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Abstract

Scheduling often takes place in the context of execution.
This reality drives several key design decisions: (1) when
to invoke (re) scheduling, (2) what to do when the sched-
uler is running, and (3) how to use the schedule to execute
scheduled activities. We define these design decisions theo-
retically in the context of the embedded scheduler and prac-
tically in the context of the design of an embedded sched-
uler for a planetary rover. We use the concept of a commit
window to enable execution to use the previously generated
schedule while (re) scheduling. We define the concepts of
fixed cadence, event driven, and hybrid scheduling to control
invocation of (re) scheduling. We define the concept of flex-
ible execution to enable execution of the generated schedule
to be adaptive within the response cycle of the scheduler. We
present empirical results from both synthetic and planetary
rover scheduling and execution model data that documents
the effectiveness of these techniques at enabling the sched-
uler to take advantage of execution opportunities to com-
plete activities earlier.

Scheduling in the Context of Execution

Scheduling is often performed in the context of execution.
As such, for many realistic problems, scheduling and ex-
ecution for a specific problem type are inextricably inter-
twined - aspects of execution affect scheduling, and as-
pects of scheduling affect execution. For example, in many
scheduling problems, the activity model is imperfect and un-
able to predict execution aspects such as activity duration,
resource usage, and activity success/failure. Therefore, re-
scheduling to incorporate execution feedback is a key part
of the integrated scheduling and execution solution. This
paper addresses the problem of embedding a scheduler in
a specific class of execution environments. First we define
a framework for analyzing trade-offs in scheduling and ex-
ecution. Second, we discuss the resolution of these design
choices in the context of a specific scheduler and execution
environment under development for NASA’s next planetary
rover, the Mars 2020 (M2020) rover (Jet Propulsion Labora-
tory 2017a).
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• When to reschedule? Because execution often differs from
predicted scheduling models, the scheduler must resched-
ule to deal with activities completing early, completing
late, or even failing. We explore fixed cadence and event-
driven scheduling in which (re) scheduling occurs when
actual execution differs from predicted execution by a pre-
specified threshold (e.g. an activity ends early by more
than T seconds). Hybrid approaches combine these two in
an effort to gain from the strengths of each approach.

• Non-zero scheduling time. Scheduling a set of activities
on an actual CPU requires a potentially significant amount
of time during which execution may or may not continue.
This raises two issues: (a) what to execute in the time pe-
riod before a new schedule is available; and (b) what po-
tential is there to perform additional schedule manipula-
tions within the time cycle of the scheduler (e.g. flexible
execution or limited rescheduling).
To illustrate these concepts, consider the following exam-

ple where activities A and B are scheduled consecutively due
to use of a shared resource.

Figure 1

Activity A ends early, and we wish to recoup this time
within the schedule by executing B earlier. However, with a
simple periodic scheduler invocation, the scheduler is not in-
voked until time T1 and then it requires some amount of time
Tsc to actually reschedule. 1 This results in lost time that the
system cannot recoup, which results in overall reduced ef-
ficiency. In this case, the lost time is the sum of scheduler
invocation loss and scheduler runtime loss.

1Because of the difficulty in predicting scheduler runtime prac-
tically this is a conservative bound. See Discussion.
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In general, in the remainder of this paper we discuss a
number of techniques to address these challenges

• To mitigate scheduler invocation loss from fixed cadence
scheduling, event-driven scheduler invocation invokes the
scheduler in response to schedule expectation violations.

• To mitigate scheduler runtime loss, flexible execution ad-
justs activities to run earlier or later based on both ex-
plicitly defined precedence constraints and inferred prece-
dences based on shared resource incompatibilities.

• To mitigate potential inconsistencies from flexible ex-
ecution and coarse resource modeling, hybrid event-
driven scheduler invocation invokes the scheduler for
both scheduler expectation violations and fixed cadence
offset prior invocations.

In the remainder of the paper we first define terminology
to enable analysis of the general problem of embedding
scheduling in execution. Then we describe a specific set of
design assumptions relevant to our planetary rover applica-
tion and analyze the effects of these decisions using both
synthetic and actual rover pre-operational data.

For our defined scheduling problem (Rabideau and
Benowitz 2017), the scheduler is given

• a list of activities A1...An,

• where each activity can use or not use any number of
unit resources (up to project limitations - 128 for M2020)
R1...Rm, and

• each activity can also use two consumable resources (a)
energy and (b) data volume, and

• each activity is optionally constrained to a start time win-
dow Ti start...Ti end, and

• also has a list of dependency constraints from Aj → Ak
2

The charter of the scheduler is to produce a grounded time
schedule that satisfies all of the above constraints.

We also make the following assumptions

1. Schedule activities form an approximately single serial
path (e.g. critical path (Kelley Jr and Walker 1959))3.

2. The prior schedule is executed while the scheduler is run-
ning (see below).

3. All activities fit in the initial schedule (the schedule is not
oversubscribed).

4. Activities do not fail.

5. No preemption (activities are only preempted as a major
failure case for M2020).

The goal is to schedule activities such that the schedule
has the shortest possible makespan. We chose this because
a shorter makespan implies that resources such as energy,
data volume, and unit resources (time) are freed (see Future
Work).

2Aj → Ak means the scheduled end time of Ak must be before
the scheduled start time of Aj .

3Activities are rarely in parallel except for non interfering side
activities.

What to Do During Scheduler Execution: The
Commit Window

One challenge of a non-zero runtime scheduler is determin-
ing what to execute while the scheduler is running. A num-
ber of obvious alternatives are:

• Execute nothing - this has the downside of not achieving
anything during the scheduler runtime. In addition, if the
scheduler runtime is equal to the cadence of rescheduling
then nothing will ever be done.

• Execute some default policy of activities - but how to de-
fine a useful default?

• Execute the previously generated schedule - we establish
”committed activities” that are committed to execution.

In the remainder of this paper we adopt the option of
executing the previously generated schedule extending
the use of a commit window approach (Chien et al. 2000;
Knight et al. 2001) which was used to operate the Earth
Observing One (Chien et al. 2005) and IPEX (Chien et
al. 2016) spacecraft. However these prior usages of a
commit window presumed an iterative repair, satisficing
scheduler using a fixed offset of time close to execution
as ”committed” whether the schedule is consistent (e.g.
not in conflict) or not. The M2020 application requires a
consistent schedule at the completion of each scheduler
invocation and uses a prediction of scheduler runtime to
predict scheduler completion time - thereby implying a
commit window that ends up being a variable amount in
the future. Additionally, the committed activities may be
in conflict with higher value activities that, if we had not
committed an activity (especially a long duration one), we
now cannot switch to.

Property 1: Any activity whose scheduled start time is
after the start of the commit window and before the end of
the commit window must be committed to execution and
cannot be rescheduled by the scheduler.

Property 2: The scheduler cannot schedule activities to
start in the commit window.

For simplicity, assume that the scheduler runtime, Tsc, is
predictable and constant, and fix the end of the commit win-
dow to now + Tsc when the scheduler is invoked.
Tsc via the commit window limits rescheduling in three

ways.
First, the scheduler must wait until it can be run. This is

the scheduler runtime loss.
Second, it is challenging for the scheduler to incorpo-

rate execution updates while running. Therefore typically
the scheduler is invoked with the execution state at invo-
cation time and the execution status is not updated during
scheduling. Therefore its data is stale by up to Tsc.

Third, the scheduler does not schedule activities in the
commit window - inherently this limits the earliest start time
of the scheduler control.

These restrictions limit scheduler possible gain.
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Fixed Cadence Scheduling

A simple approach to rescheduling is Fixed Cadence
Scheduling where the scheduler is invoked at a cadence of
every Cdn.

Typically, Cdn ≥ Tsc otherwise we would not have ac-
tivities from the prior invocation for the current scheduler
invocation. To maximize responsiveness in Fixed Cadence
Scheduling, Cdn = Tsc. Fixed Cadence Scheduling is sim-
ple to implement and makes invoking the scheduler pre-
dictable.

(a) The scheduler is invoked at now (tn) and predicted
to end at tc.

(b) A finishes early at te, but the scheduler doesn’t in-
gest this information since it’s already scheduling.

(c) The scheduler is reinvoked at ts and the commit
window shifts.

(d) The scheduler moves B up to tc, but is unable to
move it further. There is a scheduler invocation loss
(lsi) and a scheduler runtime loss (lsr).

Figure 2: The challenge with Fixed Cadence Scheduling

As an example, Figure 2a shows two back to back ac-
tivities, A and B, that cannot run in parallel due to shared
resources. The vertical lines represent when the scheduler is
scheduled to run. Activity A is currently executing. In Fig-
ure 2b, activity A finishes early. Our goal is to gain back the
time between the time A finishes and B starts. Unfortunately,
the scheduler must wait until the next time it has been pre-
determined to invoke (2c). In addition, once the scheduler is

reinvoked it can only schedule activities to start no earlier
than the end of the commit window (2d). The losses from
such restrictions are represented as follows.

ltotal = lsi + lsr (1)
ltotal is the total loss, lsi is the loss from waiting for the

scheduler to be invoked (scheduler invocation loss), and lsr
is the loss from not being able to schedule activities inside
the commit window (scheduler runtime loss).

Another perspective is to observe the specific points in
time that constitute lsi and lsr. lsi can be redefined as the
delay between an event and the start of the next scheduling
cycle, ts.

lsi = ts − te (2)
lsr is the loss from ts to the end of the commit window,

tc.

lsr = tc − ts (3)
Knowing that lsi = ts − te and lsr = tc − ts, we can

derive the following.

ltotal = (ts − te) + (tc − ts) (4)
Here, l is the loss, ts is the time where the scheduler is

reinvoked, te is the time of an event (scheduler expectation
violation) is the end of commit window.

(4) can be further simplified to

ltotal = (tc − te) (5)
This loss can be significant as it can occur every time there

is an event where the scheduler can recoup resources.
The overall gain of the Fixed Cadence Scheduling assum-

ing serial activities and that activities do not run late is

Gfc =

n∑
i=1

f(activityi) (6)

f(activityi) =

{
(si − ai)− ltotal if (si − ai)− ltotal > 0

0 otherwise
(7)

where si and ai are the scheduled end time and actual end
time of activityi respectively.

A drawback of Fixed Cadence scheduling is that to max-
imize responsiveness, Cdn = Tsc which can consume sig-
nificant CPU resources (critical on a planetary rover).

Event Driven Scheduling

Rather than invoking the scheduler at a fixed cadence, Event
Driven Scheduling invokes the scheduler immediately when
a change or “event” occurs. This provides two benefits.

First, if an event occurs when the scheduler is idle, be-
cause the scheduler can be invoked immediately, lsi is elim-
inated when an activity ends early.

ltotal = lsr (8)
Second, Event Driven Scheduling may result in fewer

scheduler invocations than Fixed Cadence Scheduling, free-
ing valuable CPU time. Furthermore if the scheduler runs
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less often, it can potentially run at a higher task priority
thereby reducing Tsc.

Using Event Driven Scheduling with serial activities and
no late completing activities, the makespan gain is

Ged =
n∑

i=1

g(activityi) (9)

g(activityi) =

{
(si − ai)− lsr if activityi triggers an event
f(activityi) otherwise

(10)
where si and ai are the scheduled end time and actual end

time of activityi respectively, and g(activityi) is the gain
from Event Driven Scheduling.

With serial activities, and infrequent events, Event Driven
Scheduling performs at least as well as Fixed Cadence
Scheduling and can potentially outperform it.

lsi ∈ R≥0 (11)

we can deduce from (1) that

lsr ≤ l (12)

Thus,
Ged ≥ Gfc (13)

The Challenge of Events During Scheduling

During an event triggered scheduling, another event can oc-
cur while the scheduler is running (see Figure 3).

In this situation, the scheduler has three possible choices.

• Scheduler ignores the event. (Downside - lose the gain
from early completion)

• The scheduler does not stop to reinvoke, but immediately
reinvokes once the current scheduling cycle completes.
(Downsides: (a) the remainder of this cycle Tsc is Sched-
uler invocation loss for this event which is not handled
until the next scheduling cycle and (b) two invocations
mean more CPU time spent scheduling).

• The scheduler stops and reinvokes. If we have an anytime
scheduler we can use the partial schedule at the cost of
suboptimality. If not the expended Tsc becomes invoca-
tion loss for the first event and time spent scheduling is
wasted.

If the scheduler does not stop to reinvoke and ignores the
event then the scheduler will not gain value from the event
until the next scheduler invocation (potential large loss).

Decision-theoretic methods can address the above trades
(Horvitz, Breese, and Henrion 1988) but often accurate
marginal utility information is not available.

Event Threshold

An event threshold can lower the frequency of events by
suppressing less important changes. Because we focus on
makespan we consider events where an activity completes
earlier than its scheduled end time by greater than a fixed

(a) A shares a resource with B. C shares a resource
with D.

(b) A finishes early and triggers Event Driven
Scheduling.

(c) C finishes early, but the scheduler is already
running and does not ingest the information. It per-
ceives C + C’ and can’t move D earlier until the
next scheduler invocation.

Figure 3: The challenge of events during scheduling

threshold. If the seriality assumption holds, generally speak-
ing an activity completing early enables makespan reduc-
tion. Generally, any resource under-run (including time) or
over-run (activities not completing, energy, or data volume)
are all valid events (see Discussion).

Hybrid Fixed Cadence - Event Driven Scheduling

Event Driven Scheduling improves on Fixed Cadence
Scheduling by eliminating scheduler invocation loss. How-
ever, Event Driven Scheduling has the dual drawbacks of
(a) frequent events triggering scheduler invocations can
starve lower priority tasks and (b) infrequent events can
cause potentially lengthy gaps between scheduler invoca-
tions causing schedule disconnect from resource state. Hy-
brid scheduling uses events, te, but adds a minimum and
maximum cadence to prevent these potential issues. Hybrid
scheduling also can help to keep the scheduler synchronized
with flexible execution as described below.

Flexible Execution: Responding to execution

updates within Tsc

All of the above methods for rescheduling operate at a re-
sponsiveness limited by Tsc. Flexible Execution (FE) solves
this problem by providing the ability to modify execution of
activities in the time interval from Now to Now + Tsc.
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FE is a process separate from the scheduler and runs at a
higher cadence with the execution system. It accomplishes
this by only considering a subset of the scheduling con-
straints and options considered by the scheduling algorithm.

We first define a predecessor-successor relationship be-
tween activities.

((sharedResource(A,B) ∧ Astart < Bstart)

∨ dependent(A,B)) → predecessor(A,B)
(14)

predecessor(A,B) → successor(B,A) (15)

The predecessor-successor relationship is one of relative
ordering between activities in the schedule that share the
same unit resources or are dependent on/establish prece-
dence between one another. 4

FE allows execution according to a directed acyclic graph
based on predecessor-successor relationships of committed
activities. Whenever an activity has no uncompleted prede-
cessors in the graph, FE allows execution of the activity.

Algorithm 1 Flexible Execution
Input:

G: Directed acyclic graph of committed activities up to the
current time (empty if at the start of the plan).
A: List of all activities sorted by start time

Output:
L: Set of activities to be started 5

1: L ← ∅
2: repeat
3: for each a ∈ A do
4: if a is committed and a /∈ G then
5: add a to G
6: for each n ∈ G do
7: if n ∈ a.predecessors then
8: add n to a.children
9: end if

10: end for
11: if a.children = ∅ then
12: add a to L
13: end if
14: end if
15: if a.finished then
16: G.pop(a)
17: for each n ∈ G do
18: if n.children = ∅ then
19: add a to L
20: end if
21: end for
22: end if
23: end for
24: until A is empty

FE therefore enables activities to execute at times differ-
ent from when scheduled, but in the same relative ordering

4Prior work exploits similar relationships (Muscettola 2002;
Policella et al. 2004; 2009). We do not explore these approaches
due to M2020 project concerns on complexity for V&V and strict
timing requirements (1 Hz response).

5If no constraints (e.g. execution time constraints) are violated.

in the schedule for activities using shared unit resources.
When an activity finishes early, its successors can be ex-
ecuted at an earlier time than when they were scheduled.
When an activity runs later than expected its successors are
postponed. Instead of rescheduling, FE executes successor
activities whenever their predecessor activities finish.

Flexible Execution and Scheduling

If FE only knows about activities that are committed, it does
not need to keep track of scheduled start times since it con-
siders executing an activity when all of its predecessors are
finished. However, the scheduler still needs to know about
scheduled start times to predict when activities will end and
schedule around them. Rather than updating scheduled start
times every second, FE need only update scheduled start
times when the scheduler is invoked.

While we know the exact time an activity ends early, we
cannot predict when an activity, A, that is running late will
finish and cannot predict when the next activity, B, can start.
However, the scheduler needs a scheduled start time for all
committed activities to predict activity end times. A has not
finished executing, but the old scheduled start time for B is
no longer accurate. Thus, B’s scheduled start time must be
updated to the current time for accuracy.

When updating start times, there might be a chain of mul-
tiple committed activities. It is important to note that if an
activity in the chain gets delayed or finishes early, the whole
chain should be “ripple-updated” so that all activities in the
chain are updated. If not, then the scheduler may have incor-
rect information on predicted activity start times.

Caveats and Drawbacks of Flexible Execution

Although Flexible Execution provides value in incorporat-
ing execution feedback within the timescale of the scheduler
runtime Tsc, there are several drawbacks to FE as proposed.

• Non unit resources such as power/energy, thermal, and
data volume are ignored. For our applications this is an
acceptable compromise in order to avoid the more expen-
sive modeling of these resources as these resources are
total sum not peak value. However, this may not be true
for other applications.

• If FE is allowed to run concurrently while the scheduler
is scheduling, it can allow execution to become inconsis-
tent with the schedulers knowledge (e.g. activities start
and end times may differ in the commit window) result-
ing in the scheduler generating a suboptimal or even in-
valid schedule due to stale data (although flexible execu-
tion can mitigate these inconsistencies).

• FE tries to optimize activities locally, but does not con-
sider the full scope of the plan. As a result, it may modify
the plan in a way that would be suboptimal compared to
the scheduler.

• In order to maximally improve performance, FE may need
to modify uncommitted activities. If an activity ends early
by more than Tsc, FE cannot begin execution of succes-
sor activities. Even after event driven rescheduling, Tsc

time will be lost. An alternate is to allow uncommitted
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activities which are scheduled to start further in the fu-
ture to begin execution when their predecessors complete.
However, this would prevent the rescheduling of alter-
nate activities in conflict with the activity FE has brought
forward. In short, FE only considers activities already in
the schedule, in the same relative order. The scheduler
can consider different activities and orders, which may be
preferable.

• Flexible activity chains may push activities out of the
commit window. In updating the start times of activi-
ties before running the scheduler, activities can be pushed
later due to late running activities. In the extreme case an
activity can be pushed beyond the commit window, en-
abling the scheduler to potentially not schedule it in the
current scheduler invocation.

Empirical Evaluation

In order to test our model of scheduling and execution we
have implemented a simulation of execution and reschedul-
ing used to test the accuracy of our model using both syn-
thetic data and data from sol types. Sol types are the currently
best available data on expected Mars 2020 rover operations
(Jet Propulsion Laboratory 2017a). In order to feed this sim-
ulation, we use the M2020 surrogate scheduler - an im-
plementation of the same algorithm as the M2020 onboard
scheduler (Rabideau and Benowitz 2017), but implemented
for a linux workstation environment - as such, it is expected
to produce the same schedules as the operational scheduler
but runs much faster in a workstation environment. Indeed,
current plans are to use the surrogate scheduler both to assist
in validating the flight scheduler implementation and also in
ground operations for the mission.

The Mars 2020 scheduler algorithm is a greedy, priority-
first, non-backtracking scheduler. It loops through requested
activities in priority first order, using timeline-based model-
ing common in space applications (e.g. (Chien et al. 2012))
to compute valid activity start times considering activity
state and resource needs. The major complication is that
each activity placement may require (a) preheat scheduling
(to warm up mechanisms on the rover prior to usage) and
(b) power management (managing the waking and sleep-
ing of the rover to to avoid battery undercharge (endanger-
ing the vehicle) or overcharge (detrimental to battery perfor-
mance). Because each iteration for activity placement leaves
the schedule in a consistent state, it is theoretically possible
to use the scheduler as an anytime algorithm with some ad-
ditional algorithmic complexity to checkpoint copies of the
schedule. Also the M2020 processor (Rad 750) is 100 times
slower than a laptop and the scheduler only receives a frac-
tion of the processor.

We have developed a ground-based model that simulates
rover operations for a single ground - flight operations cycle
(usually one Martian day or a ”Sol”). Each input plan con-
tains typically 40 activities. We utilize a probabilistic exe-
cution model based on operations data from the Mars Sci-
ence Laboratory Mission (Jet Propulsion Laboratory 2017b;
Gaines et al. 2016a; 2016b) in order to plausibly simulate
activities completing early. As described earlier in assump-

tions, this model assumes that the scheduling model activity
durations given are conservative, that the original requested
activities are feasible, and that the overall quality metric is to
minimize makespan during execution. Note that we do not
explicitly change activity consumables as as energy and data
volume are generally modelled as rates so activities complet-
ing early decreases energy and data volume usage.

We measured the effectiveness of rescheduling by calcu-
lating the reduction in makespan, which is the difference be-
tween the makespan for the initial schedule (using all of the
conservative scheduling model activity durations) and the
makespan for the executed schedule. This rescheduling en-
abled schedule can be compared against the theoretical min-
imum makespan schedule (simulation with Tsc = 0).

We compare combinations of the scheduling methods in
our framework - the case where Cdn = 2∗Tsc and with and
without and Event Driven Scheduling and Flexible Execu-
tion. For runs using Event Driven Scheduling the scheduler
is triggered when an activity ends early by at least Tsc.

Because the Mars 2020 Mission Sol Types (a) are not
fully serial and (b) contain other constraints such as exe-
cution time constraints, we first evaluate synthetic schedules
based on the Sol Types. Each synthetic schedule is a serial
path of X activities that share the same unit resource and
no other constraints. The predicted (conservative) duration
of the activities is generated from a normal distribution with
μ = 1125 seconds and σ = 1852 seconds based on the du-
rations from activities in the M2020 Sol Types.

Synthetic data enforces seriality and avoids dependency
and time window constraints. Therefore, achieved makespan
gain + model calculated Scheduler Invocation Loss + Sched-
uler Runtime Loss = theoretical max makespan gain.

In contrast Figures (5a and 5b) use sol type inputs derived
from schedules that are expected to run on the M2020 mis-
sion. The average duration of activities throughout all sched-
ules is 15 minutes and 8 seconds and the standard deviation
is 27 minutes and 27 seconds. The probabilistic model used
to generate realistic activity durations compared to the orig-
inal conservative ones resulted in activities ending on aver-
age about 32 percent early. In these runs the model predicted
loss only loosely correlates with actual loss due to schedule
parallelism, execution time constraints, and activity depen-
dencies/setups.

By studying makespan gain as a function of the commit
window for various scheduling methods on both synthetic
and sol type data we draw several conclusions.

Event driven rescheduling has the greatest impact on per-
formance by reducing scheduler invocation loss.

As Tsc approaches zero (to the left of the graphs) the
scheduler runtime loss decreases and the makespan gain in-
creases as a direct consequence.

Flexible Execution is more effective when Tsc is larger.
When Tsc is smaller, scheduling can recover the time from
early activity completion, losing less time to scheduler run-
time loss. When Tsc is larger, FE is needed to recover this
time. This is true for both Event driven and fixed cadence
rescheduling, but in the case of fixed cadence FE can also
mitigate the scheduler invocation loss.

Individually, Event Driven Scheduling is more effec-
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(a) Makespan gain for varying scheduler Tsc and
methods averaged across synthetic schedules.

(b) Synthetic schedules are entirely serial: Makespan
gain + predicted loss = theoretical best makespan gain.

Figure 4: Synthetic Data: Makespan gain over 30 runs for
varying scheduler Tsc and methods. Predicted Scheduler In-
vocation Loss and Scheduler Runtime Loss are stacked to
show predicted total loss compared to theoretical max gain.

tive than Flexible Execution for our observed performance
regime. Although both Flexible Execution and Event Driven
Scheduling consistently result in a higher makespan gain
than just Fixed Cadence Scheduling, the makespan gain with
Event Driven scheduling is larger than that with Flexible
Execution. This is because most activities decreased by an
amount greater than Tsc. This allows Event Driven Schedul-
ing to trigger events and reschedule activities as early as
possible and limits Flexible Execution since activities infre-
quently end early while the scheduler is running 6.

The computational model scheduler invocation loss and
scheduler runtime loss is somewhat inaccurate on the M2020
sol type data for several reasons. First, the sol types have
some parallelism causing the computational model to dou-
ble count loss or count loss that does not affect makespan
and therefore overestimate. Second, in some cases an ac-
tivity completes early, but a following activity cannot be
moved forward because it requires a setup or preheat activ-

6This only holds true because the scheduler runtime is equal to
the commit window size.

(a) Makespan gain for varying scheduler Tsc and meth-
ods averaged across range of M2020 Sol Types.

(b) Makespan gain + predicted loss �= theoretical best
makespan gain (if we had an instantaneous scheduler).
Real schedules are not all perfectly serial and have
other execution constraints (e.g. preheats).

Figure 5: Sol Type Data: Makespan gain over 30 runs for
varying scheduler Tsc and methods. Predicted Scheduler In-
vocation Loss and Scheduler Runtime Loss are stacked to
show predicted total loss compared to theoretical max gain.

ity which has already started and cannot move earlier (even
optimal scheduler cannot recoup). Third, the computational
loss model does not account for activities that cannot be
brought forward even when earlier activities complete early
due to ”no earlier than” constraints. In these cases the com-
putational loss model calculates a loss that even the optimal
rescheduler cannot recoup. 7

Related Work

The Remote Agent Experiment (Muscettola et al. 1998;
Pell et al. 1997) used a batch scheduler onboard the Deep
Space One Spacecraft in 1999 for approximately 48 hours.
The scheduler was invoked on a fixed periodic cadence and
generated a flexible temporal schedule.

IDEA (Gregory et al. 2002) uses a hierarchy of time-
bounded hybrid execution/planning agents to meet both de-

7More information can be found in Additional Materials (Chi
et al. 2018).
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liberative and execution needs. As an architecture, it does
not dictate scheduler execution interaction as these would
be implemented within a single IDEA agent.

CASPER (Chien et al. 2000; Knight et al. 2001) is a con-
tinuous, iterative repair scheduler that takes very small CPU
timeslices (seconds to minutes) but does not guarantee leav-
ing the schedule in a consistent state. Any inconsistencies
within a static duration commit window are the responsibil-
ity of execution. CASPER flew onboard the Earth Observing
One spacecraft, controlling it for over a dozen years (Chien
et al. 2005; Tran et al. 2004). CASPER also flew on and
controlled the IPEX mission for over 1 year (Chien et al.
2016). OASIS is a research prototype for rover autonomy
using CASPER for planning and scheduling and TDL for
execution with a similar fixed commit window strategy as
described above (Castano et al. 2007).

Woods et al. 2009 (Woods et al. 2009) describe a research
prototype rover with replanning (TVCR) that uses a plan
fragment based repair approach but does not include details
on integration of execution with (re) scheduling such as what
to execute during rescheduling. The general problem of em-
bedding a scheduler within execution shares aspects of con-
tinuous planning and execution (Myers 1999).

Discussion and Future Work
This work represents an exploration into the overlap be-
tween scheduling and execution within the context of batch
rescheduling and execution with a focus on a planetary rover
applications. There are many topics for future study - we de-
scribe several below.

Further exploration of flexible execution concepts and
their relationship to scheduling and more complex resources
(energy, time, and data volume for our problem) is of in-
terest. Extending this work to more concurrent schedules
would increase usefulness of techniques and analysis.

Our formulation presumes that the schedule objective
function is to minimize makespan. In reality, the goal is to
maximize some utility function over executed activities. For
our planetary rover scheduling problem this means accept-
ing an oversubscribed list of activity requests with the char-
ter of rescheduling to get more high value activities executed
as resources become available due to activities completing
early and freed energy and data volume. In some cases there
is a range of activities in a preference order and the ideal
scheduling and execution system would execute the best
possible within resources. For example, the scientists might
request minimally a 2x2 mosaic of images, but prefer a 3x3
or 3x4 if time, energy, and data volume permit.

Additionally, we presume that earlier is better for activ-
ity execution. More realistically, activities might have a pre-
ferred start time or offset from other activities and preserv-
ing/optimizing these relationships might be more important
than executing earlier or even executing more. Finally, con-
serving some resources might also be an optimization metric
(e.g. conserving power or data volume). Representing this
criteria in scheduling and execution would be ideal.

In our formulation, scheduling is a batch process initiated
with inputs available at the time of initiation. Any execu-
tion information that arrives after the start of the scheduling

Figure 6: Scheduler Runtime vs Activity Count. The green,
blue, and black lines represent the linear fit, the three sigma
linear fit, and the five sigma linear fit respectively. The blue
outliers are over 3.0 IQR (the difference between the 75th
and 25th percentile a.k.a. interquartile range) away from the
closest whisker and the pink outliers are over 1.5 IQR but
less than 3.0 IQR away from the closest whisker.

process is not incorporated into the ongoing schedule gen-
eration. How to incorporate execution information acquired
during the scheduler runtime into the scheduling algorithm
could be very valuable and improve the relevance and qual-
ity of the generated schedule. Scheduler Runtime: In reality
scheduler runtime is not easily predictable. Ongoing work
is building a model of scheduler runtime from inputs (e.g.
number of activity requests). We run the scheduler over 50
full Sol simulations to profile the scheduler’s runtime against
varying input activities and scale surrogate runtime for an es-
timate of the actual onboard planner (assuming full onboard
CPU utilization) (See Figure 6).

As this data indicates - predicting scheduler runtime is
not trivial. Furthermore, correctly handling when the sched-
uler completes early (and Flexible Execution can shift ac-
tivities forward) or, more challenging, when the scheduler
completes late is an area of future work.

Conclusion

We have presented a theoretical framework for embedding
a scheduler within the context of execution - highlighting
several key design decisions required to embed the scheduler
in execution.

When to invoke rescheduling - we have discussed the
pros and cons of several approaches to invoking schedul-
ing - specifically fixed cadence rescheduling, event-driven
rescheduling and hybrid rescheduling.

What to execute while rescheduling - we have described
three options for what to execute while (re) scheduling -
nothing, a default policy, and the previous schedule.

How to structure execution to allow for limited response
within the Tsc scheduler response time - we describe flexible
execution to adjust execution for earlier and later based on
precedence analysis.

We have then shown both analytical and empirical analy-
sis of both synthetic and planetary rover model data to quan-
tify the effects of these design options on schedule execution
utility as measured by schedule makespan.
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