
A Scheduling Tool for Bridging the Gap
Between Aircraft Design and Aircraft Manufacturing

Cédric Pralet, Stéphanie Roussel, Thomas Polacsek
ONERA – The French Aerospace Lab, F-31055, Toulouse, France

François Bouissière, Claude Cuiller, Pierre-Éric Dereux, Stéphane Kersuzan, Marc Lelay
AIRBUS, 1 Rond Point Maurice Bellonte, 31707 Blagnac, France

Abstract

For aircraft manufacturers, the market demand in the nowa-
days aeronautical industry requires a high reactivity between
teams in charge of the design of the aircraft and teams in
charge of its production system. One way to increase this re-
activity is to help the design architects understand the way the
aircraft is produced together with the bottlenecks in the man-
ufacturing process, and to help them evaluate the impact of a
design modification on the production system. This paper ad-
dresses these two needs. We formally describe the scheduling
problem considered, the algorithmic approaches developed,
the implemented tool, and results obtained on data from a
real production line of the Airbus A320 aircraft family.

1 Context

The development process of a new aircraft program is nowa-
days mainly sequential: the architectural design is carried
out, first from the high level definition of major components
then gradually towards a very detailed design, and only then
the industrial system, i.e. all the means of production of the
aircraft, is considered. The development process is taking 7
to 10 years for a brand new aircraft, and can take several
years for an incremental development of an existing one.
This leaves a rather small latitude for adapting the produc-
tion system, while the architectural design sometimes leads
to rather complex operations on the production line.

Moreover, with the arrival of new airline companies on the
market, there is a high demand for customized aircraft. Each
customization requires an adaptation of the architectural de-
sign and consequently of the production system. With a se-
quential process, evaluating whether the current production
system can be adapted along with the adapted design is long
compared to the evolution of the market. The arrival of these
new companies also puts pressure on aircraft manufactur-
ers for increasing the production rate in order to meet the
demand. As the production line represents very heavy in-
vestments, the manufacturers do not wish to modify it. A
common solution is then to locally adapt the design of the
aircraft to simplify some operations on the production line.
To propose relevant design adaptations, the design architects
must understand and analyze correctly the current produc-
tion process. All these considerations highlight the need for

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the design and manufacturing architects to work together in
a closer cooperation (Bouissière et al. 2018).

In this paper, we present a scheduling tool that pursues
two objectives. The first one is to provide to the aircraft
architects a better view of the current line balancing, i.e.
the current organization of manufacturing tasks on the pro-
duction line1. Such a representation is not fully available,
mainly because the Airbus A320 program is not recent and
relevant documents are not digitalized yet. A clearer repre-
sentation can help the architects to identify manufacturing
bottlenecks and propose new relevant designs. For instance,
if a technical precedence between two manufacturing tasks
appears on a critical path, design architects might switch
to new physical systems that remove this precedence. Simi-
larly, if an aircraft zone is saturated at some steps of the man-
ufacturing process, it might be useful to move some physical
parts to less saturated zones, e.g. to replace a pipe currently
installed in a low-capacity zone by two pipes installed in
zones where two human operators can work in parallel.

The second objective is to help the architects to evaluate
the impact of design modifications on the line balancing. In
fact, the current scheduling tool at the manufacturing level
requires a completely specified design to compute a line bal-
ancing (for instance, how many attaches and of which type
should be used for fixing a part). When the architects come
up with a new design, this refinement process is long and
they must wait several weeks before having a feedback from
the manufacturing. On the opposite, the tool presented in
this paper allows them to quickly compare several design
adaptations and to focus on the most promising ones.

The paper is organized as follows. In Sect. 2, we formally
model the problem to be addressed. In Sect. 3 and 4, we
present the algorithmic approaches developed for helping
the architects analyze and optimize an existing line balanc-
ing. We next describe a modeling based on CpOptimizer for
getting optimization bounds on the line balancing (Sect. 5).
Sect. 6 describes the implemented tool and the results ob-
tained on real benchmarks coming from the production line
equipping the nose section of the Airbus A320 aircraft fam-
ily. We describe related works in Sect. 7, and we finally dis-
cuss some perspectives in Sect. 8.

1Line balancing is used in aeronautics to designate a scheduling
of the tasks and does not relate to any balancing of this scheduling.

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

347

IP2 IP3 IP4
0 1*Takt 2*Takt 3*Takt 4*Takt

IP1

Figure 1: A 2D-view of the way an aircraft section is
equipped by traversing each IP of the production line. The
parts added in each IP are depicted in white.

2 Problem Modeling

The production line of the front section of the Airbus A320
is divided into several workstations, here called IPs (Inter-
vals of Production) and numbered from 1 to N . Each IP is a
physical area in which the aircraft section is equipped along
with relevant tools and parts. In order for the section to be
completely equipped, it has to go through all the IPs of the
production line in a fixed order (1, . . . ,N). The section stays
in each IP of the line for a given constant duration, denoted
Takt. When this duration is over, the section goes to the
next IP of the line or is shipped to another plant if it was in
the last IP. See Fig. 1 for an illustration.

The A320 front section is partitioned into a set of zones
Z . Each zone z in Z has a capacity Kz corresponding to
the maximum number of operators that can work in z at the
same time. Small zones such as the forward cargo compart-
ment can contain at most one operator at a time (Kz = 1),
while large zones such as the cabin can contain up to five
human operators simultaneously (Kz = 5).

To equip the aircraft section, a set of elementary tasks T
must be performed. Each task t in T is defined by a duration
dt , a zone zt , and the number of operators qt required by the
task (with qt ≤ Kzt). We denote by Tz the set of tasks t
such that zt = z. Tasks are also constrained by an acyclic
precedence relation P ⊂ T × T .

Tasks are partitioned into a set of elements R called the
routings of the manufacturing problem. A task t belongs to
a unique routing rt , and we denote by Tr the set of tasks
contained in routing r ∈ R. A routing often groups tasks
that focus on one physical part (for instance, the installation
of a fan). When a human operator starts a routing in a zone,
the associated physical part might be exposed and are there-
fore more subject to damages until the routing is finished.
In order to forbid unnecessary expositions of parts, a non-
interleaving constraint is imposed between tasks belonging
to different routings (more details later on this point).

We assume that each routing r always contains two spe-
cial tasks startr and endr which must precede and follow
all other tasks in the routing, respectively. Routings are con-
strained by a precedence relation PR ⊂ R × R, and P is
extended to contain one task precedence (endr1 , startr2) for
each routing precedence (r1, r2) in PR. We suppose that the
extended version of P remains acyclic.

Finally, a manufacturing problem is defined by a tuple
(N ,Takt,Z, T ,R,P) containing all elements defined in
the previous paragraphs.

Solution Schedule If we discard the non-interleaving con-
straint between tasks belonging to different routings, the
problem obtained is a kind of RCPSP (Resource Con-
strained Project Scheduling Problem (Brucker et al. 1999))
where the resources are the aircraft section zones and where
each manufacturing task t consumes qt units of resource zt .

The main difficulty is to clearly formalize the (informal)
non-interleaving specification expressed by the end-users.
To handle this specification, a first possible option could be
to minimize the temporal dispersion of tasks associated with
the same routing. The drawback of this approach is however
that it can produce solutions which contain some interleav-
ing and are not acceptable from an operational point of view.
A second option could be to precompute, for each routing r
taken independently, a compact non-preemptible high-level
activity covering all tasks of r in a minimum amount of time,
and then to schedule only these high-level activities. The is-
sue with this approach is however that due to the decompo-
sition of the temporal horizon into successive IPs, it can for-
bid standard operational scenarios in which the realization
of a routing starts in a given IP, is preempted before the end
of the IP, and continues in the next IP. This is why we use
another option which is based on a non-interleaving prop-
erty imposed on the resource flow network formulation of
an RCPSP solution. We recall that such a network contains:
• one node labeled by t for each task t of the problem, plus

two dummy nodes src and sink called the source and the
sink of the schedule, respectively;

• one arc t1 → t2 per project precedence (t1, t2) ∈ P;

• resource flows represented as arcs t1
(z ,φ)−−−→ t2 between

task nodes, where z is a zone and φ is the number of oc-
cupation units of z transferred from task t1 to task t2 (t2
must wait for the end of t1 to use these units).

For being consistent, the resource flow network N must be
acyclic. Moreover, the cumulated input and output flows
for tasks must correspond to their resource consumptions
(Eq. 1), and the output flows for the source and the input
flows for the sink must cover the whole capacity of every
zone (Eq. 2). All these flow transfer constraints ensure that
the capacity of every zone is never exceeded.

∀z ∈ Z, ∀t ∈ Tz ,
∑

[t′
(z,φ)−−−→t]∈N

φ =
∑

[t
(z,φ)−−−→t′]∈N

φ = qt (1)

∀z ∈ Z,
∑

[src
(z,φ)−−−→t]∈N

φ =
∑

[t
(z,φ)−−−→sink]∈N

φ = Kz (2)

An example of a small resource flow network is given
on Fig. 2a: N = 2, Z = {z1, z2}, Kz1 = 1, Kz2 = 3,
T = {t1, .., t6}, R = {r1, r2, r3}, Tr1 = {t1, t2}, Tr2 =
{t3, t4}, Tr3 = {t5, t6}; zone z1 is the zone associated
with tasks t1, t2, t4 that all require 1 human operator; tasks
t3, t5, t6 are performed in zone z2 and require qt3 = 3,
qt5 = 2, and qt6 = 1 human operator(s); PR = ∅ and
P = {(t3, t4)} ∪ {(startrt , t), (t , endrt)|t ∈ T }. For read-
ability reasons, Fig. 2a does not contain the nodes represent-
ing the start and end of routings, and the precedence con-
straints associated with them.

348

(a) src

t1 t2

t3

t4

t6

t5

sink

(z1, 1)
(z1, 1) (z1, 1) (z1, 1)

(z2, 2)

(z2, 1)

(z2, 3)

(z2, 1)

(z2, 2)

(b)
IP 1 IP 20 Takt 2 ·Takt

z1

z2

t1 t2 t4

t3

t6

t5

Figure 2: (a) Resource flow network; (b) line balancing

Based on the flow network formulation, we introduce a
formal definition of the non-interleaving constraint in which
we consider that the latter is satisfied if and only if in the re-
source flow graph, every path between two nodes associated
with the same routing r does not traverse any node associ-
ated with another routing r ′ 	= r . For a zone with capacity 1,
this definition boils down to saying that all tasks associated
with a single routing r are performed successively in that
zone. For a zone with capacity > 1, it expresses that zone
units occupied by a task of r are either reused by other tasks
of r , or never reused by r . The example on Fig. 2a satisfies
the non-interleaving constraint.

A solution to the manufacturing problem also assigns an
IP ipt ∈ {1, . . . , N} to every task t . Based on the flow net-
work and on the IP choice, the start time σt of each task t
is then given by the maximum between the start time of its
IP (equal to (ipt − 1) · Takt), and the maximum end time
of a task which must precede t owing to the resource flow
network. The end date of t is given by σt+dt , and a solution
is said to be consistent iff every task is fully contained in its
allocated IP, that is iff:

∀t ∈ T , σt + dt ≤ ipt ·Takt (3)

The line balancing corresponding to the previous exam-
ple is illustrated on Fig. 2b. Tasks t1, t5 and t6 start at the
beginning of the first IP. Tasks t5 and t6 can be performed in
parallel in zone z2. Task t2 cannot start directly at the end of
task t1 because there is not enough place left in the first IP.
Instead, task t2 starts only at the beginning of the second IP
(ipt2 = 2). Task t4 has a precedence with task t3 so it cannot
start directly at the end of task t2.

3 Existing Line Balancing Analysis

One key aspect in the problem is that our goal is to help
architects improve the design of the aircraft given the current
line balancing.2 The latter cannot be completely changed for
operational disruption reasons, hence there is a need to build
a first schedule which is representative of the existing line
balancing. To do this, the manufacturing managers do not

2The current line balancing is associated with the current state
of the design.

directly give to us a resource flow network, but they provide
a set of data from which we are able to extract:

• the IP associated with each task in the current line balanc-
ing; we consider here that this IP must not be changed;

• for each routing r , an ordering OT
r between tasks com-

posing r , where tasks are ordered by increasing start time
in the existing line balancing;

• for each zone z , an ordering between routings OR
z that

use z , where routings are ordered by increasing start time
of their first task that occupies z ; from these elements, we
also build a global ordering OR between routings which
is consistent with all individual orderings OR

z in zones;
this means that if routing r appears before routing r ′ in
one ordering OR

z , then r also appears before r ′ in OR.

The set of data does not contain the start dates of tasks.
We then use a Schedule Generation Scheme (SGS) to build a
full schedule. This SGS, here called SGS - AS IS, starts from
an empty schedule and incrementally computes the resource
flow network together with the start and end times of tasks.
To do this, the SGS follows global orderOR (list scheduling
approach) and iteratively enqueues routings and tasks at the
end of the schedule.

Technically speaking, the SGS maintains, for each zone
z and each IP i, a list of so-called pending resource flows.
The latter is a list Φz ,i = [(t1, φ1), . . . , (tn, φn)] where each
pair (tj , φj) represents that φj resource units of zone z are
released at the end of task tj and can be reused by future
tasks placed in IP i. Pairs (tj , φj) are ordered in the list by
increasing end time of tj . Initially, the list of pending re-
source flows is given by Φz ,i = {(si,Kz)} where si is the
source node associated with IP i, meaning that at the begin-
ning of the IP the whole capacity of the zone is available.
In the following, we consider that fictitious task si is added
to the flow network and that the release time of this task is
equal to the start time of the IP, that is to (i− 1) ·Takt.

Then, at each step, the SGS considers the next routing
r in ordering OR and enqueues all tasks composing r in
the schedule, following task order OT

r extracted from the
input data. To insert a task t placed in zone z and IP i in
the reference line balancing, we consider the current list
of pending resource flows Φz ,i = [(t1, φ1), . . . , (tn, φn)].
We compute the smallest index j∗ ∈ [1..n] such that flows
φ1, . . . , φj∗ suffice to cover consumption qt , i.e. such that∑

j∈[1..j∗] φj ≥ qt . According to zone z , task t cannot start
before time α = σtj∗ + dtj∗ . If t has mandatory predeces-
sors, then t cannot start before the maximum end time β of
one of these predecessors. The start time of t in IP i is cho-
sen as σt = max(α, β), so that both the predecessors of t
are already finished at that time and the number of resource
units required by t are available at that time.

Then, given the list of pending flows Φz ,i =
[(t1, φ1), . . . , (tn, φn)] for zone z and IP i, we com-
pute the largest index k such that the end time of tk is less
than or equal to σt , that is we compute the index k such that
the idle period between the end of tk and the start of t is
as small as possible. If qt ≤ φk, then qt resource units are
transferred from task tk to task t . Otherwise (qt > φk), φk

349

resource units are transferred from tk to t and resource units
are also transferred from tk−1 to t , and so on until t receives
the right number of resource units. The list of pending flows
Φz ,i is updated according to these modifications.

At the end of this process, all routings and tasks have
been considered by the SGS and a full schedule together
with a consistent resource flow network are obtained. The
non-interleaving constraint is satisfied by construction since
the SGS enqueues tasks by considering each routing succes-
sively. In this sense, we use a kind of hierarchical SGS.

The only constraint that might not be satisfied is Con-
straint 3, which expresses that the end time of a task must
not exceed the end time of the IP in which it is placed. This
constraint should never be violated by the existing line bal-
ancing, but it might be violated because the actual duration
of a few operations is not consolidated yet in the ongoing
digitalization process. The capacity to compute such con-
straint violations actually helps the architects to build a con-
solidated view of the existing line balancing database.

The schedule obtained, even if it is inconsistent, also helps
aircraft designers understand the bottlenecks in the manufac-
turing process. Indeed, from the resulting schedule, we get
the start time σt of every task t . We can also compute the
minimum temporal distance between the start time of any
task t and the sink node of the schedule. This temporal dis-
tance is given by the length of the longest path Dt,sink from
t to sink in the precedence graph associated with the sched-
ule. This graph contains the same arcs as the resource flow
network but its arcs are labeled by the duration of tasks. The
temporal flexibility of a task is then given by:

flex t = makespan − (σt +Dt,sink) (4)

that is by the difference between the maximum end time of
a task in the schedule (makespan = max t′∈T (σt′ + dt′)),
and the total duration required to perform all tasks that must
precede and follow t. This temporal flexibility is negative for
tasks involved in a chain of precedences inducing a violation
of an IP end time, it is zero for tasks which have no temporal
flexibility, and positive for all other tasks.

All computations realized (pending resource flow rea-
soning, resource flow network construction, computation
of longest paths in the precedence graph...) are actually
automatically obtained based on InCELL (Invariant-based
Constraint EvaLuation Library), a generic constraint-based
scheduling tool (Pralet 2017). For the problem at stake, new
elements have been added to this library to deal with hierar-
chical task orderings instead of flat task orderings.

4 Line Balancing Repair and Optimization

Line Balancing Repair The previous section explains the
scheduling techniques used for bridging the gap between air-
craft designers and aircraft manufacturers in terms of con-
solidation of the reference line balancing, the goal being
to progressively get a reference schedule where tasks com-
pletely fit into IPs.

In parallel to this consolidation process, to automatically
get a consistent reference schedule and start working on
design optimization, one solution is to relax the constraint
which forces a task to be located in a fixed IP. To do this, we

use a second schedule generation scheme in which when a
task is late in a given IP, it is automatically postponed to the
next IP. The number of IPs required might be increased, but
we get a consistent schedule. Such a relaxation is also useful
for design architects to quickly simulate the line balancing
obtained for a new design solution.

In the new model introduced, each task has a set of pos-
sible realization windows {[(i − 1) · Takt..i · Takt] | i ∈
[1..N]}. In InCELL, such a task is automatically postponed
to the first window in which it fits, and to the last window if
the task cannot be consistently placed in any window. More
precisely, consider a task t to be enqueued in the schedule.
As before, it is possible to compute the earliest start time
σt of t given (a) the current pending resource flows, (b) the
resource consumption associated with t , and (c) the prece-
dence constraints imposed over t . Then, either [σt , σt + dt]
is fully contained in an IP and t is placed in this IP, or σt is
postponed to the start of the next IP (if it exists).

From this, the only tasks that might finish after the end
time of their IP are the tasks which are placed in the last IP.
By artificially increasing the number of IPs, we can always
get a schedule which satisfies all the constraints. With this
new schedule generation scheme, called SGS - Repair, we
can also decrease the duration of an IP to evaluate the impact
of a production rate increase on the line balancing.

Line Balancing Optimization From a given line balanc-
ing, we can also perform optimization. We consider here that
an optimal solution minimizes the makespan, defined as the
end time of the last task (max t∈T (σt + dt)).

As mentioned before, InCELL is able to automatically
provide an output schedule given an ordering of routings and
an ordering of tasks for each routing. Basically, this library
uses Constraint-Based Local Search (Van Hentenryck and
Michel 2005) and it is specifically designed to implement
local search algorithms in which a given schedule is updated
step by step through local moves such as activity insertions,
activity removals, or activity reinsertions.

When tackling the line balancing problem based on
these reinsertion capabilities, the main issue is to main-
tain the satisfaction of the non-interleaving constraint.
To solve this issue, we developed a function called
selectBestFlexReinsertionMove(s, r) which takes as
an input a current schedule s and a routing r , and which tries
to reinsert this routing (and all its tasks) at a better place in
the schedule. This function works as follows:
• it removes r and all tasks covered by r from the schedule;
• after that, it tests all possible insertion positions for r in
OR which are consistent with the set of precedence con-
straints between routings; for each insertion position of r ,
it quickly estimates the temporal flexibility flex t (Eq. 4)
that would be obtained for every task covered by r ; the
quality of the insertion of r at the position tested is then
defined as the minimum of these temporal flexibilities;

• last, it performs the insertion of r at one position that has
the best estimated insertion quality, the rationale being
that such a position makes the whole schedule less tight;
the exact effect of this insertion over the whole schedule

350

is incrementally computed; in the current version of the
algorithm, the tasks covered by r are inserted in the same
order as in the initial schedule, but we could also search
for better orderings at this level.
Based on this new reinsertion function, we perform it-

erative reinsertions of routings in order to decrease the
makespan. However, to avoid being stuck at a local opti-
mum or on a plateau of the search space, we also use a tabu
search mechanism. More precisely, we associate a tabu sta-
tus tabur with each routing r , expressing whether a local
move on r is allowed at a given step of the search. From
this, the library is also used to incrementally maintain dur-
ing search expressions such as the set of routings which are
not tabu and which have no temporal flexibility (called the
non tabu critical routings):

Rcritical ← {r ∈ R |¬tabur ∧ ∃t ∈ Tr s.t. flex t = 0}(5)

On this basis, we use Algorithm 1 for improving the
makespan starting from the reference line balancing s0.
The algorithm maintains a current schedule s and the best
line balancing computed so far s∗. While a maximum CPU
time is not elapsed, it randomly selects one routing r in
Rcritical (line 3), and it tries to reinsert r in the schedule us-
ing function selectBestFlexReinsertionMove detailed
above (line 4). If the makespan of the new schedule s′ ob-
tained is worse than the makespan before the reinsertion of
r , then the current schedule s is not changed and r is marked
as tabu (line 5), meaning that the reinsertion of r is temporar-
ily forbidden. Otherwise, schedule s′ is accepted as the new
reference schedule (line 7). If the new makespan obtained is
strictly better than the best known makespan, the new sched-
ule is recorded as the best schedule generated so far (line 8).
Otherwise, if the new makespan is the same as before, rout-
ing r is marked as tabu (line 9), to avoid selecting r again
and again. Last, whenever set Rcritical becomes empty, the
tabu status of each routing is reset to false (line 10). Finally,
the best schedule found is returned (line 11). As the result-
ing line-balancing is obtained by local moves of routings in
the original line balancing, this search scheme is intuitive
for the end-users. Many other metaheuristics could be con-
sidered for improving the results.

Algorithm 1: LineBalancingOptimizer(s0,Tmax):
schedule optimization through tabu search and iterative
temporal flexibility improvement, from an initial sched-
ule s0 and for a given maximum CPU time Tmax

s ← s0, s∗ ← s01

while CpuTimeElapsed() < Tmax do2

r ← select(Rcritical)3

s ′ ← selectBestFlexReinsertionMove(s, r)4

if makespan(s′) > makespan(s) then tabur ← true5

else6

s ← s′7

if makespan(s) < makespan(s∗) then s∗ ← s8

else tabur ← true9

if Rcritical = ∅ then foreach r ∈ R do tabur ← false10

return s∗11

5 Obtaining Optimization Bounds

Makespan Bound With the previous optimization ap-
proach, aircraft designers do not have any way of knowing
the gap between the solution that they have and the qual-
ity of an optimal solution. To get a bound on the makespan
value, one option is to use an exact solver working on a
simplified (relaxed) problem. In this direction, most parts of
the manufacturing problem can be easily modeled using the
scheduling primitives of CpOptimizer.3 To do this, it is first
possible to define, for each task t , one integer variable ipt
corresponding to the index of the IP in which task t is real-
ized (see Eq. 6). It is also possible to associate one temporal
interval itv t with each task t (so-called interval variables in
CpOptimizer, defined in Eq. 7). Each such temporal interval
is defined by a start time variable startOf (itv), an end time
variable endOf (itv), and a length lengthOf (itv) giving the
distance between the start and the end of the interval. For
each task t ∈ T , the duration of itv t is fixed to dt in Eq. 7.
Constraints 8-9 enforce that each task is placed within the IP
chosen for this task.4 Constraint 10 enforces the precedence
constraints between tasks (use of the endBeforeStart primi-
tive of CpOptimizer). Constraints 11 and 12 enforce that the
capacity of working zones is never exceeded. For a zone z
with capacity 1, Constraint 11 simply imposes a noOverlap
constraint between intervals associated with z . For a zone
with capacity > 1, Constraint 12 states that the cumulated
consumption of tasks must never exceed the capacity of the
zone (use of the pulse keyword in CpOptimizer that builds
an elementary consumption profile, and of a sum of elemen-
tary profiles to get a cumulated consumption profile).

Variables:
∀t ∈ T , dvar int ipt in [1..N] (6)
∀t ∈ T , dvar interval itv t duration dt in [0..MaxTime] (7)
Constraints:
∀t ∈ T , startOf (itv t) ≥ (ipt − 1) ·Takt (8)
∀t ∈ T , endOf (itv t) ≤ ipt ·Takt (9)
∀(t1, t2) ∈ P, endBeforeStart(itv t1 , itv t2) (10)
∀z ∈ Z s.t. Kz = 1, noOverlap({itv t | t ∈ Tz}) (11)
∀z ∈ Z s.t. Kz > 1,

∑
t∈Tz

pulse(itv t , qz) ≤ Kz (12)

Given this problem, by setting MaxTime = N · Takt, the
first goal can be to minimize the makespan:

minimize max
t∈T

endOf (itv t) (13)

The optimal objective value mk∗ provides a lower bound on
the best makespan that can be obtained for the full problem.

3https://www-01.ibm.com/software/commerce/optimization/
cplex-cp-optimizer/

4In CpOptimizer, such a constraint can also be imposed by
introducing, for each task t and each IP i, an optional interval
itvAlt t,i whose temporal bounds are the start and end times of IP
i, and by imposing an alternative constraint expressing that there
must be exactly one IP i such that itv t coincides with itvAlt t,i.
This alternative version provides lower quality results in our case.

351

Data (Excel)

Data Model LiBViz Tool

Visualizations

Figure 3: Process used to generate and visualize plans

Task Grouping Optimization Modeling non-interleaving
aspects based on the scheduling primitives of CpOptimizer
is not easy, however it is still possible to set MaxTime =
mk∗ and to try and build solutions minimizing the dispersion
of tasks associated with the same routing. The solutions ob-
tained in this way are not operationally feasible in our case,
but the approach goes in the right direction with regards to
the non-interleaving constraint (use of an optimization func-
tion instead of a hard constraint). To minimize the dispersion
of routings, we can introduce one additional interval vari-
able for each routing r (Eq. 14), and use the span constraint
of CpOptimizer to impose that this interval must contain all
intervals of tasks covered by r (Eq. 15).

Additional variables:
∀r ∈ R, dvar interval itv r in [0..MaxTime] (14)
Additional constraints:
∀r ∈ R, span(itv r , {itv t | t ∈ Tr}) (15)

On this extended problem, we can consider the new objec-
tive function given below:

minimize
∑

r∈R
lengthOf (itv r) (16)

6 Tool and Experiments
In this section, we first describe the tool developed for this
study and that is currently used by Airbus architects. Then,
we present results of the experiments performed.

6.1 Tool Description

For the A320 program, most of the documentation is not
digitalized. This is why we first defined a data model at the
interface between the design and the manufacturing archi-
tects (Polacsek et al. 2017). Compared to the model used on
the manufacturing side, human operators (along with their
qualification, their working hours, etc.) and tooling and lo-
gistics are not taken into account. To create data instances of
this model, we have retrieved all relevant pieces of informa-
tion for the existing line balancing, and merged them inside
a spreadsheet. From a data model instance, the tool can use
all algorithms described in Sections 3 and 4, and offers sev-
eral visualizations of the generated schedule as illustrated on
Fig. 3.

The LiBViz (Line Balancing Visualization) tool provides
three types of visualizations:

Figure 4: Gantt-based view

Figure 5: Resource usage view

Figure 6: Resource usage view for a tight zone

• a gantt-based view (see Fig. 4) that allows to visualize
the generated line balancing along with tasks and rout-
ings and associated project precedences, like in a classi-
cal Gantt diagram. The graphical interface provides filters
such as the selection of specific sets of zones and/or IPs
to facilitate the navigation within the line balancing. All
tasks and routings are displayed with a specific color that
indicates their degree of temporal flexibility in the sched-
ule, as defined in Eq. 4: purple when the flexibility is neg-
ative, red when it is zero then gradually from orange to
green when the flexibility increases. This view is partic-
ularly suited for analyzing the delays in an existing line
balancing, as presented in Sect. 3;

• a resource usage view (see Fig. 5) that allows to visualize
the occupation of each zone of the aircraft all along the
schedule. As for the gantt-based view, filters are provided
to navigate within the line balancing. This view is par-
ticularly suited for analyzing the bottlenecks associated
with the occupation of zones. For instance, as illustrated
on Fig. 6, if a small zone like a cargo compartment (first
line in the resource view) is not used at all during IP 6,
then a way of improving the makespan is to modify the
ordering or the design to reduce the idle time in this zone.

• a PERT diagram (precedence graph induced by the sched-
ule, as detailed in Sect. 2). It allows to visualize the critical
path without the notion of IP. It is not interactive yet.

352

6.2 Benchmarks

We have worked on three real benchmarks coming from the
production line of the A320 nose section:

• Rate 50 : it corresponds to the data model used for the
line balancing at the beginning of our study, when 50 nose
sections were produced per month;

• Rate 54 : it corresponds to the current data model used
on the production line, with a production rate equal to 54
sections per month;

• Rate 54 ND : it corresponds to the data model used for
benchmark Rate 54 but with a New Design for some parts
of the nose section; tasks and routings for this new design
(that is not used in production yet) have been created by
manufacturing experts in a few hours.

These benchmarks share the same set of zones: eight
zones with a capacity between 1 and 5. Tasks are rather
equally distributed amongst those zones. Specific features
of these benchmarks are shown in Table 1.

To get non-private instances that are representative of
our industrial benchmarks, we also performed experiments
based on the classical j90 and j120 RCPSP instances, which
contain 4 resources. Starting from these instances, we first
group tasks by groups of size k (here k = 5) to define rout-
ings. Precedences between tasks belonging to distinct rout-
ings are translated to precedences between routings. To get
closer to the real benchmarks, (a) for each group of tasks,
we only keep the consumptions over a single resource, by
choosing at each step the resource that contains the fewest
routings; (b) resource capacities are set to 1, 2, 3, 4 respec-
tively, and we update all resource consumptions proportion-
ally; (c) we duplicate the model n times (here n = 10) to get
a representative problem size; (d) we set the Takt value to
m times (here m = 25) the mean duration of tasks; (e) we
deduce from the most consumed resource a consistent num-
ber of stations. We also present the results associated with
three representative instances obtained in this way.

6.3 Results

Following the different approaches defined in Sect. 3-5,
there are 5 running modes associated with LiBViz:

• the SGS - AS IS mode reproduces the existing line balanc-
ing based on the techniques presented in Sect. 3;

• the SGS - Repair mode postpones the tasks that are late,
as presented in Sect. 4;

• the Local Search mode performs line balancing optimiza-
tion based on Algorithm 1 presented in Sect. 4;

• the CpOptimizer (Mk,Gr) mode uses CpOptimizer 12.5
along with the model defined in Sect. 5, that first opti-
mizes the makespan and then the grouping criterion. For
memory issues, all task durations are divided by 10 for
this mode. The computation time is written x+y where x
and y are the times for the makespan minimization phase
and the task grouping optimization phase, respectively;

• the CpOptimizer (Gr,Mk) mode also uses CpOptimizer,
but it considers the grouping criterion as strictly more im-

portant than the makespan. More precisely, this mode ag-
gregates the two criteria as follows: minimize MaxTime ·∑

r∈R lengthOf (itv r) + maxt∈T endOf (itv t).

All the experiments have been run on a four-Xeon
2.80GHz processors with 8GiB of RAM. Results of experi-
ments are presented in Table 1.5

As expected, the SGS - Repair mode uses more IPs than
the other ones. Nevertheless, it runs in less than a second
and allows to repair a line balancing with very simple and
realistic moves: a task that cannot be performed in one IP is
performed in the next one.

CpOptimizer (Mk,Gr) finds the optimal makespan for the
Airbus benchmarks in less than one minute. However, it can-
not find the optimal value for the second criterion with a
timeout of 300 seconds. For benchmark Rate 54 ND and the
RCPSP benchmarks, this mode is unable to find a solution
in the second phase of the search: the result in the table is
the value of the grouping criterion after the minimization
of the makespan. CpOptimizer (Gr,Mk) clearly improves the
grouping criterion while being close to the best makespan
for the Airbus benchmarks. In the case of the RCPSP in-
stances, CpOptimizer cannot get low values of the grouping
criterion for the two biggest instances in 300 seconds.

With a timeout equal to one minute, the Local Search ap-
proach gives results of high quality. The makespan of the ob-
tained solutions is only one hour longer than the makespan
lower bound provided by CpOptimizer (Mk,Gr), while the
task grouping criterion is much better than with the two vari-
ants of CpOptimizer, essentially thanks to the schedule gen-
eration scheme used that does not interleave tasks.

Concerning the analysis done on the design side, the re-
sults highlight that the makespan is significantly improved
with the new design (ND) as there is a need for 10 IPs in-
stead of 11 IPs (5 hours less on the production line). In fact,
the new design allows to remove several operations from the
tightest zones of the aircraft. Following this result, the de-
sign architects can pursue the update of the design in this di-
rection. On the manufacturing side, architects can also fore-
see what could be a line balancing according to this new
design. When the optimization is realized through Local
Search, they can trace all the local moves performed to op-
timize the schedule. This way, they can validate the moves
according their feasibility in the real production line.

7 Related Work

Co-engineering is not a new concept (Shenas and Der-
akhshan 1994), notably in the automotive industry (Göpfert
and Schulz 2013) or in the space industry (Bandecchi et al.
2000), but it is still a challenge in the aeronautics indus-
try as the manipulated objects are quite complex and pro-
duced in low quantities compared to the automotive indus-
try, and most operations are still handled by human operators
(Pardessus 2004). In the context of co-engineering in aero-
nautics, using scheduling tools for evaluating design impacts
on a line balancing is, from our knowledge, novel. In terms

5For the SGS - AS IS mode, the makespan does not take into
account the delays, which can be significant on some benchmarks.

353

Benchmark Takt |R| |T | |P| Mode nIPs Makespan Delays Grouping Crit. Time (s)
Rate 50 324 317 780 2324 SGS - AS IS 10 2d 3h 36min yes 1w 5d 2h 32min < 1

SGS - Repair 12 2d 14h 5min no 1w 5d 19h 4min < 1
Local Search 11 2d 7h 11mins no 1w 5d 3h 24min 60

CpOpt. (Mk,Gr) 11 2d 6h 6min no 2w 6d 14h 30min 15 + 300
CpOpt. (Gr,Mk) 11 2d 6h 26min no 2w 3d 22h 47min 300

Rate 54 300 387 915 2669 SGS - AS IS 12 2d 8h 12min yes 1w 6d 1h 31min < 1
SGS - Repair 12 2d 11h 52min no 1w 6d 11h 53min < 1
Local Search 11 2d 3h 3min no 1w 6d 6h 5min 60

CpOpt. (Mk,Gr) 11 2d 2h 4min no 3w 3d 9h 45min 17 + 300
CpOpt. (Gr,Mk) 11 2d 4h 30min no 2w 3d 12h 58min 300

Rate 54 ND 300 341 849 2478 SGS - AS IS 12 2d 8h 12min yes 1w 4d 8h 0min < 1
SGS - Repair 12 2d 11h 10min no 1w 4d 15h 3min < 1
Local Search 10 1d 22h 33min no 1w 4d 12h 35min 60

CpOpt. (Mk,Gr) 10 1d 21h 45min no 7w 0d 8h 52min 33 + 300
CpOpt. (Gr,Mk) 10 2d 0h 53min no 2w 4d 15h 13min 300

j90 1 1 822 190 470 280 Local Search 6 2d 22h 24min no 3w 6d 23h 26min 60
CpOpt. (Mk,Gr) 5 2d 21h 24min no 6w 4d 11h 12min 300+300
CpOpt. (Gr,Mk) 6 3d 9h 18min no 2w 2d 11h 6min 300

j90 28 9 762 190 840 800 Local Search 17 1w 1d 19h 54min no 2w 0d 8h 0min 60
CpOpt. (Mk,Gr) 16 1w 1d 0h 54min no 9w 4d 1h 12min 300+300
CpOpt. (Gr,Mk) 16 1w 1d 9h 30min no 9w 2d 20h 12min 300

j120 9 6 864 250 900 720 Local Search 11 6d 10h 48min no 2w 1d 38h 24min 60
CpOpt. (Mk,Gr) 10 5d 14h 18min no 6w 0d 16h 12min 300+300
CpOpt. (Gr,Mk) 10 5d 17h 42min no 8w 0d 10h 24min 300

Table 1: Results of experiments. Columns are defined as follows: name of the benchmark (Benchmark), Takt value in minutes
(Takt), number of routings (|R|), number of tasks (|T |), number of precedence constraints (|P|), name of the applied algorithm
(Mode), number of IPs in the result schedule (nIPs), makespan5 of this schedule (Makespan), boolean indicating whether the
schedule contains tasks with delays, i.e. with a negative temporal flexibility (Delays), value of the task grouping criterion as
defined in the CpOptimizer model (Grouping Criterion), and CPU time needed for computing the schedule (Time). In the
results, “a w b d c h d min’ should be read as “a weeks, b days, c hours and d minutes”.

of scheduling, this corresponds to looking for changes in the
input data to improve the quality of the schedule obtained.

However, there is a wide literature for the optimization
of a line balancing from a manufacturing point of view, as
presented in the survey (Battaı̈a and Dolgui 2013). In this
paper, we are more at a strategic decision level, which is
why we keep a rather simple model of the manufacturing
(without human operators or multiple lines).

From a scheduling point of view, if we discard non-
interleaving constraints, the problem considered when IPs
are fixed is a kind of RCPSP. When task IPs can be changed,
we are closer to works on scheduling with time windows
available for realizing activities (Brucker and Knust 2000).
In another direction, we are not aware of RCPSP exten-
sions considering hierarchical tasks (such as routings de-
composed into basic tasks) coupled with non-interleaving
constraints between tasks. Several existing approaches con-
sider the minimization of the temporal extent of a set of re-
lated tasks, for instance to group multiple observations of the
same target to get similar observation conditions (Colomé et
al. 2012). However, this does not necessarily produce solu-
tions which are operationally feasible in our case. Interleav-
ing concerns are also present in SHOP2, a planner for HTNs
(Hierarchical Task Networks (Nau et al. 2003)). Basically,
SHOP2 plans for tasks in the same order as they will be ex-
ecuted, and it has an anti-interleaving mechanism which can
be used to force the addition of all subtasks of an abstract
task before considering the next abstract task. Our sched-
ule generation scheme uses similar principles, however we

adopt a scheduling approach in which we directly reason
about tasks and resources instead of actions and states.

8 Conclusion

In this paper, we describe a scheduling tool for helping the
design architects and the manufacturing managers to work
in a closer loop. This tool is currently used and it already
helps the design architects to better understand the manu-
facturing process The compact representation it offers al-
lowed the correction of dozens of mistakes in the current
representation of the line balancing. Our approach also re-
duces the time required for evaluating a new design: for the
new design mentioned in the paper, it took two days to de-
fine the updated routings and tasks (and their features), and
our tool then provided answers within minutes. For the end-
users, our tool also has visualization and navigation capabil-
ities that allow to grasp the content of a schedule containing
almost one thousand tasks.

On the scheduling side, we will have to consider new
types of constraints. In particular, there is a need to handle
maximum temporal distance constraints between two tasks
or two routings, for instance to express that two tasks fo-
cusing on the same part should be performed within a given
amount of time. We could also consider constraints stipulat-
ing that some tasks neutralize a zone for a given duration.

References

Bandecchi, M.; Melton, B.; Gardini, B.; and Ongaro, F.
2000. The ESA/ESTEC Concurrent Design Facility. In

354

Proc. of the 2nd European Systems Engineering Conference
(EuSEC’00), 329–336.
Battaı̈a, O., and Dolgui, A. 2013. A Taxonomy of Line Bal-
ancing Problems and their Solution Approaches. Interna-
tional Journal of Production Economics 142(2):259 – 277.
Bouissière, F.; Cuiller, C.; Dereux, P.; Kersuzan, S.; Polac-
sek, T.; Pralet, C.; and Roussel, S. 2018. Co-engineering
in Aeronautics? The A320 Forward Section Case Study. In
Proc. of the 9th European Congress Embedded Real Time
Software And Systems (ERTS’18).
Brucker, P., and Knust, S. 2000. Resource-constrained
Project Scheduling and Timetabling. In Proc. of the 3rd
International Conference on Practice and Theory of Auto-
mated Timetabling (PATAT’00), 277–293.
Brucker, P.; Drexl, A.; Möring, R.; Neumann, K.; and Pesch,
E. 1999. Resource-constrained Project Scheduling: Nota-
tion, Classification, Models, and Methods. European Jour-
nal of Operational Research 112(1):3–41.
Colomé, J.; Colomer, P.; Guardia, J.; Ribas, I.; Campreciós,
J.; Coiffard, T.; Gesa, L.; Martinez, F.; and Rodler, F. 2012.
Research on Schedulers for Astronomical Observatories. In
Proc. of SPIE, Observatory Operations: Strategies, Pro-
cesses, and Systems IV, volume 8448.
Göpfert, I., and Schulz, M. 2013. Logistics Integrated Prod-
uct Development in the German Automotive Industry: Cur-
rent State, Trends and Challenges. Springer Berlin Heidel-
berg. 509–519.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. Journal of Artificial Intelligence Research 20:379–
404.
Pardessus, T. 2004. Concurrent Engineering Development
and Practices for Aircraft Design at Airbus. In Proc. of
the 24th International Congress of Aeronautical Sciences
(ICAS’04).
Polacsek, T.; Roussel, S.; Bouissière, F.; Cuiller, C.; Dereux,
P.; and Kersuzan, S. 2017. Towards Thinking Manufactur-
ing and Design Together: An Aeronautical Case Study. In
Proc. of the 36th International Conference on Conceptual
Modeling (ER’17), 340–353.
Pralet, C. 2017. An Incomplete Constraint-Based System
for Scheduling with Renewable Resources. In Proc. of the
23rd International Conference on Principles and Practice of
Constraint Programming (CP’17), 243–261.
Shenas, D. G., and Derakhshan, S. 1994. Organizational
Approaches to the Implementation of Simultaneous Engi-
neering. International Journal of Operations & Production
Management 14(10):30–43.
Van Hentenryck, P., and Michel, L. 2005. Constraint-based
Local Search. MIT Press.

355

