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Abstract

This paper addresses batch scheduling at a back-end semicon-
ductor plant of Nexperia. This complex manufacturing envi-
ronment is characterized by a large product and batch size
variety, numerous parallel machines with large capacity dif-
ferences, sequence and machine dependent setup times and
machine eligibility constraints. A hybrid genetic algorithm is
proposed to improve the scheduling process, the main fea-
tures of which are a local search enhanced crossover mecha-
nism, two additional fast local search procedures and a user-
controlled multi-objective fitness function. Testing with real-
life production data shows that this multi-objective approach
can strike the desired balance between production time, setup
time and tardiness, yielding high-quality practically feasible
production schedules.

Introduction

Production scheduling is one of the most active areas of op-
erational research, which is largely due to the rich variety of
problems within the field. The first to recognize the parallel
machine scheduling problem was (McNaughton 1959). In
the last 50 years this problem has been extensively studied.
This research includes literally hundreds of publications on
exact techniques, heuristics and meta-heuristic algorithms
for the parallel machine scheduling problem and some of
its variants (Allahverdi 2015). Nonetheless, there is a notice-
able gap between the theory and the application of the devel-
oped methods. The proposed methods often neglect impor-
tant aspects of real-world manufacturing environments. On
the other side, scheduling is becoming an increasingly com-
plex task, as technological advancement leads to companies
with ever growing product portfolios.

Although there is a recent trend towards more realistic for-
mulations of scheduling problems, there are yet not many
research efforts that consider the full complexity of realis-
tic manufacturing environments. Most literature addresses
the case with identical machines. However, less research
focuses on environments where the process time of a job
depends on the machine on which it is processed, i.e. the
machines are unrelated (Cheng, Ding, and Lin 2004). The
number of works that also address sequence- and machine-
dependent setup times are even fewer. Recent works that
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apply meta-heuristics for such environments can be found
in (Vallada and Ruiz 2011; Ying, Lee, and Lin 2012;
Avalos-Rosales, Angel-Bello, and Alvarez 2015). Further-
more, some jobs may only be processed on a certain subset
of the available machines. Environments with such a heavy
machine dependency are common in industry due to the
presence of multiple machines from different ages and with
various technologies.

Motivated by the back-end production of integrated cir-
cuits (ICs) at an Assembly and Testing facility of Nexperia,
this paper addresses an unrelated parallel machine schedul-
ing problem with sequence- and machine-dependent setup
times, machine eligibility and due dates. A drawback of the
current way of scheduling is that planners can only oversee
a limited number of machines over a limited time span, and
furthermore that the quality of schedules relies largely on
the planner’s experience. Through increased scheduling au-
tomation, these drawbacks can be overcome. To solve this
NP-hard (Pinedo 1995) scheduling problem, a novel hybrid
genetic algorithm (HGA) metaheuristic is proposed. Besides
two fast local search methods, this genetic algorithm in-
cludes a local search enhanced cross-over mechanism. The
most studied optimization criterion for scheduling problems
is the minimization of the maximum completion time, a
measure that is also known as the makespan or Cmax. It is
foreseeable that the minimization of Cmax will attempt to
fully utilize all available machines upto Cmax, possibly at
the expense of additional setup time (i.e. Cmax is a regular
criterion). However, setups are highly undesired in practice
as they cost capacity and operator time. The fitness function
of the genetic algorithm contains a multi-objective criterion
that attempts to strike a user-controlled balance between the
setup time, process time and tardiness.

In the next section an overview of the back-end produc-
tion process of ICs at a Assembly and Testing facility of
Nexperia is given.

Back-end Production Process

At the back-end production of electronics manufacturing at
Nexperia, semi-finished ICs are encapsulated in a support-
ing case to prevent physical damage and corrosion. The
case, which is commonly known as a “package”, supports
the electrical contacts which connect the device to a circuit
board. This packaging process is done on assembly lines.
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Each assembly line consists of multiple workstations,
each of which can only perform one specific operation: die
bonding, wire bonding or molding. The semi-finished ICs,
so-called dies, are small blocks of semiconducting material
on which a certain IC is fabricated. Die bonding refers to the
bonding of dies to a (metal) support structure, the so-called
lead frame. Wire bonding is the process of making intercon-
nections between the die and a specific location on the lead
frame. Molding refers to the encapsulation of the device by
a molding compound to protect it from the outside environ-
ment. Each assembly line is capable to perform all three op-
erations, i.e. it is composed of at least one die bonding, one
wire bonding and one molding station. However, some as-
sembly lines contain more than three workstations, which
simply means that some can process products at higher ve-
locity. Since the lead frame flows through each workstation
of an assembly line, and thereby couples all workstations,
each line is treated as a single machine.

Each product requires a certain set of process parameters
to be set accordingly on each workstation of the assembly
line. This set of parameters is referred to as the product’s
recipe. When two different products, each having a differ-
ent recipe, are subsequently processed on a certain assem-
bly line, this requires reconfiguration of the workstations,
the extent of which depends on (1) the difference between
the recipes and (2) the number of workstations that require
reconfiguration. Thus, the setup time depends on both the
production sequence and the machine. Furthermore, not all
machines are able to accommodate all recipes, which trans-
lates to machine eligibility constraints.

Summarizing, this scheduling problem is described by:
the set of jobs N = {1, . . . , n} and the set of machines
M = {1, . . . ,m}. The due date of job i is di, its process
time on machine k is pi,k, the setup time between the subse-
quent processing of job i and j on machine k is si,j,k.

Genetic Algorithm

In a genetic algorithm a population of candidate solutions
within the search space, called individuals, evolves toward
better solutions through an iterative evolutionary process.
The population in each iteration is referred to as a genera-
tion. In each generation, the fitness of the individuals is eval-
uated, which is usually the value of the objective function in
the optimization problem. Then, a subset of the individu-
als is selected (the parents) and a cross-over mechanism is
applied to obtain a new generation of individuals (the off-
spring). Moreover, a mutation operator is applied to main-
tain genetic diversity.

The main features of the proposed algorithm are a lo-
cal search enhanced cross-over mechanism, two fast local
search procedures and a user-controlled multi-objective fit-
ness function. A description of the components of this hy-
brid genetic algorithm is presented in the next sections.

Representation and Fitness

The genome of an individual is represented by arrays of jobs
for each machine that represent the process sequence of the
jobs assigned to a certain machine. The population consists

of Psize individuals, where the genome of each individual
consists of m arrays of jobs, one for each machine. This way,
each array can be viewed as a chromosome constituent of the
individual’s genome.

The fitness F of an individual is the weighted sum of the
process time P , setup time S and tardiness T , i.e.

F = αP + βS + γT

where α, β and γ are non-negative weights. These weights
can be set by the user and allow the user to put more or less
emphasis on each of the output parameters. Thus, the lower
the fitness F , the fitter the individual. The fitness of a chro-
mosome is defined accordingly and the fitness of an individ-
ual is the sum of the fitness of each of its chromosomes.

Initialization and Selection

Although it is common to randomly generate the initial pop-
ulation in a GA, there is a recent trend to include some good
individuals in the initial population that are generated by
some heuristic. In this GA, the initial population is generated
by first creating a random permutation of the list of jobs to be
assigned through a Fisher-Yates shuffle mechanism (1948).
Then, all jobs in the list are scheduled as follows: for each
job all possible insertion positions are evaluated. Finally, the
most favourable in terms of the fitness is selected. All Psize

individuals are generated according to this heuristic.
In the selection stage of the GA, parents are chosen from

the population for the next generation of offspring. Various
selection operators that give preference to the fitter individ-
uals in the population are reported in literature. Here, com-
pletely random selection is applied.

Crossover Mechanism and Mutation

Once the parents are selected from the population a cross-
over mechanism is applied. The aim of the crossover mech-
anism is to produce fitter offspring. Many cross-over mech-
anisms are reported in literature. Here, a local search en-
hanced crossover (LSEC) mechanism is applied, cf. (Val-
lada and Ruiz 2011). This crossover mechanism is similar
to the classical one-point crossover mechanism, except that
it is enhanced with a local search procedure. In Figure 1 an
example for a situation with two machines and ten jobs is
depicted.

After the selection of two parents, one point is randomly
determined in the job sequence of each machine of parent
1. The jobs to the left hand side of this point are copied to
offspring 1 and the jobs on the right hand side are copied to
offspring 2. Then, for each machine of parent 2, the jobs that
are not yet assigned to parent 1 are inserted. At this moment
the local search procedure comes into play: when a miss-
ing job is inserted into parent 1, it may be assigned to any
eligible machine and any position in the job sequence. It is
inserted at the best position in terms of fitness.

As mentioned, the aim of the crossover mechanism is to
produce fitter offspring. If the offspring is indeed fitter, it
replaces its parents. Otherwise, the parents remain in the
population. To maintain genetic diversity in the population
and to prevent the algorithm from getting trapped in a local
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(b) Copied jobs from parent 1.
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(c) Missing jobs.
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(d) The offspring.

Figure 1: One point cross-over mechanism enhanced with
local search.

optimum, individuals are subjected to mutation. Here, the
well-known shift mutation mechanism is applied. A job is
randomly selected and removed from its current position. It
is reinserted at a random position of the job sequence of an-
other random machine. The mutation operator is applied af-
ter cross-over and before local search with probability Pmut.

Local Search

The genetic algorithm is combined with two fast local search
methods to speed up search towards the optimum in the re-
gion of convergence. The first exploits the insertion neigh-
borhood while the second evaluates the swap neighborhood.
These neighborhoods have been proven powerful for the
parallel machine problem considered (Barnes and Laguna
1993). An insertion move removes one job from one ma-
chine and inserts it into another. A swap move chooses two
jobs and switches their machine assignments. Moved jobs
are always inserted at the best possible position in terms of
fitness and machine eligibility is taken into account. The size
of the insertion neighborhood is O(n(m−1)) and the size of
the swap neighborhood is O(n2), where n is the number of
jobs and m the number of machines. Therefore, to limit the
size of the neighborhood the moves are only applied to the
chromosomes with the lowest fitness. This portion is always
known since the fitness of the individual’s genome as well
as of its constituent chromosomes is continuously monitored
and ranked. Furthermore, for a given job, its optimal inser-
tion location on any machine can be identified with limited
computational effort. After all moves have been evaluated,
the move yielding the highest improvement in terms of the
fitness is applied, i.e. steepest descent. These search proce-
dures are applied to all offspring during every evolution as
follows: with activation probability Pls the insertion neigh-
borhood is exploited first. When activated, the swap neigh-
borhood is exploited subsequently. Both neighborhoods are

searched until no move in the neighborhood can be identified
that improves the fitness.

Application

The HGA described in the previous section is now applied
to the scheduling of a single package at the Assembly and
Testing facility of Nexperia. In the next sections the test sce-
nario is described in detail, followed by the presentation of
the obtained results.

Test Scenario

The proposed HGA is tested for the scheduling of one pack-
age of Nexperia’s extensive product portfolio. This package
contains more than 600 unique products, each of which re-
quires a different recipe. Therefore, it can be considered as
one of the more complex packages being assembled at this
particular facility. The assembly of these products is carried
out on 17 machines, the production velocity (i.e. capacity)
of which differs at most a factor three. This means that the
machine on which a batch of products is assembled has a
significant effect on the required process time.

To test the performance of the proposed HGA three con-
secutive data sets are available. Each data set contains (1)
the product batches to be scheduled within a certain time
span and (2) the current schedule for these jobs. The number
of jobs varies between 121 and 134. For each of these data
sets, a comparison is made between the automatic (HGA
based) and current schedules on the basis of the fitness func-
tion with equal emphasis on each of its constituents, i.e.
α = β = γ = 1. Additionally, the variability of the out-
come of the HGA is examined by performing several runs
for the same set of data. Furthermore, the tunability of the
multi-objective fitness function is illustrated by comparing
schedules obtained with:
• α = β = γ = 1, i.e. equal emphasis on all constituents of

the fitness function.
• α = 0 and β = γ = 1, i.e. only emphasis on the setup

time and tardiness.
• α = β = 0 and γ = 1, i.e. only emphasis on the tardiness.

Although the HGA is capable of handling job specific due
dates, in this scenario the due dates for all jobs are equal.
Therefore, the latter is similar to the common Cmax opti-
mization criterion.

Results

The HGA is coded in C# 6.0 and run on a computer with
an Intel Core i7 processor running at 2.60 GHz and 8 GB of
RAM. The performance of the HGA depends largely on the
setting of certain parameters. In this case, the population size
Psize is set to 20, the crossover probability Pcross is 0.75, the
activated probability for the mutation operator Pmut is 0.25,
and local search is activated with a probability Pls of 0.75.

It is well-known that genetic algorithms are effective to
determine the region in which the global optimum exists.
However, they can take relative long time to determine the
exact local optimum in this region. Application of local
search techniques within a GA can substantially improve
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Figure 2: Convergence of the fitness F with (blue) and
without (red) the local search operator for data set 3 (i.e.
Pls = 0.75 and Pls = 0 respectively).

its exploiting ability (de Jong 2005). This is demonstrated
in Figure 2 where the convergence of the genetic algorithm
with and without local search operator (i.e. Pls = 0.75 and
Pls = 0 respectively) is shown for one of the data sets. Sim-
ilar behavior is observed for the other data sets.

In Table 1 below, the results obtained for all three data sets
after one minute are shown. Current and automatic sched-
ules of data set 1 are depicted in Figure 3. A visualisation of
the schedules corresponding to data set 2 and 3 are included
in the appendix. To gain insight in the variability of the out-
come, the HGA is run five times. The computational time re-
quired to complete a single run is approximately one minute.
The sample mean and standard deviation over these five runs
are shown in the utmost right column. The standard devia-
tion on average represents only 0.2% of the sample mean,
which indicates that the search produces stable results. For
the automatic schedule, the overall fitness function as well as
its constituents are shown corresponding to the run yielding
the lowest fitness. It can be seen that for each of the three
data sets, the fitness significantly improves with respect to
the current schedule. This can largely be appointed to the de-
crease of the process time P . As mentioned, the production
speed of the machines varies significantly. Therefore, only
through the smarter assignment of jobs to machines a major
improvement can be achieved. Additionally, the total setup
time and tardiness are significantly improved as well. The
former is mainly achieved through the smarter sequencing
of jobs and a reduction is highly desired because time spent
on setups represents lost production capacity and operator
time.

In Figure 3, the current schedule and the ones obtained by
varying the weight factors of the fitness function are visual-
ized for the first set of data.

It can immediately be seen that the current schedule (Fig-
ure 3a) can be improved on all aspects. The overall fitness
as well as all of its constituents are highest compared to
the other schedules shown. For the schedule obtained with
equal emphasis on all constituents of the fitness function
(Figure 3b), especially the production time P and the setup

Current schedule (Time units)
P S T F

Data set 1 2777 218 286 3281
Data set 2 3043 215 504 3761
Data set 3 2551 156 272 2980

Automatic schedule (Time units)
P S T F %ΔF F

Data set 1 2395 156 245 2796 14 2807±10
Data set 2 2559 151 426 3136 16 3152±10
Data set 3 2244 121 188 2528 15 2533±7

Table 1: For each of the three data sets: the fitness function
and its constituents, the proportional difference of the fitness
function between the current and (best) automatic schedule,
and the sample mean and standard deviation for five consec-
utive runs of the HGA. Recall P is the total process time, S
is the total setup time and T is the total tardiness.

time S are significantly reduced. This is clearly reflected in
the images since, respectively, the total area of the sched-
ule is greatly reduced and the schedule appears to be much
brighter green. However, downsides of this schedule are that
the tardiness is relatively high and that numerous machines
are unoccupied for a large period of time. This is due to the
large capacity difference of the machines: the HGA has a
tendency to utilize the high capacity machines as much as
possible, in favor of the production time P and at the ex-
pense of the tardiness T . This tendency diminishes if the
weight of the production time is set to zero (Figure 3c). As
can be seen the load is more balanced, i.e. the utilization
of the low capacity machines is increased. Overall this re-
sults in a higher production time (still lower than the current
schedule) and a much lower tardiness. At last, the sched-
ule obtained with only the tardiness represented in the fit-
ness function is shown (Figure 3d). As mentioned earlier,
this situation is very similar to the widely studied Cmax op-
timization criterion. Although the tardiness is very low, the
production and setup time are much higher and approach
the current schedule, both of which are highly undesired in
practice.

Conclusions and Recommendations

It has been demonstrated that the proposed HGA produces
stable high-quality solutions within reasonable computa-
tional time. A comparison between several current sched-
ules and ones proposed by the HGA indicates that the po-
tential of increased scheduling automation at Nexperia is
high. Furthermore, it has been shown that the widely studied
optimization criterion Cmax is not suitable for the complex
manufacturing environment studied here. As an alternative,
a user-controllable multi-objective fitness function has been
introduced. Through this approach the output can be tuned
towards more practically feasible production schedules.

The parameters of the proposed HGA are set through
manual experimentation. The performance may be further
enhanced through systematic calibration of key parameters,
e.g. by means of a Design of Experiments approach. It would
also be interesting to rigorously examine the quality of the
solutions generated by the proposed HGA by making a nu-
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(a) P = 2777, S = 218, T = 286

(b) P = 2407, S = 165, T = 241

(c) P = 2651, S = 164, T = 57

(d) P = 2724, S = 190, T = 39

Figure 3: Visualisation of (a) current schedule (b) auto
schedule with α = β = γ = 1 (c) auto schedule with α = 0
and β = γ = 1 (d) auto schedule with α = β = 0 and
γ = 1 for data set 1. Colors range between green and red.
Bright green indicates that the setup time prior to the job is
relatively small and sharp red indicates it is relatively large.
Gray blocks indicate scheduled machine down-time. Recall
P is the total process time, S is the total setup time and T is
the total tardiness.

merical comparison with a MILP benchmark and methods
reported in (Vallada and Ruiz 2011; Avalos-Rosales, Angel-
Bello, and Alvarez 2015). Additionally, several important
practical aspects have still been neglected. For example, in
practice the number of setups that can be performed simulta-
neously is limited due to the constrained number of available
technicians. Also, in the manufacturing situation considered
there is a large variation in machine capacity. Consequently,
setups on high capacity machines are more “expensive”, but
this aspect is neglected by treating the setup time at each
machine as equally important to the fitness. However, this
aspect can simply be incorporated in the current framework
by considering “weighted” setup times relative to the ma-
chine capacity.
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Appendix

This appendix includes the visualisation of the other data
sets, see Figure 4 below.

(a) (b)

(c) (d)

Figure 4: Visualisation of (a) current schedule for data set
2 (P = 3043, S = 215, T = 504), (b) auto schedule with
α = β = γ = 1 for data set 2 (P = 2662, S = 159,
T = 352), (c) current schedule for data set 3 (P = 2551,
S = 156, T = 272), (d) auto schedule with α = β = γ = 1
for data set 3 (P = 2238, S = 123, T = 176).
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