
CHAP-E: A Plan Execution Assistant for Pilots

J. Benton,* David Smith,** John Kaneshige,* Leslie Keely,* Thomas Stucky*,+

*NASA Ames Research Center, Intelligent Systems Division
{j.benton,john.t.kaneshige,leslie.keely}@nasa.gov

**david.smith@PSresearch.xyz
+SETI Institute

thomas.stucky@nasa.gov

Abstract

Pilots have benefited from ever-increasing and evolving au-
tomation techniques for many decades. This automation has
allowed pilots to handle increasingly complex aircraft with
greater safety, precision, and reduced workload. Unfortu-
nately, it can also lead to misunderstandings and loss of situ-
ational awareness. In the face of malfunctions or unexpected
events, pilots sometimes have an unclear picture of the sit-
uation and what to do next or must find and follow written
procedures that do not take into account all the details of the
particular situation. Pilots may also incorrectly assume the
mode or state of an automated system and fail to perform cer-
tain necessary actions that they assumed the automated sys-
tem would handle. To help alleviate these issues, we intro-
duce the Cockpit Hierarchical Activity Planning and Execu-
tion (CHAP-E) system. CHAP-E provides pilots with intu-
itive graphical guidance on what actions need to be performed
and when they need to be performed based on the aircraft and
automation state, and projection of this state into the future.
This assists pilots in both nominal and off-nominal flight sit-
uations.

Introduction

Piloting aircraft requires handling input from a variety of
systems, including instruments that inform a pilot of the air-
craft’s state (e.g., airspeed, vertical speed, altitude, attitude,
and heading). While automation has a long history of as-
sisting pilots with handling this information, when malfunc-
tions occur, sometimes multiple messages come from dis-
tinct systems, confusing a pilot and making it difficult to
understand the next best course of action. A sad example
of this occurred during Air France flight 447, which crashed
into the Atlantic in 2009, killing all passengers and crew.
Enroute from Rio de Janeiro to Paris, the flight entered a
large area of thunderstorm activity that resulted in both tur-
bulence and ice crystals forming in the pitot tubes, which
measure airspeed, causing them to malfunction. Though the
anti-ice system came on and a warning sounded, the erro-
neous airspeed readings caused the autopilot and autothrot-
tle systems to disengage. The aircraft began to roll from the
turbulence, and the pilot overcompensated because the air-
craft entered a control mode that made it more sensitive to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

roll input. Through a series of often disparate warnings and
incorrect assumptions that followed (including stall warn-
ings and presumptions that the aircraft’s autopilot would not
allow a high angle of attack),1 the aircraft stalled at 38000
feet, plunging into the ocean three and a half minutes later.

This tragic incident serves as an illustrative example of
how messages from disparate systems, unclear procedures,
and lack of basic data regarding the aircraft’s automation
state can cause serious difficulties for pilots. Numerous other
examples exist, including American Airlines flight 268 and
Turkish Airways flight 1951. Indeed, 55% of all major in-
cidents involve system malfunctions, and a primary reason
those malfunctions contributed to bad outcomes was the pi-
lots’ inability to accurately assess the nature of the fail-
ure (FAA 2013) and determine an appropriate course of ac-
tion. Our objective is to help flight crews by providing a
global picture of expected procedures given the aircraft state.
Towards this end, we seek to provide pilots with procedural
guidance during flight, keeping track of the aircraft state and
providing suggested procedures for pilots to follow.

More specifically, we are interested in the problem of real-
time monitoring of all phases of flight from takeoff to land-
ing, and providing feedback to the pilots when actions are
overlooked or are inappropriate, or when the conditions of
flight are no longer in accordance with the objectives or
clearance. This includes monitoring and providing guidance
for things like speed, altitude, descent/climb rate, autopi-
lot mode and settings, route compliance, flap settings, and
fuel state. Traditionally, pilots have made use of written or
electronic checklists to verify that appropriate actions have
been performed and that the aircraft is in the proper state
for the next phase of flight. While these ensure that critical
items have not been overlooked, checklists are both static
and passive. For example, the pre-landing checklist confirms
the landing setting for flaps, the landing gear’s state, the air-
speed range for the landing weight, whether the approach is
stabilized, and the autobrakes’ state. It does not tell the pi-
lots when to lower flaps, when to lower landing gear, what
modes and settings to select for the autopilot, or whether
the selected landing speed and flap settings are appropriate
for the runway length, wind conditions, and current runway
braking action. In other words, the checklist helps confirm

1The angle of attack is the angle between the wing and airflow.

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

303

the state of the aircraft, but provides no guidance about when
or how to achieve that state. This information is all buried in
the pilot’s training and expertise, and in procedures in the
Pilot’s Operating Handbook (POH). However, the crew can
easily overlook details when fatigued or overworked due to
adverse weather or system failures.

To tackle this problem, we introduce the Cockpit Hierar-
chical Activity Planning and Execution (CHAP-E) system,
a decision support and procedure display system. CHAP-
E can display pilot procedures (plans) or interface with a
situation-aware automated planner to generate and display
appropriate procedures. It can be viewed as a planning, mon-
itoring and execution assistant for aircraft flight.

Unlike many domains, during flight, the state of the world
changes continuously over time. While this change is fairly
predictable, it is also highly non-linear. For example, when
the pilots set a lower airspeed in the autopilot, the throttles
are retarded and the aircraft gradually slows down. How-
ever, this depends on how rapidly the aircraft descends and
may occur at a variable rate. It depends on the drag deployed
(flaps, landing gear, spoilers), the wind conditions, and the
details on how the autopilot functions. To predict this contin-
uous change, CHAP-E uses an external simulator called the
Trajectory Prediction System (TPS) (Kaneshige et al. 2014).
It repeatedly calls TPS to sample the range of possibilities
and displays time windows to the pilots – the earliest time
when the pilots should begin each action in the plan and the
latest time each action can be executed for the plan to re-
main successful. Windows may have dependencies on one
another; once CHAP-E fixes a window, the windows for
remaining actions can shift, expand, or shrink. Uncertainty
about wind conditions, aircraft dynamics, and autopilot re-
sponse can also cause these windows to change.

This paper focuses on the CHAP-E system and its use
during flight. Our main contributions in this work include: 1)
characterizing the challenges related to planning in this do-
main, 2) the development of a plan language that facilitates
the hierarchical encoding of event-driven plans and require-
ments, 3) use of a fast simulator to do real-time adjustment
of the time windows for future activities, and 4) an intuitive
graphical interface that assists pilots in recognizing what ac-
tions should be performed and the appropriate intervals for
those actions.

Related Work
Automation systems have a long history in aviation. As
Billings (1996) points out, making flight more resistant and
tolerant to error stands as the primary purpose of automa-
tion assistance in aviation. Despite this, little work has been
done in assisting pilots by displaying procedures to them,
ensuring their applicability during flight, and monitoring the
execution of those procedures. Perhaps the closest match to
CHAP-E is MITRE’s Digital Copilot, which is designed for
smaller single-pilot aircraft and informs the pilot of common
mistakes and constraint violations during flight (MITRE
2016).

Other work on procedure displays has been implemented
for space missions. The NASA Autonomous Mission Oper-
ations (AMO) project tracked a spacecraft’s life support sys-

Figure 1: The architecture of CHAP-E

tem activity (Frank et al. 2015). It offered recommended ac-
tivities based on the state of the spacecraft and current oper-
ating constraints. Personnel on the spacecraft forwarded the
recommendation to flight controllers, and if approved by the
flight controllers, the activity would be scheduled and dis-
played. It also used a system that helped the crew track the
progress of plan execution. That system, called WebPD, was
integrated with spacecraft systems to provide information
about the spacecraft’s state. The system then displayed serial
procedures along with important relevant state information
related to each step in the procedure (Stetson et al. 2015;
Frank et al. 2013). A similar system, called the Procedure
Integrated Development Environment (PRIDE), was imple-
mented to assist in the development of procedures. The pro-
cedures are encoded using the Procedure Representation
Language (PRL). The procedure view component, PRIDE
View, allows a user to follow a procedure step-by-step (Ko-
rtenkamp et al. 2008).

Another comparable system is RADAR (Vadlamudi et al.
2016), which assists in producing plans by generating land-
marks and offering action suggestions based upon them.

Plan Execution Assistant

The design of CHAP-E centers around reducing human er-
ror and its potentially negative effects by providing decision
support to human pilots. We define human error as action
or lack of action taken by a human with unintended effects.
Without knowing the intentions of a human actor, we can-
not determine whether an error has taken place. A human
must share the intention of their actions to identify an error.
This makes detecting human error a difficult, complex prob-
lem. In our current version of CHAP-E we do not expect to
identify all human errors. Instead, we assume a human pilot
never intends to cause goal failure or violate important safety
and operational constraints, which ties human intent to pilots
maintaining safe flight. Fortunately, we can focus on nega-
tive effects assuming that a human will want to avoid making
errors that would cause potential hazards or cause failure to
achieve the goals implied by the flight plan and clearance.

The high-level architecture of CHAP-E is shown in Fig-
ure 1. CHAP-E plans are generated as CHAPEL, discussed
below. To monitor plan execution and execute plans, we use
the Plan Execution Interchange Language (PLEXIL) (Verma
et al. 2006). A translator converts the CHAPEL plans into
PLEXIL plans. The PLEXIL is read by a universal executive
(UE) to interface with the aircraft. The PLEXIL executive
can perform two tasks: plan monitoring and plan execution.
Plan monitoring involves ensuring that the pilot executes
the plan actions and prompting if actions are not initiated

304

Figure 2: CHAP-E hierarchical plan with the approach phase expanded down to primitive actions

in a timely fashion, or requirements are violated. Plan exe-
cution automatically executes plan actions as an automated
co-pilot. The CHAP-E display shows the plan as it is be-
ing executed. Currently, it is possible to manually switch be-
tween the two PLEXIL modes of execution.

Plan Representation

CHAP-E uses hierarchical plans to characterize the differ-
ent tasks and primitive actions in an aircraft flight. Currently
the hierarchies are handcrafted based on the phases of flight.
This helps us represent well-defined conditions and require-
ments for each phase. As seen in Figure 2, the highest level
task is a flight from the departure airport to the destination
airport, flight(from, to). This expands into a sequence of sub-
tasks: 〈FileFlightPlan(from, to), ObtainClearance(from, to),
Taxi(rnwy) Fly(from, to), Taxi(gate), Shutdown〉.2 We can
further break down the Fly(from, to) action into the phases
of flight: 〈Takeoff(from, rnwy), Climb, Cruise, Descend,
Approach, Land(rnwy)〉. Expanding the Approach phase, we
have a set of primitive actions taken by the pilot, such as set-
ting speeds for the autopilot, setting flaps, lowering landing
gear, and running checklists.

The hierarchical structure provides several advantages.
First, much of the expansion cannot take place initially, be-
cause some of the parameters and constraints are not yet
known. For example, we cannot always initially expand
Taxi(rnwy), because the taxi route and the runway may have
not been assigned yet. Before this expansion can take place,
the initial part of the plan must be executed – we must file
the flight plan, and obtain the taxi clearance. Similarly, the
Departure, Cruise and Descent activities of the Fly subtask
cannot be expanded until the aircraft obtains a route clear-
ance. The Approach and Landing activities usually cannot
be expanded until later in the flight when the approach and
runway are assigned by Air Traffic Control (ATC) and ac-
cepted by the pilots. This will often depend on the traffic
and weather conditions at the time of arrival. For example,

2We simplify the example by removing some parameters and
tasks.

the wind conditions usually dictate which runways are ac-
tive, and ceiling and visibility constrain the approaches that
are possible. This necessitates interleaving the hierarchical
expansion of the plan and the plan’s execution.

Hierarchical structure has been commonly used in many
planning applications. Typically, a decomposition for a task
consists of partially or totally ordered sets of subtasks or
primitive actions. In some hierarchical planning approaches,
metric temporal constraints between subtasks/actions are
also allowed. At worst, these constraints among sub-
tasks/actions can be captured using a Simple Temporal Net-
work. However, for CHAP-E the nature of the constraints
among subtasks is more complex. In particular, many of the
actions are keyed off of particular events, rather than times.
For example, during an approach, the standard practice is
to lower flaps to 20 degrees and lower the landing gear just
before intercepting the glideslope (the vertical guidance for
the aircraft). Typically, this happens just outside of the Final
Approach Fix, a designated waypoint about 5nm (nautical
miles) from the end of the runway. The trouble is, there is
some uncertainty about the exact time at which this event
will occur, since it depends on the aircraft’s exact speed
and altitude, and on the wind conditions; if the aircraft is
a bit faster than expected or a bit high, this event will oc-
cur sooner, if the headwinds are higher than expected, this
event will occur a bit later. As a result, many of the actions
in a CHAP-E plan are triggered off of events, rather than
times or the completion of preceding actions. Frequently,
these events involve reaching a particular waypoint or dis-
tance from a waypoint or reaching an altitude airspeed.

A second source of complexity is that for a plan to re-
main valid, conditions must often hold or be maintained be-
tween events. If these conditions are ever violated, additional
contingent actions must be performed. For example, during
a particular segment of a descent or approach, the aircraft
speed might need to remain in a particular range. However,
this may not be possible because of the rate of descent re-
quired. Adding additional drag, in the form of speedbrakes
(spoilers), can be used as a contingency action to rectify the
constraint violation and keep the aircraft speed within the

305

Figure 3: Procedure for flying an ILS CAT III approach from a Continental 777 flight manual

desired window.
Figure 3 shows a procedure from a Continental 777 flight

manual for flying a CAT III ILS instrument approach pro-
cedure. Figure 5 shows a small fragment of CHAP-E’s de-
tailed plan decomposition for flying this kind of approach
instantiated to the ILS 28R approach into San Francisco In-
ternational Airport. Figure 4 shows the published approach
procedure for this approach, consisting of a plan and profile
view. The plan view gives a map-like picture of the approach
as seen from above, with a transition to the approach start-
ing at the waypoint ARCHI, intercepting the final approach
course at the waypoint DUMBA, and continuing through the
Final Approach Fix, the waypoint AXMUL, to the runway.3
The profile view shows a vertical slice of the altitude profile
for the final segments of the approach.

The plan fragment in Figure 5 for intercepting and fly-
ing this approach assumes the aircraft begins just east of
the ARCHI waypoint. The plan contains four types of state-
ments: Events that are expected to occur, Actions that the pi-
lots must perform, Requirements, which indicate conditions
that must be maintained throughout some interval, and Con-
tingencies, which indicate corrective actions if requirements
are not met. Each event is characterized by a label, followed
by the event. For example, the first event is that of crossing
the waypoint ARCHI on the transition to the approach. The
events ZILED, CEPIN, AXMUL, and RW28R also refer to

3Waypoints are always five capital letters.

the crossing of waypoints. The next five events are prefaced
by before! conditions, which indicate a hard constraint
that the event must occur before another event (otherwise
the plan becomes invalid). The first of these is that we must
have the clearance for the approach from ATC before cross-
ing the ARCHI waypoint. The next two refer to the airspeed
dropping below the maximum allowed value for a particu-
lar flap setting. The final two refer to the autopilot capturing
the localizer and glideslope – the lateral and vertical guid-
ance for the approach. Finally, A1500 and A1000 refer to
the events when the altitude becomes less than 1500 ft and
1000 ft above the runway.

Actions are much like events, but these are things the
pilots must do. These usually contain both hard and soft
constraints (preferences indicated by CHAPEL constraints
without a ! character). For example, the first action says that
after the clearance event, and before the CEPIN waypoint
the pilots must arm the localizer in the autopilot, which al-
lows the autopilot to capture and follow the lateral guid-
ance. This is a hard constraint, as indicated by the exclama-
tion point (!) at the end of between!. There is also a soft
constraint (preference) that this happen between ZILED and
CEPIN (no exclamation point) and a further ideal preference
indicating that CHAP-E would choose to do this action at
ZILED. The second action is similar, with a hard constraint
window, and a soft constraint that the action happen before
CEPIN, with an ideal time of LocCap (when a guidance sig-
nal called the localizer is received). The third action is also

306

Figure 4: Plan and profile views for the ILS 28R approach
into San Francisco

prefaced by both hard and soft constraints and specifies a se-
quence of two events: setting the flaps to 20, and setting the
autopilot speed window to the value Vref20. Like events, ac-
tions can have names, and the first of this sequence is named
F20, which the action in the next line is conditioned on. The
fourth action, lowering the landing gear, has a hard con-
straint that it must be performed before altitude 1500 and
a soft constraint to do it after setting the flaps to 20, and be-
fore AXMUL. The final action sequence again has a hard
constraint, a soft constraint and an ideal time.

Requirements are conditions that must hold over some pe-
riod of time. For example, the first requirement states that the
airspeed must always remain between the reference speed
and the maximum speed for the particular flap setting being
used at the time. The second and third requirements state
that the localizer and glideslope must remain captured, and
the final requirement states that the flaps must remain in the
landing configuration over the specified interval.

The Contingencies provide a simple fix (action) if the
first requirement is violated. This prevents the plan from
becoming invalid. In situations like that of Air France 447,
discussed in the introduction, a contingency would involve
warning pilots that their actions (e.g., by putting the aircraft
at a high angle of attack) have put jeopardized the flight and
to inform them of corrective measures.

The plan fragment in Figure 5 contains approximately
20% of the events, actions, requirements and contingencies
needed for this particular example approach. The PLEXIL
executive has been able to use the complete version of this
plan to successfully intercept, approach and land a 777 at
San Francisco in simulation, as well as to monitor pilot ac-
tions and warn when actions are not taken within the pref-
erence windows. A more general hierarchical version of this
plan has been used to fly transitions and approaches to other
airports and runways.

Events {

ARCHI: cross(ARCHI) ;

ZILED: cross(ZILED) ;

CEPIN: cross(CEPIN) ;

AXMUL: cross(AXMUL) ;

RW28R: cross(RW28R) ;

before![ARCHI] {CLR: start(Clearance = ILS28R.ARCHI)} ;

before![CEPIN] {F20max: start(IAS <= Vmax20)} ;

before![AXMUL] {F30max: start(IAS <= Vmax30)} ;

before![CEPIN] {LocCap: start(FMA-Lateral = LOC)} ;

before![AXMUL] {GSCap: start(FMA-Vertical = GS)} ;

A1500: start[Alt <= 1500AGL) ;

A1000: start[Alt <= 1000AGL) ;

... }

Actions {

between![CLR,CEPIN] & between[ZILED,CEPIN] & at[ZILED]

<<ArmLocalizer>> ;

between![LocCap,AXMUL] & before[CEPIN] & at[LocCap]

<<ArmGlideslope>> ;

between![F20max,AXMUL] & between[CEPIN,GSCap] &

at[CEPIN] <<F20: SetFlaps(20),SetMCPSpeed(Vref20)>> ;

before![A1500] & between[F20,AXMUL] & at[F20]

<<Gear: SetGear(Down)>> ;

between![F30max,A1000] & between[Gear,A1500] &

at[AXMUL] <<SetFlaps(30), SetMCPSpeed(Vref30+5)>> ;

... }

Requirements {

R1: throughout[START, RW28R] {IAS in [Vref,Vmax]} ;

throughout[LocCap, RW28R] {FMA-Lateral = LOC} ;

throughout[GSCap, RW28R] {FMA-Vertical = GS} ;

throughout[F30, RW28R] {Flaps = 30} ;

... }

Contingencies {

Unless R1 <<Speedbrakes>> ;

... }

Figure 5: Fragment of a detailed CHAP-E plan for the ILS
28R approach into San Francisco

Planning for CHAP-E

We would like CHAP-E to automatically provide proce-
dures for pilots for as many situations as possible so it can
become a dependable piloting aid for both nominal and off-
nominal scenarios. For this reason, we have been actively
working toward applying automated planning techniques to
generate CHAPEL plans automatically and on-the-fly as
new situations arise. As it is, the development of CHAP-E
has necessitated that we capture standard operating proce-
dures and established air traffic constraints for a variety of
circumstances. While capturing these procedures and con-
straints offers its own set of demands, automatic generation
of plans for our domain presents even greater challenges:

• Event-based actions. Most actions are conditioned on
events, rather than on other actions. These events may be
exogenous and known, but exactly when they will occur
is unknown. Though actions may indirectly control when
events occur, through varying aircraft speed, for example,
uncertainty in environmental conditions and precise pilot
actions, prevents off-line timepoint prediction. Tradition-
ally, “flexible” plans have been used to help deal with du-

307

Figure 6: The CHAP-E display

ration and time uncertainty. Flexible plans have partially
ordered actions and may be restricted to designated time
windows. We express our flexibility in terms of events that
will manifest as time windows.

• Re-establishment contingencies. We allow pilots to per-
form actions outside of the established plan. In some
cases, these actions may have no ill effects on the plan
(i.e., the pilot actions maintain the causal link require-
ments). In some cases, however, pilots might perform ac-
tions that clobber a causal link. In these cases, the causal
link must be reestablished. In generating plans offline for
reestablishment, we need to follow these guidelines: (1)
The reestablishment should not require removal of any
tasks or requirements in the remainder of the plan, (2) the
contingency must be able to reestablish the causal link
prior to any action requiring it, (3) the reestablishment of
the causal link should not interfere with any of the cur-
rent tasks. Contingencies have been sometimes discussed
in terms of generalized planning (Srivastava, Immerman,
and Zilberstein 2008). Generalized plans are goal-directed
solutions to planning problems that can be applied on any
deterministic environment within the domain. General-
ized planning has typically focused on including loops in
plans, but also involves reasonable contingencies.

• Requirements across several low-level actions. Require-
ments are like overall conditions or durative goal con-
ditions. They specify conditions that must hold between
particular events. However, these requirements often span
several low level actions. As a result, they are associated
with (and come from) higher level tasks in the hierarchy.

• Continuous, non-linear dynamics. Prediction of the air-
craft position, its true airspeed, expected autopilot mode,
and a number of other dynamically changing attributes
(e.g., fuel levels), requires modeling continuous, non-
linear quantities. Pilot actions control most of these quan-
tities. As an obvious consequence, a planner cannot pre-
cisely predict event time without modeling these. This
also makes it difficult to predict potential contingencies

that might be required. Though the modeling language
PDDL+ can encode continuous, nonlinear processes, the
language does not allow for task hierarchy (Fox and
Long 2006). It also is not easy to encode combinations
of preference-based and constraint-based. The planner
PluReal can handle PDDL+-style nonlinear, continu-
ous change by using a Satisfiability Modulo Theories
(SMT) encoding (Bryce 2016). We have considered us-
ing encodings such as this for our domain.

• Preference-based and constraint-based event windows.
The inclusion of both hard constraint and soft preference
windows on actions is particularly important for mon-
itoring pilots. For example, lowering the landing gear
could be performed early, but this would be inefficient
and noisy. Instead, pilots normally perform these tasks
according to standard operating procedures. In the case
of landing gear, this should occur just before reaching the
final approach fix, the beginning of the last segment of
flight when coming into an airport. Preferences provide
a more restrictive window to perform actions and allow
us to warn pilots when they do not perform actions by
the end of the preference window. This allows reasonable
alerting without becoming annoying for pilots.

PLEXIL for Plan Execution

The Plan Execution Interchange Language (PLEXIL) was
originally developed for spacecraft operations. It operates
over a state machine, where each node in the state machine
contains the “content” of what can be executed. Nodes can
be hierarchical, providing varying levels of abstraction. Con-
tent can include other nodes, commands and data lookups.
Each node has a set of start conditions, specifying when the
execution of an action should begin, and a set of end condi-
tions, specifying when the execution should finish. Nodes
can also contain loops, specifying repeat conditions. Pre-
and Post-conditions exist on each node to ensure that ac-
tivities can execute properly.

To execute a plan, PLEXIL monitors exogenous events,

308

e.g., the state of the aircraft or passing over a particular
waypoint, to use as triggers for control input. Plan moni-
toring works by examining the instruments and controls of
the aircraft. A plan monitor has the same tasks but operates
on them differently. Instead of executing a task by solely
examining exogenous events, a plan monitor looks for en-
dogenous events (i.e., actions of the pilot) to inform the pi-
lot when a task passes the preferred latest start time. In this
case, it enters a warning node, informing the pilot that the
task must be completed. If the pilot does not then perform
the task before the latest start time, PLEXIL enters into an
error state. In this case, it can either trigger a contingency or
trigger a process to find a new procedure.

CHAP-E Display

The purpose of the CHAP-E display is to provide suggested
flight procedures to a pilot for maintaining safe flight (see
Figure 6). It consists primarily of a vertical profile and way-
point display, showing the expected vertical profile of the
aircraft. Actions are displayed below that. Each action has
an associated time window showing when the pilot should
perform it. The display moves horizontally over time.

Vertical Profile and Waypoints The CHAP-E vertical
profile display includes waypoint information from the flight
plan to provide a reference for the pilots. The profile shows
the reference altitude and vertical trajectory of the aircraft
given the current route. The aircraft is depicted as a small
triangle at the upper left of this profile. Labels above the
vertical profile show waypoint locations that the aircraft will
reach when following the current flight path. These provide
a reference for the pilots; the labels will match waypoints
on published departure, enroute, arrival, and approach pro-
cedures, and may be referenced in air traffic control clear-
ances. They also help give scale for when a pilot should ex-
ecute each action.

Actions and Time Windows Generally, a pilot should be
allowed flexibility on when to execute actions in the plan.
This means we depend on the pilots’ training and habits
so they may determine risk and action priority. To accom-
modate this aim, we display actions to the pilot in a gantt
chart-like style indicating time windows for when the pilot
should execute them. An example of an execution window
is shown in Figure 7. Each window consists of five time
points: an earliest start time (EST), preferred earliest start
time (PEST), preferred start time (PST), preferred latest start
time (PLST), and latest start time (LST). Initially each of
these corresponds to an established constraint or preference,
as defined in the plans we generate (see Figure 5). The dis-
play shows the PEST, PST, PLST, and LST. The two end
points, the EST and LST, represent the interval in which the
action must execute for the plan to remain valid. If executed
outside of these times, the plan will likely fail. The PEST
and PLST show when we prefer the pilot perform the ac-
tion. The PST is when we would ideally perform the action
in a fully automated system.

Many actions, such as lowering the landing gear, can be
performed very early without causing a plan to become in-

Figure 7: Time windows of an example “gear down” action,
showing the earliest start time (EST), preferred earliest start

time (PEST), preferred start time (PST), preferred latest
start time (PLST), and latest start time (LST)

valid.4 Displaying the EST can clutter the display with many
long overlapping action boxes. To avoid that, we only dis-
play PESTs PLSTs, and LSTs. We warn the pilots if an ac-
tion has not yet been performed by the PLST. For finding the
preferred time points, we rely on domain knowledge from
standard operating procedures such as that shown in Fig-
ure 3. EST and LST points are updated through simulation
and sampling as described below.

To show these time points, we use standard coloring of-
ten seen on flight displays. CHAP-E draws a green window
between the PEST and the PLST and an amber window be-
tween the PLST and the LST. A magenta arrow shows the
recommended PST. If the PLST passes, a warning is spoken
by CHAP-E with the action name (e.g., “gear down”) and
a status message is displayed at the bottom of the CHAP-E
display. If the latest start time point passes, then contingency
actions will be introduced if available, or a new plan will be
generated and displayed.5 When an action is executed by the
pilot, it will be removed from the display, and the displayed
action time windows below it will adjust their positions by
moving up.

Rescheduling Time Windows To obtain the earliest and
latest start times, CHAP-E uses an advanced simulation ca-
pable of capturing the physics and expected autopilot modes
of the aircraft using a tool called the Trajectory Projection
System (TPS) (Kaneshige et al. 2014). Figure 8 shows a vi-
sual depiction of this simulation with the most recent pre-
dicted trajectory of the aircraft shown in green. The green
text shows the predicted mode changes, and the white text,
though difficult to see, shows the expected actions to be per-
formed by the pilot. The magenta line represents the ref-
erence trajectory (the trajectory expected according to the
approach and landing procedures).

The TPS provides a fast-time simulation of simplified air-
craft dynamics (Kaneshige et al. 2014; Shish et al. 2016). A
4D trajectory (position and time/speed) is extrapolated based
on the current state of the aircraft, weather conditions, and
simplified models of control laws and mode transition logic
heuristics for the flight management system, autopilot sys-
tem, and autothrottle system. The state of the aircraft is mod-
eled along with commands issued by the flight systems, such
as the bank angle, flight-path angle, and thrust. TPS then
propagates the state forward in time using a basic forward

4In extreme instances where additional drag is necessary to de-
scend quickly, it might be necessary to extend gear early.

5This planning mechanism is still under development.

Euler method to predict the orientation, velocity, and posi-
tion of the aircraft. For CHAP-E, the trajectory prediction
system was enhanced to include support for inputting com-
mand changes at specific times (e.g., the at preference in
the plans) in the future, including input configuration (e.g.,
flaps, gear settings) or automation mode (e.g., autopilot, au-
tothrottle) settings. The TPS then returns a per-second dis-
cretized profile of the state of the aircraft over the course of
the displayed period. Using operational constraints, CHAP-
E can determine whether the execution schedule would re-
sult in a safe flight and achievement of the goal (i.e., landing
safely on a specified runway). If it does not, the windows
are adjusted by a fixed amount and TPS is re-run on the new
schedule. This process is repeated periodically during the
flight at a configurable interval (every second in our current
system).

Challenges exist in continuously determining execution
windows. The state of the flight continuously changes as
the aircraft progresses. This means the time windows can
change as unpredicted adjustments or pilot action (or inac-
tion) occur. Though the simulation is relatively fast (approx-
imately 60 milliseconds for a 5 minute projection), it may
be impractical to rediscover time windows continuously.
We’re exploring several possibilities to mitigate this issue,
including using courser-grained hill-climbing until impor-
tant events occur (e.g., unexpected or missed pilot actions).

Plan Execution When an action is performed, CHAP-E
will recognize this and remove the task from the display.
This is more complex than it might first appear. For exam-
ple, if the recommended action is to set the MCP-Speed to
163 knots, but the crew instead sets the speed to 165 knots,
CHAP-E must determine whether this “unexpected” action
still satisfies the necessary conditions for future actions. If
so, CHAP-E can remove the recommended action from the
display. If not, CHAP-E will leave the recommended ac-
tion(s), but must determine whether the unexpected action
interferes with any conditions that need to be preserved in
order for the plan to remain valid.

Conclusion & Future Work

In this paper, we presented a pilot assistance tool that dis-
plays piloting procedures. The tool, called CHAP-E, gives
pilots windows for beginning each task and provides an in-
terval when, according to standard operating procedures, the
pilot should execute each task. The end goal of the tool is
to provide a pilot quick and accurate procedural guidance
during flight. We recognized several qualities of the pilot-
ing domain that made planning for piloting guidance diffi-
cult. The domain has an event-based nature, where actions
must execute relative to events instead of time points, as is
typical in temporal planning. Some of the events are exoge-
nous, others are directly or indirectly related to actions taken
by the pilot. Plans should also include re-establishment con-
tingencies, where if causal links become violated, a short
contingency plan would provide guidance for the pilot to
maintain the same procedure. The domain also contains con-
tinuous, nonlinear dynamics, and constraint and preference
windows. The plans must maintain flexibility so that they

Figure 8: Visual depiction of plan execution simulation

can be rescheduled. For future work, we have begun explor-
ing methods of plan synthesis. We discussed the difficulties
with performing this task. We are recently interested in per-
forming “pilot-in-a-box” simulations, where CHAP-E can
be used to rapidly simulate expected pilot actions for proto-
typing of aircraft and air traffic scenarios. Toward this goal,
we have incorporated an automated planner called the Au-
tonomous Constrained Flight Planner (ACFP) onboard that
finds new, alternative flight plans taking inclement weather
and other dynamic features and events into account (Sadler
et al. 2016). CHAP-E can then execute procedure sets ap-
propriate for the new flight plans.

Acknowledgements

Thank you to Kimberlee Shish for her assistance and dis-
cussions. This work was supported by NASA Aeronautics’s
SASO/SECAT program.

References

Billings, C. E. 1996. Human-centered aviation automation:
Principles and guidelines. Technical Report 110381, NASA
Ames Research Center.
Bryce, D. 2016. A happening-based encoding for nonlin-
ear PDDL+ planning. In AAAI Workshop on Planning for
Hybrid Systems.
FAA. 2013. Operational use of flight path management
systems.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research (JAIR) 27:235–297.
Frank, J. D.; Spirkovska, L.; McCann, R.; Wang, L.;
Pohlkamp, K.; and Morin, L. 2013. Autonomous mission
operations. In IEEE Aerospace Conference.
Frank, J. D.; Iverson, D.; Knight, C.; Narasimhan, S.;
Swanson, K.; Scott, M. S.; Pohlkamp, K. M.; Mauldin,
J. M.; McGuire, K.; and Moses, H. 2015. Demonstrating

310

autonomous mission operations onboard the international
space station. In AIAA SPACE 2015 Conference and Ex-
position.
Kaneshige, J.; Benavides, J. V.; Sharma, S.; Panda, R.; and
Steglinski, M. 2014. Implementation of a trajectory pre-
diction function for trajectory based operations. In AIAA
Atmospheric Flight Mechanics Conference.
Kortenkamp, D.; Bonasso, R. P.; Schreckenghost, D.; Dalal,
K. M.; Verma, V.; and Wang, L. 2008. A procedure repre-
sentation language for human space flight operations. In 9th
International Symposium on Artifical Intelligence, Robotics
and Automation for Space i-SAIRAS.
MITRE. 2016. The solo pilot gets a second
set of eyes. https://www.mitre.org/publications/project-
stories/the-solo-pilot-gets-a-second-set-of-eyes.
Sadler, G.; Battiste, H.; Ho, N.; Hoffmann, L.; Johnson, W.;
Shively, R.; Lyons, J.; and Smith, D. 2016. Effects of trans-
parency on pilot trust and agreement in the autonomous con-
strained flight planner. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), 1–9.
Shish, K.; Kaneshige, J.; Acosta, D.; Schuet, S.; Lombaerts,
T.; Martin, L.; and Madavan, A. N. 2016. Aircraft mode and
energy-state prediction, assessment, and alerting. Journal of
Guidance, Control, and Dynamics 40(4):804–816.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Pro-
ceedings of the Twenty-Third Conference on Artificial Intel-
ligence, AAAI, 991–997.
Stetson, H. K.; Frank, J. D.; Haddock, A.; Cornelius, R.;
Wang, L.; and Garner, L. 2015. AMO EXPRESS: A com-
mand and control experiment for crew autonomy. In AIAA
SPACE 2015 Conference and Exposition.
Vadlamudi, S.; Chakraborti, T.; Zhang, Y.; and Kambham-
pati, S. 2016. Proactive decision support using auto-
mated planning. Technical report, Arizona State University.
https://arxiv.org/abs/1606.07841.
Verma, V.; Jonsson, A.; Pasareanu, C.; and Iatauro, M. 2006.
Universal-executive and PLEXIL: Engine and language for
robust spacecraft control and operations. In AIAA Space Fo-
rum.

311

