin-
gle out the token start and end times which affect a given
resource. For each resource r ∈ R and p ∈ Υ(FTL), the
variation of r at p, δr(p), is defined as follows:

δr(p) =

{
d if p affectsd r
0 otherwise

Intuitively, δr(p) is the (positive or negative) quantity that
is added to r in the token start/end time denoted by p. The
set Υr(FTL) ⊆ Υ(FTL) is the set of the events in FTL
affecting r: Υr(FTL) = {p ∈ Υ(FTL) | δr(p) �= 0}.

The function δr and Υr(FTL) are independent from the
value of the token start/end time, but depend only on the to-
ken names, their values and the resource events. Therefore,
they are defined for both scheduled and non-scheduled time-
lines. On the contrary, resource profiles can only be defined
for scheduled timelines. Assuming that each resource has a
given initial value (specified by a resource initializer), the
profile of r for a set STL of scheduled timelines is a func-
tion mapping each token start/end point p to the value of r in
the corresponding time point in STL and is computed as the
sum of the initial resource value plus the variations of r at all
token start and end times preceding p. As each p ∈ Υ(STL)
has a specific fixed value in STL, Υ(STL) is totally ordered
according to such values: if p, p′ ∈ Υ(STL), the relation
p ≤STL p′ holds when the value of p in STL is less than or
equal to the value of p′ in STL.
Definition 4 (Resource profile). Let STL a set of
scheduled timelines for the state variables in SV and
(R, range,ResE) a resource specification for SV . The pro-
file of the resource r ∈ R in STL with initial value d0 is the
function πr,STL : R×Υ(STL) → R such that:

πr,STL(d0, p) = d0 +
∑

pi≤STLp

δr(pi)

The consistency of a set of scheduled timelines with a set
of resources takes into account the corresponding profiles.
Definition 5 (Resource consistency for scheduled time-
lines). Let ResSpec = (R, range,ResE) be a resource
specification and init a resource initializer. A set STL of
scheduled timelines is consistent with (ResSpec, init) if for
every r ∈ R with range(r) = [rmin, rmax] and for every
p ∈ Υr(STL): rmin ≤ πr,STL(init(r), p) ≤ rmax.

Finally, it can be defined when a set STL of scheduled
timelines is valid with respect to a planning domain D and a
resource initializer init: beyond satisfying the synchroniza-
tion rules of the domain, STL must be consistent with the
resource specification of D. Considering flexible plans, the
main component of a flexible plan is a set FTL of timelines,
representing different sets STLi of scheduled ones. It may
be the case that not every STLi satisfies the synchronization
rules of the domain or is consistent with the resource con-
straints. The fundamental leading guide in (Cialdea Mayer,
Orlandini, and Umbrico 2016) is the aim of defining plans
so that they encapsulate all the information needed for ex-
ecution. Consequently, a plan has to be equipped with ad-
ditional information about the temporal relations in order to
be coherent with the domain specification and guarantee that
every set of scheduled timelines represented by a given flex-
ible plan Π is valid.

A flexible plan Π is a pair (FTL,R), where FTL is a set
of timelines and R is a set of temporal relations, involving
token names in some timelines in FTL. An instance of the
flexible plan Π = (FTL,R), is any schedule of FTL that
satisfies every relation in R. In order for a flexible plan
Π = (FTL,R) to satisfy a synchronization rule it must
be the case that R contains temporal relations guaranteeing
what the rule requires. For the formal definitions the reader
is again referred to (Cialdea Mayer, Orlandini, and Umbrico
2016), where it is also proved that whenever a flexible plan
satisfies (in this sense) all the syncronization rules of a do-
main, then also any of its instances does. Here, the aim is to
obtain a similar goal concerning resources: how can a flexi-
ble plan be characterized in such a way that all its instances
are bound to be consistent with a given set of resources?
Analogously to the satisfaction of synchronizations, the only
way how a plan can restrict the set of its instances is by
means of the set R of the temporal relations. In the case
of resources, such set must imply that there are no peaks in
resource usage, i.e., that none of its instances STL may have
a resource profile πr,STL where the value of r falls outside
the allowed interval [rmin, rmax] in some points. In order to
check whether this condition holds for a given plan Π, some-
thing similar to a flexible resource profile can be computed
for each resource r. In fact, at any time point, the value of r
can not be computed precisely, but it can be established that
it will fall in a given interval.

In other terms, though an exact resource profile does not
exists for r in a flexible plan Π, what can be computed are
an optimistic resource profile and a pessimistic one: the first
one gives, for each event, the maximal value the resource
can have, and the second one the minimum. The events of
a scheduled timeline are totally ordered according to their
values, but in a flexible plan they are only partially ordered.
The partial order on Υ(FTL) of a plan Π = (FTL,R) can
be deduced from both FTL and the temporal relations in
R, i.e., from the order among tokens in the same timeline,
from the start and end times of tokens in different timelines,
when they convey enough information, and from the tempo-
ral constraints in R. Due to space restrictions, we only men-
tion here some sample cases: start and end times of tokens in
the same timeline are obviously totally ordered. Moreover,
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for instance, if p = [ti, t
′
i], p

′ = [tj , t
′
j ] and t′i �� tj for

��∈ {<,≤}, then p �� p′. Other relations are derivable from
R. For example, if p ≤[lb,ub] p′ ∈ R with lb > 0, then
p < p′. The notation Π 	 p �� p′, for ��∈ {≤, <,=}, is
used to assert that p �� p′ in the partial order induced by Π.

Given an event p of the plan Π = (FTL,R), the par-
tial order induced by Π allows for partioning Υ(FTL) into
three sets: the set of the events p′ that are bound to be sched-
uled before or simultaneously with p, those which must be
scheduled after p, and the others, whose order with respect
to p is not determined. The first and last ones are those that
must be taken into account when setting bounds to the value
a resource r may have at p. Moreover, only the events in
Υr(FTL) are relevant.
Definition 6 (Before and Unknown events). If
(R, range,ResE) is a resource specification,
Π = (FTL,R) a flexible plan and p ∈ Υ, then
Br(p) = {p′ ∈ Υr(FTL) | Π 	 p′ ≤ p}, Ur(p) =
{p′ ∈ Υr(FTL) | Π �	 p′ ≤ p and Π �	 p < p′}.

Let now STL be an instance of the plan Π and p ∈
Υ(STL) = Υ(FTL). Obviously, p′ ≤STL p for every
p′ ∈ Br(p). Among the elements of Ur(p), some will be
scheduled before or simultaneusly with p in STL and some
after it. Let br(p) ⊆ Ur(p) be the set of the first ones:

br(p) = {p′ ∈ Ur(p) | p′ ≤STL p}
In other words, the set {p′ | p′ ≤STL p} can be partitioned
into two sets: Br(p) = {p′ ∈ Υr(FTL) | Π 	 p′ ≤ p} and
br(p) = {p′ ∈ Υr(FTL) | p′ ≤STL p and Π �	 p′ ≤ p} (the
events which are scheduled before or simultaneusly with p
in STL but could also be scheduled after p, according to the
plan Π). Therefore the profile of the resource r in STL, with
initializer init, has, for each event p, the value determined as
follows:

πr,STL(init(r), p) = init(r) +
∑

pi≤STLp
δr(pi)

= init(r) +
∑

pi∈Br(p)
δr(pi)

+
∑

pi∈br(p)
δr(pi)

Pessimistic and optimistic estimates of πr,STL(init(r), p)
can be given by minimizing or maximazing, respectively, the
unknown value of the second sum. In order to do this, the
set Ur(p) is partitioned into the set of events consuming the
resource r and those which produce it:
Definition 7 (Producers and Consumers). Let ResSpec
be a resource specification and Π a flexible plan. Then:
Cr(p) = {p′ ∈ Ur(p) | δr(p′) < 0}, Pr(p) = {p′ ∈ Ur(p) |
δr(p

′) > 0}.
In simpler words, both Cr(p) and Pr(p) contain events

whose order w.r.t. p is not determined by the partial order
induced by the plan, and Cr(p) contains those which affect
r negatively (the consumers) while Pr(p) contains the re-
source producers. The optimistic estimate consists in con-
sidering the consumption of resources as late as possible and
the productions as early as possible. The pessimistic esti-
mate can be obtained by reasoning the opposite way.
Definition 8 (Optimistic and pessimistic profiles). Let
(R, range,ResE) be a resource specification, Π =

(FTL,R) a flexible plan, init a resource initializer and
r ∈ R. The optimistic and pessimistic profiles of the resource
r are the functions ORPr and PRPr, respectively, mapping
Υ(FTL) to R, defined as follows:

ORPr(p) = init(r) +
∑

p′∈Br(p)
δr(p

′)
+
∑

p′∈Pr(p)
δr(p

′)
PRPr(p) = init(r) +

∑
p′∈Br(p)

δr(p
′)

+
∑

p′∈Cr(p)
δr(p

′)

The optimistic resource profile assumes that every pro-
ducer of the resource r that may be scheduled before or
simultaneusly with the given event p is actually scheduled
that way, while the resource consumers are postponed. In
the pessimistic one, the role of producers and consumers is
inverted. The conformance of a plan to a set of resources and
its validity w.r.t. a planning domain can finally be defined.

Definition 9 (Plan validity). A flexible plan Π = (FTL,R)
satisfies the resource specification (R, range,ResE) with
resource initializer init if for any resource r ∈ R with
range(r) = [rmin, rmax], and any p ∈ Υr(FTL), it holds
that PRPr(p) ≥ rmin, and ORPr(p) ≤ rmax.

A flexible plan Π = (FTL,R) is valid with respect to
a planning domain D = (SV,S,Res,ResE) and the re-
source initializer init iff the following conditions hold: FTL
is a set of timelines for the state variables SV ; Π satisfies
all the synchronization rules in S; Π satisfies the resource
specification of D with resource initializer init.

It must now be proved that every instance of a valid plan
Π is also valid w.r.t. a given domain and resource initializer.
As far as synchronization rules are concerned, Theorem 1
in (Cialdea Mayer, Orlandini, and Umbrico 2016) does the
job. The next results shows that plan validity propagates to
its instances also for what concerns resources. This means
that any execution of a flexible plan is bound to satisfy all
the domain constraints. Proofs are omitted because of space
restrictions.

Theorem 1. If the flexible plan Π satisfies the resource spec-
ification ResSpec with initializer init, then any instance of
Π is consistent with (ResSpec, init).

The following definition relates flexible plans and plan-
ning problems.

Definition 10 (Solution plans). Let P = (D,G, H, init) be
a planning problem and Π = (FTL,R) a flexible plan. Π
is a flexible solution plan for P if the following conditions
hold: Π is valid with respect to D with init; Π satisfies the
synchronization rule SG representing the goal G; the end
time of the last token of every timeline in FTL is [H,H]
(i.e., the system is planned up to the problem horizon).

Now the question is: how can plans satisfying a given re-
source specification be computed? The conditions in Def. 9
are not helpful in this respect. The following result gives a
different characterization of a plan Π that does not satisfy a
given resource specification. It identifies which flaws have to
be solved to refine the plan and obtain a valid one, whenever
it is possible to do so, i.e. when there exists at least an in-
stance of Π that is consistent with the resource specification.
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Theorem 2. Let ResSpec = (R, range,ResE) be a re-
source specification, init a resource initializer and Π =
(FTL,R) a flexible plan such that, for some r ∈ R and
p ∈ Υr(FTL), either PRP (p) < rmin or ORP (p) >
rmax. If STL is an instance of Π and STL is consistent with
(ResSpec, init), then:

1. if PRPr(p) < rmin then one of the following two condi-
tions holds: (a) there exists p′ ∈ Cr(p) such that STL
is an instance of Π′ = (FTL,R ∪ {p′ > p}); (b)
there exists p′ ∈ Pr(p) such that STL is an instance of
Π′ = (FTL,R∪ {p′ ≤ p}).

2. if ORPr(p) > rmax then one of the following two condi-
tions holds: (a) there exists p′ ∈ Pr(p) such that STL
is an instance of Π′ = (FTL,R ∪ {p′ > p}); (b)
there exists p′ ∈ Cr(p) such that STL is an instance of
Π′ = (FTL,R∪ {p′ ≤ p}).
Theorem 2 justifies a non-deterministic algorithm that,

applied to a partial plan Π, iteratively chooses a resource
r and an event such that one of the two cases 1 or 2 of
the theorem holds; then either a consumer p′ ∈ Cr(p)
or a producer p′ ∈ Pr(p) is chosen (whose existence is
guaranteedby the theorem whenever the plan can be re-
fined up to a valid one), and the corresponding temporal
relation is added to the plan. The loop continues until ei-
ther both 1 and 2 are false, hence Π satisfies the resource
specification, or the algorithm stops with a failure (when ei-
ther the set of relations of the plan is contradictory, or for
some r and p either init(r) +

∑
p′∈Br(p)

δr(p
′) < rmin or

init(r) +
∑

p′∈Br(p)
δr(p

′) > rmax). Termination is guar-
anteed by the fact that each iteration reduces the set Ur(p)
for some resource r and event p.

Resources in PLATINUM

PLATINUM1 is a general-purpose planning and execution
framework capable of dealing with temporal uncertainty
(Umbrico et al. 2017) that complies with the formalization in
(Cialdea Mayer, Orlandini, and Umbrico 2016). The frame-
work is able to deal with uncontrollable dynamics at both
planning and execution time. The PLATINUM solving pro-
cess pursues a plan refinement approach which consists in
iteratively refining a partial plan by reasoning in terms of
flaws that must be solved. Flaw selection is supported by
dedicated heuristics that guide the planning procedure. A
PLATINUM-based planner relies on a set of data struc-
tures and algorithms called respectively components and re-
solvers. Components model the types of features that may
compose a planning domain. They specify the set of states
and constraints that characterize the temporal behaviors of
a particular type of domain feature. Resolvers are dedicated
algorithms that encapsulate the logic for building valid tem-
poral behaviors of a particular component. The reader may
refer to (Umbrico et al. 2017) for a more detailed descrip-
tion of the framework and the solving approach. However,
it is important to point out that resolvers are not responsible
for making decisions during the search process. They are

1https://github.com/pstlab/PLATINUm

responsible for detecting flaws on a component and comput-
ing all possible solutions of such flaws in order to guarantee
completeness of the search. Each solution of a flaw repre-
sents a branch in the search and it is up to the planner de-
ciding which flaw to solve and which solution to apply for
search expansion (i.e., plan refinement).

The types of flaws a PLATINUM-based planner is ca-
pable to deal with depend on the set of components and
resolvers available in the framework. PLATINUM pro-
vides state variables components and the related resolvers
that allow a planner to build valid timelines according to
the semantics proposed in (Cialdea Mayer, Orlandini, and
Umbrico 2016). Thus, PLATINUM has been extended by
adding new components and new resolvers in order to prop-
erly deal with discrete and reservoir resources.

Resources as new Components

Discrete and reservoir resources have been studied in
scheduling literature, e.g., (Bartush, Mohring, and Raderma-
cher 1988; Cesta, Oddi, and Smith 2002; Lombardi and Mi-
lano 2012). Such works rely on a a-priori known static set of
activities composing a plan and usually P&S are integrated
as two distinct and loosely coupled phases of the solving
process. Such distinct separation between P&S leads to rigid
and not efficient solving processes especially when reser-
voir resources are taken into account. In fact, reservoir re-
sources may affect the set of decisions that compose a plan
and not only the set of constraints. Therefore, monolithic
P&S phases could generate a number of invalid intermediate
results and increase the need for backtracking. For example,
the planning phase could generate an intermediate solution
which is not valid with respect to reservoir resources. Then,
the following scheduling phase could add some production
activities to fix the plan. Such activities would be integrated
“too late” in the intermediate (rigid) solution which could
not be flexible enough to accomodate such changes. Thus,
the planning phase could be forced to retract part of the
found solution. The aim here is to realize a tighter integra-
tion between P&S in order to achieve a faster computation
and also a better control of the search process. Inspiration
comes from previous works like (Laborie and Ghallab 1995;
Cesta and Stella 1997; Laborie 2003) but the whole concept
is integrated in PLATINUM.

PLATINUM has been extended with new components
and resolvers in order to model discrete and reservoir re-
sources and encapsulate the logic for detecting flaws and
computing possible solutions. In this way, discrete and reser-
voir resource management is integrated in the partial plan
refinement procedure at “flaw level” and, thus, the solving
process is capable of dynamically interleaving P&S deci-
sions. The current set of components and resolvers follow
the formal characterization in the first part of this paper. As a
consequence of Theorem 1, the generated flexible plans are
robust at execution time. In particular, every instance STL
of a plan is valid with respect to the resource capacity con-
straints. In the case of discrete resources, the developed re-
solver follows the iterative simplification procedure elicited
by Theorem 2. The approach takes inspiration from the for-
malization of RCPSP/max proposed in (Bartush, Mohring,
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and Radermacher 1988), and used in (Laborie and Ghal-
lab 1995) plus the flattening techniques of (Cesta, Oddi,
and Smith 2002) and derivatives. Furthermore the pursued
robustness is in line with the approach of (Policella et al.
2004). A peak is a set of resource expressions called Criti-
cal Set (CS) which violates the capacity constraints of a re-
source. A peak is solved by identifying and solving Minimal
Critical Sets (MCSs). An MCS is a subset of the resource
expressions composing a CS such that the set of expressions
obtained by removing any expression from the MCS does
not violate the capacity constraints of the resource. In the
case of reservoir resources the situation becomes more com-
plex and the cited techniques cannot be applied directly. A
peak can be solved by taking into account scheduling deci-
sions like discrete resources but also planning decisions that
introduce new tokens into the timelines (i.e., modifying the
partial plan itself). Then, a flaw-based solving approach and
the resulting tight integration between P&S decisions plays
a key role to address such complex problems in an flexible
and effective way.

Discrete Resource Management

A discrete resource r is a particular type of resource that can
be consumed and produced by the same state variable value.
A state variable value v decreases the capacity of r of a
quantity d as soon as it starts. The same value v increases the
capacity of r of the same quantity d as soon as it ends. Each
state variable value v affecting a discrete resource r entails
two resource expressions. Consumers are represented by
resource expressions of the form start time(v) affectsd r,
where d < 0. Producers are represented by resource ex-
pressions of the form end time(v) affectsd r, where d > 0.
Alg. 1 describes the procedure of a resolver for a discrete
resource r ∈ R which takes as input the set of events affect-
ing r, Υr(FTL), and returns a set of flaws Φr with feasi-
ble solutions. Given a set of events Υr(FTL) affecting a re-
source r, a resolver computes the pessimistic and optimistic
profiles, in order to find peaks (i.e., flaws with respect to
the refinement procedure) and compute the possible solu-
tions. The symmetry between consumers and producers on
discrete resources allows us to take into account only the
pessimistic profile. Plans cannot violate the resource max-
imum capacity constraint because values affecting the re-
source cannot produce a quantity of resource higher than the
quantity consumed. Consequently, it is possible to ignore the
case ORPr(p) > rmax with respect to Definition 9 to detect
flaws.

For each event p affecting a resource r (row 3), the re-
solver computes the pessimistic profile and adds the related
critical set to the set of flaws (rows 3-9), when the peak con-
dition is satisfied (row 4). The events that compose CS (row
5) are computed by taking into account Cr(p) (see Defini-
tion 7) which represents the set of consumptions p′ whose
order is not determined with respect to p. Then, the resolver
must compute a set of feasible solutions for each critical set
detected. A peak on a discrete resource can be solved by
posting precedence constraints between some of the tokens
composing the critical set (rows 7-9). There is a number of
precedence constraints that must be posted to solve a peak

Algorithm 1 Discrete resource management
1: function DETECTANDSOLVEFLAWS(r ∈ R,Υr(FTL))
2: Φr ← ∅ � critical sets causing peaks
3: for p ∈ Υr(FTL) do � analyze events affecting r

4: if PRP (p,Υr(FTL)) < rmin then � check pessimistic profile
5: Φr ← Φr ∪ criticalSet(PRP (p,Υr(FTL)))

6: for CS ∈ Φr do

7: for MCS ∈ sample(CS) do � analyze minimal critical sets
8: for p′ ∈ MCS do � compute MCS solutions
9: CS ← exprScheduling(p′,MCS \ {p′})
10: CS ← sort(CS, preservedSpaceHeuristics)

11: return Φr

and different possible combinations of such constraints. The
resolver identifies such constraints by leveraging the concept
of MCS in order to decompose a CS into a “simple criti-
cal set” which can be solved by posting a single precedence
constraint. Thus, each critical set CS is sampled in a num-
ber of MCSs (row 7) each of which is analyzed in order to
identify a feasible precedence constraints that solve the con-
sidered MCS and therefore simplify the “original” CS (rows
8-9). For each event p′ ∈ MCS the resolver computes a
set of precedence constraints that schedule p′ with respect
to the other events of the MCS, MCS \ {p′} (row 9). The
algorithm takes into account all the possible solutions of all
the possible MCS that can be extracted from a CS. The pre-
served space heuristic defined in (Laborie 2003) is used in
order to evaluate CSs according to the (average) reduction
of the search space induced by the associated solutions (row
10). Such information can be exploited by the general solv-
ing procedure to evaluate flaws and select which one to solve
for plan refinement.

Reservoir Resource Management

Differently from discrete resources, a reservoir resource r
can be simultaneously consumed or produced by different
state variable values. A state variable value v decreases the
capacity of r of a quantity d as soon as it starts. A state vari-
able value v′ increases the capacity of r of a quantity d′ as
soon as it ends, where v �= v′. Consumers are represented by
resource expressions of the form start time(v) affectsd r,
where d < 0. Producers are represented by resource expres-
sions of the form end time(v′) affectsd′ r, where d′ > 0.
Alg. 2 describes the procedure of a resolver for a reservoir
resource r ∈ R which takes as input the set of events af-
fecting r, Υr(FTL), and returns a set of flaws Φr with fea-
sible solutions. In this case, producers and consumers are
not symmetric. Different state variable values can consume
or produce different quantities of a resource. Thus, differ-
ently from Algorithm 1, it is necessary to consider both pes-
simistic and optimistic profiles to compute and solve peaks.

For each event p affecting r, the resolver computes
the pessimistic (PRP (p,Υr(FTL))) and optimistic profiles
(ORP (p,Υr(FTL))) and adds the related critical sets to the
set of flaws (rows 3-7) by evaluating peak conditions (row
4 for pessimistic profiles and row 6 for optimistic ones).
Given a set of peaks (i.e., the flaws Φr), a resolver com-
putes solutions by leveraging the concept of MCS. Each CS
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Algorithm 2 Reservoir resources management
1: function DETECTANDSOLVEFLAWS(r ∈ R,Υ(FTL))
2: Φr ← ∅ � critical sets causing peaks
3: for p ∈ Υr(FTL) do � analyze events affecting r
4: if PRP (p,Υr(FTL)) < rmin then � check pessimistic profile
5: Φr ← Φr ∪ criticalSet(PRP (p,Υr(FTL))

6: if ORP (p,Υr(FTL)) > rmax then � check optimistic profile
7: Φr ← Φr ∪ criticalSet(ORP (p,Υr(FTL)))

8: for CS ∈ Φr do

9: for MCS ∈ sample(CS) do � analyze minimal critical sets
10: for p′ ∈ MCS do � solve MCS through scheduling
11: CS ← exprScheduling(p′,MCS \ {p′})
12: for p′ ∈ MCS do � solve MCS through planning
13: CS ← exprP lanning(p′,MCS \ {p′})
14: for p′ ∈ MCS do � solve MCS through prod/cons update
15: CS ← exprUpdate(p′,Υr(FTL))

16: return Φr

is sampled in order to extract a list of MCS whose solu-
tions are computed according to three different “scenarios”
(row 9) that represent three different types of solution that
can solve an MCS (rows 10-15). Specifically, each MCS can
be solved by posting precedence constraints (rows 10-1), by
adding producers or consumers (rows 12-13) or by updating
the amount of resource consumed/produced by the events af-
fecting the resource (rows 14-15). In the first case, for each
p′ ∈ MCS the resolver computes a set of precedence con-
straints that schedule p′ with respect to MCS \ {p′} (row
1). If δr(p

′) < 0 (consumer) precedence constraints take
into account the events p′′ ∈ MCS \ {p′} that also belong
to Pr(p

′). Otherwise, if δr(p′) > 0 (producer) precedence
constraints take into account the events p′′ ∈ MCS \ {p′}
that also belong to Cr(p

′). In the second case, for each
p′ ∈ MCS the resolver adds new expressions and there-
fore new events p∗ to Υr(FTL) that produce, if δr(p′) < 0
or consume, if δr(p′) > 0, the amount of resource needed to
execute p′ (row 13). Finally, in the third case (row 15), for
each p′ ∈ MCS the resolver posts consumption or produc-
tion constraints that update the resource profile by increas-
ing or decreasing the amount of resource available in order
to “execute” p′. In this case, an MCS is solved by neither
scheduling nor adding resource events. Specifically, the re-
solver takes into account the events that are scheduled before
p′, Br(p

′). If δr(p′) < 0 (consumer) the resolver increases
the quantity of resource produced by events p′′ ∈ Br(p

′). If
δr(p

′) > 0 (producer) the resolver decreases the quantity of
resource consumed by events p′′ ∈ Br(p

′).

Experiments and Assessment

An experimental assessment of the extended PLATINUM
framework was performed in order to demonstrate the fea-
sibility of the envisaged P&S approach. Experiments were
performed on a revised version of the satellite planning
problem described in (Cialdea Mayer, Orlandini, and Um-
brico 2016). The problem consists of a satellite which is or-
biting around a target planet and a ground station on Earth
for communication. The satellite can perform two types of
operations (i.e., planning goals): (a) science operations to

acquire data about known targets, (b) communication op-
erations to send data to the ground station. Science oper-
ations are performed by pointing the satellite towards the
target planet. Communication operations are performed by
pointing the satellite towards the Earth when the ground sta-
tion is visible/available. Some operations of the satellite are
not controllable. Communication operations are modelled as
partially controllable values because the actual duration of a
data transfer may be affected by external factors. A discrete
resource models the bandwidth of the communication chan-
nel, and a reservoir resource models the battery level of the
satellite. Each communication requires a certain bandwidth
amount and simultaneous communications cannot exceed
the maximum bandwidth. The battery limits the number of
science and communication operations the satellite may per-
form over time. Both science and communication operations
consume a certain amount of battery when executed. When
the battery level goes below a minimum level, a recharg-
ing operation is needed. Battery recharging is performed
through solar panels and the planning model also consid-
ers Sun’s visibility windows. Such visibility windows con-
strain the number and the temporal occurrence of recharg-
ing operations. Then, four planning domains were defined
considering: no resource discrete resource only; reservoir re-
sources only; both discrete and reservoir resources. On the
above domains, a number of problem instances were defined
by varying the number of: science operations the satellite
must perform; windows available for communication; win-
dows available for battery recharging. The number of sci-
ence operations ranges from 1 to 5, each of which implies
a distinct communication operation. The number of com-
munication and recharging windows ranges from 1 to 3.
Thus, a total number of 45 problems were defined combin-
ing such parameters. Experiments were designed with the
aim of “stressing” the capability of the framework to inte-
grate P&S choices in increasingly complex scenarios. The
use of different windows for communication and recharg-
ing activities highly increase the number of combinations
between P&S choices.

Two different PLATINUM configurations were run: dfs,
applying a depth-first-search strategy and looking for a valid
plan without considering any particular metric; greedy,
applying a greedy search strategy which tries to mini-
mize the plan’s makespan. Both configurations use the
hierarchy-based heuristics defined in (Umbrico, Orlandini,
and Cialdea Mayer 2015) to support flaw selection. Each
run was repeated 3 times considering average solving times,
with a total number of 1080 performed experiments. The ex-
periments ran on a MacBook Pro endowed with Intel Core
i5 2.4GHz and 8GB RAM with a timeout of 300 seconds.

Fig. 1 and 2 show the results of dfs and greedy configu-
rations. Fig. 1 aggregates data concerning the communica-
tion and recharging windows to show the performance of
the planners with respect to the number of goals consid-
ered. Regardless of the number of available windows, the
time needed to solve a problem increases with the number
of science and communication operations the satellite must
perform. The dfs configuration was always able to find a
solution while the greedy configuration was several times
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Figure 1: Average solving time of the planner configurations
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Figure 2: Average solving time of the planner configurations
with respect to the min and max number of windows

(20) in timeout. The dfs outperforms greedy because dfs re-
turns the first valid solution found while greedy explores a
higher number of partial plans to find the plan with mini-
mum makespan. This is especially true when several com-
munication and recharging windows are available leading
to a less efficient solving process but capable of generating
“more efficient” plans. Indeed, the average makespan of the
solutions generated by greedy (264) is better than the aver-
age makespan of the solutions generated by dfs (275).

Fig. 2 shows a more detailed view of the results: the aver-
age results obtained on the problems with the minimum and
maximum number of available communication and recharg-
ing windows. The dfs-min-wind and dfs-max-wind show
the average solving time of dfs on the problems with one
communication and one recharging windows and the prob-
lems with three communication and three recharging win-
dows respectively. The same holds for the greedy-min-wind
and greedy-max-wind with respect to greedy. The diagram
shows that a higher number of available windows increases
the problem complexity. A higher number of communica-
tion and recharging windows affects the branching factor by
increasing the possible P&S choices. The greedy configu-
ration is not able to generate a plan for the problem with
five goals, one communication window and one recharging
window (timeout) but, it is able to generate a plan for the
problem with five goals, three communication windows and
three recharging windows. A motivation for such result is
that six windows allow the planner to better characterize that
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Figure 3: Aggregate solving time for different domain ver-
sions.

partial plans with respect to the makespan and therefore bet-
ter guide the search towards a solution. The case with two
windows instead leads the planner to generate many equiv-
alent partial-plans (with respect to makespan) and it is not
able to efficiently move towards a solution.

Finally, Fig. 3 shows the aggregated results obtained by
running dfs on different satellite domain versions . The in-
troduction of reservoir resources significantly increases the
complexity of planning problems. Indeed, the problems de-
fined on the complete and the reservoir versions of the do-
main are the most difficult to solve because of a larger
branching factor entailed by the multiple alternatives to
manage reservoir resources (see Alg. 2). It is worth noticit-
ing that this complexity is softened for the complete domain
version since the presence of discrete resources reduce the
general branching factor. This is why no solution has been
found (timeout) in the case of 5 goals and reservoir domain.

These experiments show that the proposed approach ef-
fectively solves complex problems that require a tighter
P&S integration. The different results obtained with dfs and
greedy suggest that the hierarchical solving approach repre-
sents a good starting point. However, it is necessary to fur-
ther develop heuristics as well as search strategies in order
to generate plans with specific objective functions (e.g., low
makespan) in a more efficient way.

Conclusions and Future Works

This paper presents an extension of a recent characterization
of the timeline-based planning approach introducing dis-
crete and reservoir resources. The paper also presents an ex-
tension of PLATINUM, an existing timeline-based planner,
introducing the capability of managing different types of re-
sources and integrating them into a general plan refinement
procedure. A set of experiments have shown the capabilities
of the extended framework of integrating P&S during plan
synthesis in an effective way. The experiments also show the
need of investigating the definition of more informed heuris-
tics as well as search strategies that better control the search
to improve efficiency. A comparison with EUROPA (Bar-
reiro et al. 2012) and other state-of-the-art hybrid systems
like, e.g., CHIMP (Stock et al. 2015) or FAPE (Bit-Monnot
2016) represents a possible future work.
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