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Abstract

Recently, the makespan-minimization problem of compiling
a general class of quantum algorithms into near-term quan-
tum processors has been introduced to the AI community.
The research demonstrated that temporal planning is a strong
approach for a class of quantum circuit compilation (QCC)
problems. In this paper, we explore the use of constraint
programming (CP) as an alternative and complementary ap-
proach to temporal planning. We extend previous work by
introducing two new problem variations that incorporate im-
portant characteristics identified by the quantum computing
community. We apply temporal planning and CP to the base-
line and extended QCC problems as both stand-alone and hy-
brid approaches. Our hybrid methods use solutions found by
temporal planning to warm start CP, leveraging the ability of
the former to find satisficing solutions to problems with a high
degree of task optionality, an area that CP typically struggles
with. The CP model, benefiting from inferred bounds on plan-
ning horizon length and task counts provided by the warm
start, is then used to find higher quality solutions. Our em-
pirical evaluation indicates that while stand-alone CP is only
competitive for the smallest problems, CP in our hybridiza-
tion with temporal planning out-performs stand-alone tempo-
ral planning in the majority of problem classes.

1 Introduction

Quantum computers apply quantum operations, called quan-
tum gates, to qubits, the basic memory unit of quantum pro-
cessors. Since physical hardware has varying characteristics
and architectures, quantum algorithms are often specified as
quantum circuits on idealized hardware and must be com-
piled to specific hardware by adding additional gates that
move qubit states to locations where the desired gate can
act on them. Compiled circuits that are minimal in duration
not only return results more quickly, but are vital for using
near-term quantum hardware that does not support signif-
icant quantum error correction or fault tolerance: quantum
decoherence, an effect that degrades the desired quantum
behavior, increases with time. It is, therefore, critical to min-
imize the duration of the compiled circuit.
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Recently, temporal planning (Fox and Long 2003) was
explored to compile quantum circuits (Venturelli et al.
2017). Gate executions were modeled as durative actions,
enabling domain-independent temporal planners to find a
valid quantum circuit compilation. Several state-of-the-art
planners were used to empirically demonstrate that tempo-
ral planning is a promising approach to compile circuits of
various sizes to an idealized hardware chip featuring the es-
sential traits of newly emerging quantum hardware.

Historically, operations research (OR) techniques have
been the primary approach for many combinatorial opti-
mization problems and serve as the backbone of a number
of planners. More recently, constraint programming (CP)
has shown to be competitive with leading OR methods, such
as mixed-integer linear programming (MILP), particularly
for scheduling problems (Ku and Beck 2016). Motivated by
this performance, we pose quantum circuit compilation as
a scheduling problem, as opposed to a planning problem,
where the qubits represent resources and the gates are the
tasks to be executed.

In this paper we explore the use of CP for quantum circuit
compilation (QCC). Our primary contributions are:
• A stand-alone CP approach for QCC that is competi-

tive with existing temporal planners on small problems,
though not for larger problems.

• A hybrid temporal planning/CP approach where planning
solutions are used to warm start the CP solver. Given the
same amount of running time, our hybrid outperforms the
majority of both stand-alone temporal planning and CP
approaches across all solvers and problem classes.

In addition to our main contributions, we expand the base-
line QCC problem (Venturelli et al. 2017) to include addi-
tional characteristics reflecting realistic hardware architec-
tures. Our expanded benchmarks include: i) less-restricted
qubit state initialization, and ii) crosstalk constraints that
place additional restrictions on parallel gate operations.

We consider a refined set of temporal planners for our
evaluations. Extensive empirical evaluation shows that the
additional constraints lead to a more diverse set of tempo-
ral planning benchmarks and the tested temporal planners,
which use different planning approaches, perform differ-
ently across the problem variations.
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Figure 1: Left: A schematic for the prototype-inspired 8-
qubit quantum chip (Sete, Zeng, and Rigetti 2016) used in
previous works (Venturelli et al. 2017), as well as our numer-
ical experiments. 2-qubit PS gates are represented by col-
ored edges and swap gates symbolized by edges with double
arrows. Each PS gate color is associated with a distinct du-
ration (three for blue and four for red, in normalized clock
cycles). Additionally, 1-qubit mixing gates of unit duration
are present at each qubit (graph node). The yellow crosses on
n3 and n4 visualize the disabled qubits during the action of
a gate between qubits n1 and n2 when crosstalk constraints
are present. Right: Dashed boxes indicate the 2 different chip
sizes, N ∈ {8, 21}, used in our empirical evaluation.

The paper is structured as follows: Section 2 provides
background on QCC and existing solution approaches using
domain-independent temporal planners. Section 3 describes
our CP approach for QCC. Section 4 discusses details sur-
rounding the planning horizon and the number of tasks. Sec-
tion 5 describes our novel temporal planning/CP hybrid ap-
proach. Section 6 details our empirical evaluation and Sec-
tion 7 concludes the paper, noting potential future work.

2 Quantum Circuit Compilation

General quantum algorithms are often described in an
idealized architecture in which a gate acts on any sub-
set of qubits. However, in an actual superconducting
qubit architecture, such as the ones manufactured by IBM
(research.ibm.com/quantum), Rigetti (Reagor and others
2017), Google (Neill and others 2017) and UC Berke-
ley (Ramasesh and others 2017), physical constraints im-
pose restrictions on the sets of qubits that support gate
interactions. While there has been active development of
software libraries to synthesize and compile quantum cir-
cuits from algorithm specifications (Smith, Curtis, and Zeng
2016; Steiger, Häner, and Troyer 2016; Devitt 2016; Barends
and others 2016), few approaches have been explored for
compiling idealized quantum circuits to realistic quantum
hardware with a specific focus on swap gate insertions
(Beals and others 2013; Brierly 2015; Bremner, Montanaro,
and Shepherd. 2016), targeting algorithms that could be run
in the near-term (Guerreschi and Park 2016).

Qubits in these quantum processors can be thought of as
nodes in a planar graph, with 2-qubit quantum gates associ-
ated with edges and 1-qubit quantum gates associated with
nodes. In Figure 1 we present a model chip that is used in our

benchmarks. Following the most common choice for bench-
marks in the literature, the model quantum algorithm used is
a variant of “Quantum Alternating Operator Ansatz” (Had-
field et al. 2017), also known as the “Quantum Approximate
Optimization Algorithm” (QAOA) (Farhi, Goldstone, and
Gutmann. 2014), applied to the NP-Hard Max-Cut prob-
lem. As described in (Venturelli et al. 2017) this algorithm
is specified by a single type of 2-qubit gate, the phase sep-
aration (PS) gate, which needs to be applied to a specific
set of problem goals depending on the instance. Each goal
specifies a pair of qubit states, the information content of a
qubit, that must have a PS gate applied to them.

In the model chip, PS gate colors (red or blue) indicate
different durations, in terms of clock cycles. Sequences of
swap gates, illustrated in Figure 1 with double arrows, are
used to achieve goals by moving qubit states to desired loca-
tions. Swap gates may only be available on a subset of edges
in the graph and swap duration may depend on the edge. In
our benchmarks we assume swap gates are available on each
edge with constant duration equal to two clock cycles.

Often, it may be desired to apply PS gates to the problem
goals multiple times, where P is the number of times re-
quired. To do this, we separate each PS goal application with
a mixing phase in which a single-qubit mixing gate is applied
at each qubit. All PS gates that involve a specific qubit state
must be carried out before the mixing on that state can be ap-
plied and the second PS stage initiated. As in previous work
(Venturelli et al. 2017), we consider P ∈ {1, 2}.

2.1 Definitions

We let the set of qubits in the quantum circuit be represented
as N := {n1, n2, . . . , nα} and the set of qubit states be rep-
resented as Q := {q1, q2, . . . , qβ}. In the problems studied,
α = β. Each qubit, ni ∈ N , starts in its corresponding
(by index) state, qj ∈ Q, where i = j. An integer value
T represents the number of time steps (i.e., clock cycles)
in the scheduling horizon. Determining an appropriate T is
discussed in Section 4.1.

We let S represent the set of swap gates in the cir-
cuit architecture, S := {s1, s2, . . . , sγ}, where each gate,
sk ∈ S, involves a qubit pair, 〈ni, nj〉. Similarly, we let
P represent the set of PS gates in the architecture, P :=
{p1, p2, . . . , pδ}, where each gate, p� ∈ P , involves a pair
of qubits. We define the set of swap and PS gates that involve
qubit ni ∈ N as S(i) and P (i), respectively. Swap and PS
gates have distinct durations for their activation (τswap and
τ�, respectively), with PS gate duration depending on the
class of the gate, visualized as different colors in Figure 1
(thus, duration τ� ∈ {τred, τblue}, ∀p� ∈ P ). When the prob-
lem involves multiple PS stages, mixing gates are available
at each node in the architecture with a duration τmix.

The set of problem goals, defined as G :=
{g1, g2, . . . , gε}, encode the specific qubit state pairs
to which PS gates need to be applied where each goal,
go ∈ G, is a pair of qubit states, 〈qi, qj〉. To achieve the goal,
these quantum states must be adjacent in the architecture
graph (in the case of the studied architecture, all adjacent
qubits have a connecting a PS gate). The PS gate used for
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goal activation is a decision variable.

Example: Given the 8-qubit architecture in Figure 1 with
each qubit ni ∈ N initially associated to the qubit state
qj ∈ Q (with i = j), let us assume that the idealized cir-
cuit requires the application of a PS gate to the qubit states
q3 and q4. The sequence of gates to achieve the goal are:

{SWAPn4,n1
, SWAPn2,n3

} → PSblue
n1,n2

The sequence takes τswap + τblue clock cycles as the two
swaps can be executed in parallel.

2.2 Temporal Planning for QCC

QCC problems can be modeled as temporal planning prob-
lems, utilizing the standard Planning Domain Definition
Language (PDDL) (Venturelli et al. 2017), as follows:
• Predicates are used to model the location qubit states and

if each goal requirement has been achieved or not.
• Swap and PS gates are modeled as temporal actions with:

i) conditions indicating whether the involved qubit states
are residing on adjacent qubits and if the required PS gates
have not been already executed,1 and ii) effects detailing
new qubit state location due to swap actions and those that
indicate desired PS goals have been achieved.

• The objective function is to minimize total plan duration
and thus the makespan of the compiled circuit.

While the basic mapping is outlined above, there are addi-
tional constraints and actions involved with different varia-
tions of the QCC problem (e.g., multiple PS stages). Refer
to (Venturelli et al. 2017) for more details.

2.3 Extensions

In this paper, we target QCC problems beyond the one ad-
dressed in (Venturelli et al. 2017). With the addition of qubit
state initialization (QCC-I) and crosstalk (QCC-X) problem
variations, our implemented techniques solve a unified prob-
lem that originally required two independent steps, incorpo-
rating constraints often present in existing hardware.

Qubit State Initialization (QCC-I) In the previously
studied QCC problem, qubit states are assigned their ini-
tial locations on the chip before problem solving (e.g., qubit
state qj ∈ Q is assigned to qubit ni ∈ N ). Here, the prob-
lem requires finding both the initial assignment of the qubit
state locations and the sequence of gates to achieve the goals.
Modeling this initialization step in PDDL is as follows.
• In the initial state all qubits are “stateless” and all qubit

state locations are undetermined.
• Action ai,j initializes the location of qubit state qj ∈ Q on

qubit ni ∈ N if: i) qj has not been initialized, ii) ni is still
empty, and iii) ni−1 has been occupied (i.e., initialized).
The last condition ensures that qubits are initialized in an
arbitrary sequence and thus reduces the total number of
valid sequences of initialize actions.
1In a solution, each PS goal gate only needs to be applied once.

For planner efficiency, we prevent a PS gate from executing multi-
ple times through action conditions.

• Action ainit finish finalizes the initialization with the
condition that all qubit states are located on the graph.
After this action, all remaining actions can start.

Crosstalk (QCC-X) In QCC, gate operations could be ap-
plied in parallel provided a qubit was not involved in mul-
tiple gates at the same time. For certain hardware architec-
tures, such as the devices manufactured by Google, (Boxio
2016)2 crosstalk constraints further restrict qubit involve-
ment. Specifically, when a given qubit ni ∈ N is involved in
a gate operation, all qubits adjacent to ni are prevented from
engaging in any gate operation. For example, if a 2-qubit
gate (either swap or PS) operation is carried out on 〈n1, n2〉
in Figure 1, then no gate operation involving n3 (adjacent to
n2) or n4 (adjacent to n1) can be started until the 〈n1, n2〉
operation is complete.

To model crosstalk constraints in PDDL we introduce:

• A new predicate crosstalk(ni) to indicate if ni is cur-
rently disabled by a gate operating on an adjacent qubit.

• An action representing a gate operation on a
pair of adjacent qubits 〈ni, nj〉 will: i) require
(not (crosstalk(ni)) ∧ (not (crosstalk(nj))) as
durative (i.e., over-all) action conditions and ii) for
every qubit nk that is connected to either ni or nj ,
crosstalk(nk) is the start effect of the action and
(not (crosstalk(nk))) is the action’s end effect.

3 Constraint Programming for Quantum

Circuit Compilation

The OR and CP communities have each investigated solv-
ing optimization problems closely related to planning. Tech-
niques developed in these fields are also utilized in ex-
isting planners as off-the-shelf solvers (Do and Kamb-
hampati 2000; van den Briel and Kambhampati 2005;
Piacentini et al. 2018a), routines to solve sub-problems
in decompositions (Benton, Coles, and Coles 2012), mod-
els to calculate heuristic values (Pommerening et al. 2015;
Piacentini et al. 2018b), or as inference techniques cus-
tomized for planning (Vidal and Geffner 2006).

Motivated by CP’s strong performance when applied to
scheduling problems, we model QCC with qubits repre-
sented as capacitated resources and gate actions as tasks to
be scheduled. As opposed to planning formulations, repre-
senting QCC as a scheduling problem requires us to specify
a priori additional problem elements, including a schedul-
ing horizon and bounds on the number of times a PS, swap,
or mixing gate will be used.

3.1 Decision Variables

As is common in CP, our formulation uses continuous, in-
teger, optional/mandatory interval, and sequence decision
variables. A key limitation to CP technology, as opposed to
temporal planning, is that it can only reason over decision
variables present in the model. For QCC problems, the num-
ber of times a particular swap or PS gate will be used in a

2Similar constraints are present in the devices by IBM and by
UC Berkeley.
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solution plan is unknown a priori. We must, therefore, de-
fine valid upper bounds for these quantities and introduce
the corresponding number of tasks (instantiated as optional
interval variables) to the model.3 We define bounds on swap,
Uswap, and PS, UPS , tasks for each gate in the architecture
in Section 4.2.

Interval variables are a natural way to model swap, PS,
and mixing gate tasks, as they have duration, need to be
scheduled, and can be absent or present in a solution. An
optional interval variable, var, is a rich variable type whose
possible values are defined over a convex interval: var :=
{⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}, where the variable takes
on the value ⊥ if it is not present in the solution4 and s
and e represent the start and end values of the interval if
it is present in a solution. The variable Pres(var) takes on
a value of 1 if var is present in the solution, indicating the
gate it represents is used. Constraints are only active over
present interval variables. If present, Start(var), End(var),
and Length(var) return the integer start and end times, as
well as the length, of the interval variable var.

To capture qubit state changes as a result of gate execu-
tion, we use sequence variables that represent a total order
over a set of interval variables; absent interval variables are
not considered in the ordering. This allows for the model-
ing of relationships such as Pre(var), which identifies the
interval variable preceding var in a candidate solution.

We model the problem in CP with an event-based formu-
lation, tracking qubit state after each gate task that involves
that qubit. We define the set of all tasks potentially involving
qubit ni ∈ N as Ei, including a task for state initialization.

The decision variables in our formulation are:

• Cmax (continuous): Makespan of the schedule and objec-
tive function value of the formulation, with possible val-
ues in 0 ≤ Cmax ≤ T .

• yk,m (optional interval): Swap task m for swap gate sk ∈
S. If present, has a start time Start(yk,m) ∈ [0, T ] and
duration Length(yk,m) = τswap. The set of optional swap
tasks available for swap gate sk ∈ S is defined as: ȳk :=
{yk,1, yk,2, . . . , yk,Uswap}.

• z�,n (optional interval): PS task n for PS gate p� ∈ P .
If present, has start time Start(z�,n) ∈ [0, T ] and duration
Length(z�,n) = τ�, where τ� ∈ {τred, τblue}, as per the
architecture. The set of optional PS tasks available for PS
gate p� ∈ P is defined as: z̄� := {z�,1, z�,2, . . . , z�,UPS

}.
• xi,j (integer): State of qubit ni ∈ N after task j ∈ Ei,

where Ei := {ẋ}∪{ȳk : sk ∈ S(i)}∪{z̄� : p� ∈ P (i)}∪
ω̄i, and ẋ is a dummy task. Each of these variables takes
on a value in the set Q of available qubit states, namely
xi,j ∈ {1, 2, . . . , |Q|}, ∀j ∈ Ei, ni ∈ N .

• Zo (interval): Mandatory goal PS task for goal go ∈
G. Start time Start(Zo) ∈ [0, T ], duration Length(Zo)

3For example, if the optimal solution to a problem defined on
Figure 1 used swap gate 〈n1, n2〉 three times, we must ensure at
least three of these swap gate tasks, at this location, are supplied to
the model. Often the number supplied will be more than this, as the
bounds are loose. Unused gate tasks are set as absent by the solver.

4Mandatory interval variables must be present in the solution.

∈ {τred, τblue} and end time End(Zo). The makespan ob-
jective is the time of the latest completion time of these
variables, namely: Cmax := maxgo∈G

(
End(Zo)

)
.

In problems with two PS stages, we include the following
additional decision variables for mix gates:

• ωi,j (optional interval): Task for mixing qubit state qj ∈
Q at qubit ni ∈ N . If present, has start time Start(ωi,j)
∈ [0, T ] with duration Length(ωi,j) = τmix. The set of
optional mixing tasks available for qubit ni ∈ N is de-
fined as: ω̄i := {ωi,1, ωi,2, . . . , ωi,β}.

• Ωj (interval): Mandatory mixing task for qubit state qj ∈
Q. Has start time Start(Ωj) ∈ [0, T ] duration Length(Ωj)
= τmix, and end time, End(Ωj), representing when the
mixing of state qj ∈ Q is complete.

3.2 Formulation, Objective, and Constraints

With the problem parameters, decision variables, and asso-
ciated domains defined, we detail our event-based CP for-
mulation in Figure 2. Constraints (1 - 9) are required for one
and two-stage PS problems, while Constraints (10 - 12) are
only required for two-stage PS problems.

Objective (1) represents the problem objective which is to
minimize the makespan, Cmax, of the circuit. The secondary
objective, reduced in weight by a small value ξ, minimizes
the number of swap tasks.5 The addition of this component
was found to improve solver performance while remaining a
reasonable objective for QCC problems. Constraint (2) ini-
tializes the qubit states to their required initial values and
Constraint (3) requires that solution Cmax be greater than
the end time of all goal variables.

We use a number of global constraints (van Hoeve and
Katriel 2006) defined over a set of variables and encapsu-
lating frequently recurring combinatorial substructure. Con-
straint (4) uses the NoOverlap global constraint (Baptiste,
Le Pape, and Nuijten 2012) to perform incomplete, efficient
domain filtering on the start times of the interval variables.
The model treats each qubit, ni ∈ N , as a unary capacity
resource and ensures that swap, PS, and mix gates are acti-
vated in such a way that two gates involving the same qubit
are never active at the same time.

Constraint (5) makes use of the Alternative global con-
straint (Laborie 2009), which links interval variables to a set
of optional interval variables, enforcing that only one vari-
able from the optional set can be present and the start time
must coincide with the mandatory variable. We use this con-
straint to maintain the relationship between the goal vari-
ables, Zo, and the optional PS variables, z�,n. For each PS
gate, the z�,n tasks are ordered such that they coincide with
a single goal, and thus |G| = |z̄�|, ∀p� ∈ P . Each goal acti-
vates a single PS gate task across the set of PS gates.

Constraint (6) implements qubit state updates when a
swap interval variable is present, swapping the states of the
qubits involved in the corresponding physical swap gate.
The term prei(yk,m) returns the task previous to swap task

5This value is subtracted from the objective when comparing to
temporal planning approaches for consistency.
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Minimize:

Cmax + ξ ·
∑

sk∈S

∑
yk,m∈ȳk

Pres(yk,m) (1)

Subject to:
xi,0 = i, ∀i ∈ {1, 2, . . . , α} (2)
Cmax ≥ End(Zo), ∀go ∈ G (3)
NoOverlap(Ei), ∀ni ∈ N (4)
Alternative(Zo, [z1,o, . . . , zδ,o]), ∀go ∈ G (5)
Pres(yk,m) → (xi,yk,m

= xj,prej(yk,m))

∧ (xj,yk,m
= xi,prei(yk,m)),

∀yk,m ∈ ȳk, 〈i, j〉 ∈ sk, sk ∈ S (6)
Pres(z�,n) → (xi,z�,n = xi,prei(z�,n))

∧ (xj,z�,n = xj,prej(z�,n)),

∀z�,n ∈ z̄�, 〈i, j〉 ∈ p�, p� ∈ P (7)
Pres(z�,n) → (xi,z�,n = g�,1 ∧ xj,z�,n = g�,2)

∨ (xi,z�,n = g�,2 ∧ xj,z�,n = g�,1),

∀z�,n ∈ z̄�, 〈i, j〉 ∈ p�, p� ∈ P (8)
Pres(yk,m) ≥ Pres(yk,m+1),

∀yk,m ∈ ȳk \ yk,Uswap
, sk ∈ S (9)

Alternative(Ωj , [ω1,j , . . . , ωα,j ]), ∀qj ∈ Q (10)
Start(Ωj) ≥ End(Zo), ∀go ∈ G(j), qj ∈ Q (11)

End(Ωj) ≤ Start(Zo), ∀go ∈ G′(j), qj ∈ Q (12)

Figure 2: CP Model for QCC.

yk,m in the sequence for qubit ni ∈ N , allowing the mod-
eling of qubit state swap between the qubit pair, 〈i, j〉, in-
volved in gate sk ∈ S. Constraint (7) models a similar re-
lationship for PS gate tasks. We note that while swap tasks
result in an exchange of states between qubits ni and nj ,
after a PS task qubit states remain unchanged.

Constraint (8) ensures that if a particular PS gate task,
z�,n, is present, the states of the qubits involved match the
corresponding goal. The term g�,1 represents the first qubit
state required by goal g� ∈ G, and g�,2 the second.

To remove some of the symmetries in the model, Con-
straint (9) specifies that homogeneous optional swap tasks
must be used lexicographically.

For problems that have two stages of phase separation,
a mixing gate must be applied to each qubit state after all
the goals that utilize that state are achieved, and then the
goals must be repeated. To achieve this, we introduce a sec-
ond goal set, G′ := {gε+1, gε+2, . . . , g2·ε}, which duplicates
the first. We let the sets G(j) and G′(j) denote the goals
from G and G′, respectively, that involve qubit state qj ∈ Q.
Constraint (10) ensures that only one of the optional mix-
ing tasks is used for each mixed qubit state and Constraints
(11) and (12) ensure that the mixing tasks separate the two
PS goal sets. Additionally, goal requirements are amended
to include the duplicated goal set, G′.

3.3 Qubit Initializations and Crosstalk

The QCC problem extensions introduced in Section 2 re-
quire minor alterations to the CP model.

QCC-I In the baseline and crosstalk variants, Constraint
(2) is applied unchanged. However, in the qubit initializa-
tions problem variant it is replaced with the following:

AllDifferent(x1,0, x2,0, . . . , xα,0) (13)

The removal of Constraint (2) allows the solver to select ini-
tial values for qubit states, and the addition of Constraint
(13) enforces that the initial states on all the qubits be differ-
ent, ensuring that all qubit states are present on the chip.

QCC-X In the crosstalk variant of the problem, the qubits
that can simultaneously participate in gate activations are
further constrained. Constraint (4) is adjusted such that the
sets S(i) and P (i) for a given qubit ni ∈ N include the
gates that involve adjacent qubits to ni as well.

4 Setting Bounds

As before, bounds on scheduling horizon and the number of
times a particular gate is used is unknown beforehand. In
this section we detail how these values are determined.

4.1 Scheduling Horizon

Our CP formulation can be implemented using a horizon set
to infinity, however, it was observed that smaller horizon val-
ues improve performance.

Let ψ be the length of the side of the chip (ψ = 3 for 8-
qubits, and ψ = 5 for 21-qubits), τmax

PS = max(τred, τblue)
be the maximum PS gate duration, and φ = (2 ·ψ)−3 be the
maximum number of swaps required to bring any two qubit
states to a pair of adjacent qubits.
Lemma 1. For P = 1 problems, T = |G|·(φ·τswap+τmax

PS )
is an upper bound on the optimal makespan.

Proof. There are two components to achieving any goal: i)
moving the required qubit states to adjacent qubits, and ii)
applying a PS gate task. For a single goal, the worst case
scenario would have the required states located on the op-
posite sides of the architecture (e.g., located on n1 and n8

in Figure 1), requiring a minimum of φ swaps to place them
next to each other. Then, we must apply a PS gate, which, in
the worst case, will take a duration of τmax

PS . We can perform
all tasks for |G| goals in sequence, leading to a makespan no
worse than: T = |G| · (φ · τswap + τmax

PS ).

We use this T value as the horizon parameter in all of our
CP experiments for single PS stage problems.6

4.2 Swap and PS Gate Tasks

For the scheduling formulation, we determine the number
of activation tasks to be allocated per physical swap gate,
Uswap. If we consider achieving each goal sequentially, we
could potentially have to move a qubit state through the en-
tire architecture to become adjacent to the other qubit state.

6An extension of this proof is used to yield a scheduling horizon
bound applicable to P = 2.
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In this case, each swap gate is used once for each goal, yield-
ing Uswap = |G|. Note that, although this value is observed
to perform well empirically, the circuit can work towards
goals in parallel, leading (potentially) to optimal solutions
that use more than |G| swaps per physical gate; we will ex-
plore this in future work.

In contrast to swap tasks, our CP formulation allocates
exactly one PS task to each physical PS gate for each goal,
go ∈ G, resulting in UPS = |G|. This allows for the case
that all of the goals are achieved using the same physical PS
gate. Note that the PS gate tasks are ordered such that the
first task corresponds to the first goal, and so forth (as noted
in the CP model).

5 Hybrid Approach with Temporal Planning

and Constraint Programming

Temporal planners find satisficing plans for most of the in-
stances, often fairly quickly. The CP model, while perform-
ing well on small problems, struggles to find solutions for
larger problems due to high levels of task optionality, reduc-
ing the inference that can be performed. For the problem
instances investigated, the best solutions found used only
about 10% of the PS and swap tasks allocated to the model
(the remainder being set as absent).

Warm Start Leveraging the temporal planner’s ability to
find quality solutions early on in the search, we integrate the
two techniques via a warm start procedure, a common boost-
ing technique in OR where solutions found by one solver
(e.g., the temporal planner) form a starting point for an-
other (e.g., CP’s branch-and-infer) (Kramer, Barbulescu, and
Smith 2007; Beck, Feng, and Watson 2011).

While the details of how CP Optimizer makes use of
a starting solution are sparse (Laborie, Refalo, and Shaw
2013), there are two general ways in which it is exploited.
First, the existence of an upper bound on the objective func-
tion allows the solver to propagate and remove possible val-
ues from the domains of the decision variables. For exam-
ple, the bound on the length of the horizon allows many op-
tional interval variables to be removed and the domains of
the start time variables of the remaining ones to be narrowed.
Second, the solution can be used heuristically to guide the
search toward promising areas of the search space (e.g.,
(Beck 2007)). As a complete search technique, given enough
time the CP solver will explore areas far from the warm start
solution and is guaranteed to find and prove optimality.

Solution Mapping With our CP model and temporal plan-
ning solution for a problem instance, expressed as time-
stamped PDDL actions, we create a mapping of the plan-
ning solution to the corresponding variable values in the CP
model. In addition to assigning Cmax to the makespan found
by the planner, we map the time-stamped swap, PS, and mix
gate actions to values for the CP model’s interval variables
and qubit state variables. After the mapping of all gate ac-
tions, we set the remaining interval variables to absent; this
maps values to all yk,m, z�,n, and Zo variables in the CP
model. In the final mapping step, we assign values to the

qubit state variables, xi,j , by reasoning about the present
(and absent) gate task interval variables, constructing a com-
plete solution to the CP formulation. A similar mapping is
applied to P = 2 problems, assigning values to the mixing
variables, wi,j and Ωj .

Hybrid Implementations The warm start procedure
yields a way to link the temporal planning and CP, however,
we must specify when the solution is passed between the
solvers. We describe two sets of hybrid experiments below.

Last Hybrid: As a proof-of-concept, our first hybridization
represents a best-case scenario and explores whether the
highest quality solution found by temporal planning, within
the runtime limit, can be improved by our CP model. We
run the temporal planner until the runtime limit, T , storing
the last solution found and the time it was found, tlast. We
then warm-start CP with this solution and run it for the re-
maining time, T − tlast. Since, in practice, we would need
an oracle to identify the best (last) solution, and thus tlast,
prior to reaching T , these experiments are used to provide an
estimate for the best possible performance of our temporal
planning/CP hybridization, given a fixed runtime T .

Half Hybrid: Our second hybridization allocates half of the
runtime to temporal planning, and half to CP. The best solu-
tion found by temporal planning at T

2 is used to warm-start
CP, which is then run for the remaining runtime, also T

2 . This
naı̈ve approach is simple to implement and designed with
the assumption that temporal planning and CP are equally
valuable to the hybrid, thus allocated the same solve time.

6 Empirical Evaluation

In this section we present an extensive experimental assess-
ment of the stand-alone methods and our hybrids.

6.1 Setup

Problem Instances We start with the previously studied
QCC problem benchmark set (Venturelli et al. 2017) that
compiles Quantum Approximate Optimization (QAOA) cir-
cuits (Farhi, Goldstone, and Gutmann. 2014) for MaxCut to
the architecture inspired by the Rigetti Computing’s quan-
tum computer (Sete, Zeng, and Rigetti 2016) (refer to Fig-
ure 1). As most planners cannot solve |N | = 40 qubit prob-
lems, we study two problem sizes: |N | = 8 and |N | = 21.
We solve each benchmark instance using one of three prob-
lem variations: the baseline problem (QCC), initializations
(QCC-I), and crosstalk (QCC-X).

In total, we document results from four temporal planners,
CP Optimizer, and our two hybrid approaches on nine sets
of 50 problems each, for the total of 5,400 data points.

Software In addition to the TFD (Eyerich, Mattmüller,
and Röger 2009) and LPG (Gerevini, Saetti, and Serina
2003) temporal planners used in the previous work (Ven-
turelli et al. 2017), we include results for two additional
planners: CPT (Vidal and Geffner 2006) and POPF (Coles et
al. 2010). CPT is an optimality-focused planner that uses CP
inference techniques in a partial-order planning framework.
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Instance & Evaluation CP LPG TFD POPF CPT
|N | P Variant Eval. Alone Alone Last Half Alone Last Half Alone Last Half Alone Hybrid

8 1 QCC
Score 0.88 0.93 0.93 0.94 0.87 0.93 0.92 0.83 0.85 0.85 1.00 (50†) −
Δ − − 1.4% (11) 0.7% (10) − 6.8% (30) 6.0% (29) − 9.7% (41) 8.3% (37) − −

8 1 QCC-I
Score 0.70 (42) 0.85 0.91 0.88 0.89 0.96 0.96 0.84 0.86 0.86 1.00 (43†) 1.00
Δ − − 6.6% (30) 3.5% (25) − 7.4% (31) 7.0% (30) − 7.8% (32) 6.9% (29) − 0.00% (0)

8 1 QCC-X
Score 0.90 0.70 0.95 0.95 0.91 0.97 0.96 0.77 0.79 0.79 0.00 (0) −
Δ − − 26.8% (50) 26.8% (50) − 5.8% (32) 5.0% (30) − 18.6% (49) 19.8% (49) − −

8 2 QCC
Score 0.73 0.78 0.86 0.85 0.92 0.98 0.97 0.85 0.87 0.86 0.00 (0) −
Δ − − 8.7% (42) 7.6% (45) − 6.3% (40) 5.3% (38) − 9.9% (45) 7.6% (45) − −

8 2 QCC-I
Score 0.00 (0) 0.61 0.72 0.70 0.88 0.97 0.96 0.77 0.79 0.79 0.00 (0) −
Δ − − 14.9% (47) 12.4% (44) − 10.0% (40) 7.4% (36) − 12.9% (48) 11.9% (46) − −

8 2 QCC-X
Score 0.68 0.53 0.82 0.81 0.87 0.99 0.98 0.64 (43) 0.66 (43) 0.67 (42) 0.00 (0) −
Δ − − 34.4% (47) 34.2% (50) − 12.6% (50) 11.5% (49) − 24.2% (43) 28.2% (42) − −

21 1 QCC
Score 0.39 (45) 0.82 0.86 0.80 0.61 0.73 0.58 0.92 0.94 0.94 0.00 (0) −
Δ − − 3.9% (26) -3.9% (18) − 18.0% (42) -8.3% (32) − 6.6% (41) 5.8% (36) − −

21 1 QCC-I
Score 0.28 (7) 0.57 0.59 0.54 (49) 0.48 0.54 0.48 0.94 0.96 0.98 (49) 0.00 (0) −
Δ − − 2.9% (17) -5.6% (15) − 12.1% (47) -2.9% (45) − 5.0% (31) 4.9% (21) − −

21 1 QCC-X
Score 0.35 (40) 0.40 0.73 0.73 0.67 0.92 0.82 0.59 (19) 0.65 (19) 0.77 (16) 0.00 (0) −
Δ − − 42.1% (47) 42.1% (49) − 27.0% (45) 14.5% (33) − 33.9% (18) 49.8% (15) − −

Table 1: Performance comparison using plan score and % improvement (Δ). Plan score (max = 1.00) uses the formula of
the International Planning Competition (IPC): if the best-known makespan for instance i is Pi, then for a given solver X that
returns a plan piX : Score(i,X) = Pi/Cmax(p

i
X). For the 50-instance benchmark set, solver score is the average over the

instance scores for which a solution was found by the solver. Values in brackets indicate the number of problems that were
solved to feasibility (if no brackets, all 50 instances were solved). † indicates the instances were solved to proven optimality. %
improvement (Δ) assesses the average makespan improvement of the hybrid over the best solutions of the stand-alone planner.
The number in brackets indicates the number of instances the hybrid approach improved on the stand-alone planner. |N |=8
problems are run for two minutes, and |N |=21 for 10 minutes.

POPF combines forward-state-space search with the partial-
order planning framework. We use the commercial software
CP Optimizer to represent and solve our CP model.7

Three of the planners tested (LPG, TFD, and POPF) are
anytime planners. These continue to return plans of gradu-
ally better quality until the allotted runtime is over. CPT, as
designed, returns a single solution at the end of the given
run-time, if one is found, which it attempts to prove opti-
mal. CP Optimizer is an anytime solver, improving solution
quality over time, and seeking to prove optimality.

6.2 Analysis

Our experimental results are summarized in Table 1. A vi-
sualization of solutions to the variants of a QCC problem
instance is illustrated in Figure 3.

Temporal Planning The anytime temporal planners were
able to consistently find solutions for all problems (with the
exception of POPF for larger QCC-X problems), while CPT
was only able to return solutions on the two problem sets
with the smallest anticipated makespans. This is not surpris-
ing given that CPT works by bounding the planning horizon,
loosening the bound if no plan is found and tightening it oth-
erwise. This multi-step procedure is more time consuming
as the optimal plan makespan increases.

7Experiments are implemented in C++ on an Intel Core i7-
2670QM with 8GB of RAM running Ubuntu 14.04 LTS Linux.
We use CP Optimizer version 12.6.3 single-threaded with default
search and extended NoOverlap inference (all other inference de-
fault). All planners, except CPT, used the same machine. CPT, due
to software issues, was run on a RedHat Linux 2.4Ghz machine
with 8GB RAM.

TFD was the best overall performer in the previous study
(Venturelli et al. 2017) and remains strong in our experi-
ments.8 It is the best overall planner for |N | = 8 problems,
for P ∈ {1, 2}, though its performance degrades for the
larger |N | = 21 problems. LPG is competitive for single
stage problems, P=1, however, seems to perform poorly for
problems with a mixing stage. Solutions yielded by LPG for
the three problem variants on a given problem instance, are
illustrated in Figure 3 b), c), and d). The POPF planner had
relatively consistent performance across all problems, pro-
viding notably strong performance for QCC and QCC-I on
the larger |N | = 21 problems.

Constraint Programming Overall, the stand-alone CP
approach is competitive with temporal planning on the three
smaller |N |=8, P=1 problem sets, doing particularly well
on QCC and QCC-X problems. The crosstalk constraints
within QCC-X increase the scope of the NoOverlap con-
straints, enhancing inference that the solver can perform
and leading to stronger performance on these problems. The
QCC-I problem variant proved difficult for CP on all prob-
lem sizes, as the lack of initially defined qubit states is more
likely to lead the search away from candidate solutions.
The large number of optional tasks in larger problems over-
whelmed the approach and lead to poor overall performance,
indicated by CP’s inability to find solutions to all problems.

8For a number of QCC-X problem instances, the best solution
returned by TFD was invalid as confirmed by the plan validator
VAL. Such solutions were manually removed for this planner until
a valid solution was found.
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Figure 3: a) Problem instance for |N | = 8 (using 7 qubits) for the QAOA-MaxCut model algorithm. Colored edges represent
PS gate executions between corresponding quantum states. b)−g): Compilation plans obtained for the P = 1 problem instance
in a). Clock cycles on the horizontal axis and qubit locations arranged on the vertical axis, sorted according to Figure 1. Colored
tasks represent executed PS gates, and swap gates by white tasks with vertical lines. b) LPG compilation for QCC baseline.
c) LPG for QCC-I: gray lines indicate qubit state initialization. d) LPG for QCC-X: crosses identify disabled regions due to
crosstalk constraints. e), f) and g), respectively, show the improvements when CP uses b), c), and d) as a warm start.

Hybrid Approaches The Last hybrid improves upon ev-
ery planner on every problem variant. Since this hybrid tech-
nique always initiates the CP search from the best planning
solution found in the full runtime limit, the final solution
found is always equivalent, or better, in quality than the
stand-alone planner.

For QCC-X problems, the Half hybrid is always bene-
ficial - often significantly so. This result is consistent with
those of stand-alone CP, which performed surprisingly well
on this problem variant for |N |=8. When temporal planning
produces poor solutions (0.4-0.7 plan score), the halfway
switching policy is often (but not always) able to find plans
of up to 49.8% better quality. On problems that temporal
planning produces high quality solutions (0.85+ plan score),
the halfway switching policy is always beneficial, indicating
our CP warm-start is useful for “fine-tuning” high quality
plans. Though displaying strong performance on the ma-
jority of the problem classes, the halfway switching pol-
icy has weaker performance (w.r.t. % improvement) when
hybridized with the LPG and TFD planners for QCC and
QCC-I problems with |N |=21. We note, however, that it ac-
tually improves the solution value for the majority of these
instances in the case of TFD (32 and 45 instances for QCC
and QCC-I, respectively). The Half hybrid often produces
similar scores to our oracle-based hybrid and sometimes out-
performs it, indicating the development of a more sophisti-
cated switching policy may prove worthwhile.

Figure 3 illustrates CP improvement on seemingly rea-
sonable quality plans; e), f), and g) all exhibiting improve-
ment over their planning solution warm starts. The plan de-
tailed in e) is notable in two ways: i) it shows that more swap
gate tasks can result in a reduced makespan, and ii) it shows
that the CP portion of the hybrid does more than a simple
rescheduling of tasks, often changing the qubit pairs that PS
gates are applied to, and thus using different actions than

those supplied by the temporal planning warm start.

7 Conclusions & Future Work

In this paper, we investigate CP as an alternative to temporal
planning for QCC. Our empirical work shows that stand-
alone CP does not scale as well as current state-of-the-art
temporal planners as problems increase in size, however,
a hybrid, where CP is warm started with a solution found
by temporal planning, out-performs both planning and CP
alone for the majority of problems. We introduce new varia-
tions of QCC that include the ability to arbitrarily initialize
qubits (QCC-I) and to account for crosstalk interactions be-
tween qubits (QCC-X). These variants produce a more di-
verse QCC benchmark for which the planning technologies
exhibited substantially different performance variance.

Given these results, our work strengthens the message that
AI planning is a suitable technology to address QCC chal-
lenges and demonstrates the benefit of integrating it with
alternate optimization methods for building effective com-
pilers of real-world quantum hardware. Our proposed hy-
bridization is an initial investigation of how to best combine
temporal planning and CP for QCC problems. In a future
work, following Beck, Feng, and Watson (2011), we will
analyze the performance of the two components of our hy-
brid in order to determine an adaptive schedule for switching
between temporal planning and CP.
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