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Abstract

Observation planning for Unmanned Aerial Vehicles (UAVs)
is a challenging task as it requires planning trajectories over
a large continuous space and with motion models that can
not be directly encoded into current planners. Furthermore,
realistic problems often require complex objective functions
that complicate problem decomposition.
In this paper, we propose a local search approach to plan the
trajectories of a fleet of UAVs on an observation mission. The
strength of the approach lies in its loose coupling with domain
specific requirements such as the UAV model or the objective
function that are both used as black boxes. Furthermore, the
Variable Neighborhood Search (VNS) procedure considered
facilitates adaptation of the algorithm to specific requirements
through the addition of new neighborhoods.
We demonstrate the feasibility and convenience of the
method on a large joint observation task in which a fleet
of fixed-wing UAVs maps wildfires over areas of a hundred
square kilometers. The approach allows generating plans over
tens of minutes for a handful of UAVs in matter of seconds,
even when considering very short primitive maneuvers.

Introduction

In the last decade, Unmanned Aerial Vehicles (UAVs) have
become a widespread and affordable technology. Fixed-
wing UAVs that can reach 50 km/h are now widely available,
easy to deploy, maintain and equip. As a result, there is an in-
creasing interest in using them for various tasks where more
traditional measures would be inconvenient, dangerous or
simply costly. Typical examples are Search and Rescue mis-
sions in which large and hazardous terrain must be covered
while searching for a missing person as well as monitoring
or mapping tasks for which a number of observations must
be made at several remote locations (Saldaña et al. 2017;
Casbeer et al. 2006; Merino et al. 2012).

In this paper, we case study one such monitoring task in
which the objective is to leverage UAVs to perform continu-
ous and autonomous mapping of wildfires. The operational
constraints of wildfires make the use of UAVs especially ap-
pealing: they often occur in remote wooden areas and can
rapidly span hundreds of square kilometers. Expected bene-
fits are an improvement of the information available to fire-
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fighters on the field, leading to a safer and more efficient
deployment of personnel and resources (Noonan-Wright et
al. 2011). Automated or semi-automated information gather-
ing is also expected to free up firefighters from undertaking
this task themselves. Indeed, in tension areas where tens of
fire can start every day, surveillance is a critical task that
monopolizes many firefighters.

Unfortunately, the very reason that makes fixed-wing
UAVs appealing for such tasks also renders a full automa-
tion difficult. With a typical airspeed of 50 km/h even small
and widely available fixed-wing UAVs can cover large areas
in a matter of minutes, meaning automated planners must
cope with very large continuous search spaces. In addition,
such speeds yields kinematic and dynamic constraints – e.g.
augmenting the minimum turning radius – that call for more
elaborate techniques to compute point to point trajectories.
The presence of multiple UAVs further complicates the task
at hand, as one must ensure good allocation of tasks among
the different agents (Ollero et al. 2005).

In this paper, we formalize a general multi-agent obser-
vation problem that captures typical requirements for UAV
observation missions. The proposed planning approach is
based on Variable Neighborhood Search (VNS), a local
search technique that has proved very adapted to solve Ori-
enteering Problems and variants with which our observation
problems share many characteristics (Vansteenwegen, Souf-
friau, and Oudheusden 2011; Geiger et al. 2009).

We show how this technique is instantiated to plan ob-
servations of wildfires. In particular, we demonstrate that no
adaptation is required to handle specialized point-to-point
trajectory planners and complex nonlinear objective func-
tions. Despite the very small necessary adaptations, we show
that our approach generates good quality plans in a matter
of seconds for problems involving multiple UAVs and thou-
sands of potential observations to be made over tens of min-
utes.

Problem Statement

UAV Model

Here we define a synthetic and generic UAV model whose
aim is to abstract the specific details of a given UAV dy-
namics, while providing enough information to allow plan
synthesis.
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Definition 1 (Waypoint) A waypoint is a location in space
that a UAV has to reach during the execution of a plan.

Common waypoint representations combine the ground
position (x, y, z) in a given frame (e.g. East-North-Up rela-
tive to a control tower) and the attitude encoded by a triple
(roll, pitch, yaw). Depending on the motion model consid-
ered, part of this representation might be kept implicit, for
instance the altitude z and the pitch when the UAV is con-
strained to stay at a given altitude.

A UAV model implicitly encodes the flight dynamics of a
given UAV. The capability needed for planning is the com-
putation of trajectories linking two waypoints. Given the en-
semble of waypoints W , we require a UAV model υ to pro-
vide two functions:

travel-timeυ : W ×W → R

energyυ : W ×W → R

that respectively denote the shortest time needed to go from
one waypoint to another and the energy consumption of the
resulting trajectory. While not strictly necessary for the pur-
pose of planning, the description of the resulting trajectory
in space is usually provided as well.

Definition 2 (Maneuver) A maneuver is an elementary tra-
jectory of a single UAV.

Maneuvers aim at providing a single interface that ab-
stract the differences between subparts of long trajectories.
In particular, it can be used to represent single waypoints,
straight line flight overs or more complex maneuvers such as
spirals or lawnmower patterns that are common when syn-
thesizing plans for UAVs.

For a given maneuver m, a UAV model υ provides:

• an entry waypoint entryυ(m) ∈ W

• an exit waypoint exitυ(m) ∈ W

• a duration durationυ(m) ∈ R

• an energy consumption energyυ(m) ∈ R

Definition 3 (Trajectory) A trajectory is a tuple (υ, ts,M)
where, υ is a UAV model, ts is the start time of the trajectory
and M = 〈m1, . . . ,mn〉 is a sequence of maneuvers.

For each maneuver mi ∈ M , its start time st(mi) and end
time et(mi) are computed recursively:

st(m1) = ts

et(mi) = st(mi) + durationυ(mi)

st(mi+1) = et(mi) + travel-timeυ(exitυ(mi), entryυ(mi+1))

The energy consumption of a trajectory is defined as the
sum of the consumption of all maneuvers in the trajectory
and the energy needed to link any two subsequent maneuvers
in the trajectory.

Planning Problem Formulation

Definition 4 (Flight Window) A flight window represents
the opportunity for a given UAV to perform an activity sub-
ject to certain constraints. A flight window is encoded as a
tuple (υ,Mstart,Mend, Tmin, Tmax, E) composed of:

• a UAV model υ
• two sequences of maneuvers Mstart and Mend encod-

ing the start and end of any trajectory in this flight win-
dow. A simplified application is to specify a single way-
point denoting the runway where the UAV must take off
and land. More complex settings might consider full
trajectories to denote previously executed or currently
executing maneuvers.

• a time window [Tmin, Tmax] during which the UAV is
allowed to fly.

• the energy E available for the flight window.

We say that a given trajectory (υ, ts, 〈m1, . . . ,mn〉)
is a valid instantiation of a flight window
(υ,Mstart,Mend, Tmin, Tmax, E) if:

• 〈m1, . . . ,mn〉 is a feasible sequence of maneuvers for
υ.

• the trajectory is fully contained in the allowed temporal
interval, i.e., Tmin ≤ st(m1) ≤ et(mn) ≤ Tmax

• Mstart and Mend are respectively prefix and postfix
of 〈m1, . . . ,mn〉; meaning that the trajectory begins
and finishes with the maneuvers imposed by the flight
window.

• the energy required by the trajectory is no greater than
E

Definition 5 (Multi-UAV Observation Problem) A multi-
UAV observation planning problem is a tuple (M,F, utility)
where M is the set of allowed maneuvers, F is a set of flight
windows and utility is a utility function whose input is a set
of trajectories and output is a real number.

A plan is a sequence of trajectories. A plan
π = 〈t1, . . . , tk〉 is a solution to a planning problem
(M, 〈f1, . . . , fk〉, utility) if and only if for each flight
window fi, ti is a valid instantiation of fi. A solution plan
π is said to be optimal if there exist no solution plan π′ �= π
such that utility(π′) > utility(π).

Observation Planning as VNS

We now introduce a specialized algorithm for solving our
observation problem. The proposed approach builds on the
Variable Neighborhood Search (VNS) metaheuristic that
has been applied to numerous combinatorial optimization
problems in Operations Research (Hansen, Mladenović, and
Moreno Pérez 2010). VNS algorithms work by repeatedly
chaining (i) a descent phase through systematic change of
neighborhood providing local improvements to an existing
solution; and (ii) a perturbation phase aiming at escaping
the valley of the local optimum reached during the descent
phase.

One of the key benefits of VNS is its very generic and
adaptable definition. Indeed, the descent phase of VNS
builds upon a sequence of neighborhoods, where each neigh-
borhood typically proposes a local plan adaptation that im-
proves a particular aspect of the solution. A simple neigh-
borhood could be for instance to swap the order of two se-
quenced maneuvers. The fact that each neighborhood is fo-
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cused on a particular subtask means they can often be reused
when tackling similar problems.

Definitions

Definition 6 (Neighborhood) A neighborhood N defines
for each valid plan π a set of neighbor plans N (π) ⊆ Π
where Π is the set of valid plans.

A neighborhood is associated with a utility function uN :
Π → R giving the utility of a given plan in the context of
this neighborhood.

This definition of a neighborhood differs from the usual
one by the introduction of the utility function uN which
is local to N . For instance, a neighborhood aiming at op-
timizing trajectories could base its utility function only on
the length of the plan. This choice is motivated by the very
general utility function considered for our observation prob-
lem. While the problem remains mono-objective, allowing
the global objective function to be nonlinear and dependent
on the timing of maneuvers makes the generation of use-
ful neighbors complex. The neighborhood-dependent utility
function allows a greater separation of concerns between the
different neighborhoods.

Definition 7 (gen-neighbor) Given a plan π ∈ Π and a
neighborhood N , the function gen-neighborN (π) returns
either (i) a valid plan π′ ∈ N (π) such that uN (π′) >
uN (π), or (ii) nil if the neighborhood failed to generate an
improving neighbor.

Definition 8 (Shuffling) A shuffling function f(π, k) : Π×
N → Π produces a new plan by perturbing the plan π. This
perturbation is dependent on k, the current iteration of the
search.

Shuffling functions typically apply random changes to the
current solution with the objective of escaping local minima.

Variable Neighborhood Search

Our VNS algorithm is depicted in Algorithm 1. It is parame-
terized by a sequence of neighborhoods, a shuffling function
and a maximum runtime.

Given an initial (possibly empty) partial plan πinit, the
descent phase of VNS tries to generate plans improvements
by systematically and sequentially trying all neighborhoods
〈N1, . . . ,Nm〉 until a neighborhood Ni provides an im-
provement. If such an improvement is provided, the current
plan is updated and the process restarts from the first neigh-
borhood N1. When no neighborhood was able to generate
an improvement, the best plan found so far is perturbed by
the shuffling function and the descent phase restarts from
the first neighborhood N1. This process is repeated until the
total runtime goes over the allowed budget tmax, at which
point the best plan found is returned.

Neighborhoods

We define two classes of neighborhoods that have proved
useful in our setting.

Algorithm 1 A Variable Neighborhood Search (VNS) al-
gorithm. VNS takes as parameters an initial plan πinit, a
sequence of neighborhoods 〈N1, . . . ,Nm〉, a real tmax in-
dicating the maximum planning time and a function shuffle
that is applied to the best plan on a restart.

function VNS(πinit, 〈N1, . . . ,Nm〉, tmax, shuffle)
πbest ← πinit

num-restarts ← 0
while runtime ≤ tmax do

π ← shuffle(πbest, num-restarts)
i ← 1 � Select first neighborhood
while i ≤ m do

π′ ← gen-neighborNi
(π)

if π′ �= nil then
π ← π′ � Update current plan
if utility(π) > utility(πbest) then

πbest ← π
end if
i ← 1 � Switch back to first neighborhood

else
i ← i+ 1 � Switch to next neighborhood

end if
end while
num-restarts ← num-restarts + 1

end while
return πbest

end function

Local Path Optimization A local path optimization
neighborhood applies a transformation to a single maneu-
ver in the plan. The scope of its utility function is limited to
the duration and energy consumption of the trajectory.

Typical local path optimization neighborhoods apply a
random or deterministic translation or rotation to a single
maneuver already in the plan.

Maneuver Insertion A maneuver insertion neighborhood
alters a plan by inserting a new maneuver m at a given po-
sition in a plan. The quality of a neighbor is assessed by the
problem’s utility function, with ties broken by trajectory du-
ration or energy consumption.

Maneuver insertion typically works in two phases. First, a
new maneuver is generated either systematically or by sam-
pling. Second, an insertion location is selected for the ma-
neuver, typically the one minimizing the required detour.

Given the potentially large number of valid maneuvers, new
maneuvers and maneuver transformations are often sam-
pled. This approach was proposed by Mladenović et al.
(2003) as Reduced VNS to cope with large neighborhoods
whose complete enumeration would be computationally ex-
pensive.

Other Common Neighborhoods Other common neigh-
borhoods in VNS include replacing some of the maneuvers
by new ones or swapping maneuvers between two trajecto-
ries, e.g. as proposed by Geiger et al. (2009) and Hansen,
Mladenović, and Moreno Pérez (2010). However, we found
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those to be inefficient in our setting, due to the mostly con-
tinuous trajectories in which a maneuver is best considered
together with the preceding and following ones. Instead, we
rely on shuffling to provide similar benefits (removal of ma-
neuvers in trajectories) at a larger scale.

Initial Plan and Shuffling

Our initial plan πinit is built by transforming each flight
window (υ,Mstart,Mend, Tmin, Tmax, E) into a trajectory
(υ, Tmin, 〈Mstart,Mend〉). The initial plan is the aggregation
of the resulting trajectories. It is easy to see that such a plan
is valid if there exist a solution.

One of the most general shuffling function to complement
insertion neighborhoods is the one that randomly retracts a
sequence of maneuvers from the current plan. The number
of maneuvers to be removed in each trajectory is randomly
chosen between 0 and the maximum number of maneuvers
that can be removed (i.e. not in the imposed start and end of
the trajectory).

Instantiation and Evaluation

Wildfire Monitoring as a Multi-Agent Observation
Problem

We now give an overview of the fire mapping problem on
which our VNS approach to observation planning is instan-
tiated and evaluated. At the core is a will to take of advantage
of fixed-wing UAVs to automate the mapping of wildfires in
order to (i) collect images of active fires in real time, (ii)
maintain a map of the current fire, and (iii) rapidly confirm
and characterize new fire starts.

Fire Map The dynamic nature of wildfires and our desire
to allow their autonomous mapping and monitoring calls for
some complex data processing. While a complete presenta-
tion of the framework is beyond the scope of this paper, we
here sketch the main components and their impact on the
definition of the planning problem.

A fire mapping problem is characterized by an initial
knowledge of the current status of one or multiple wildfires.
Such information typically contains a partial history of the
position of the fire fronts over time, compiled from past ob-
servations. Given this initial knowledge, the objective of a
continuous mapping and monitoring system is to maintain a
map of the fire over time. For this purpose, the system uses
a fleet of fixed-wing UAVs equipped with infrared or regular
cameras, and should schedule their observations for the near
future (e.g. for the next hour).

The dynamic nature of fires means that the system should
be able to predict their evolution in order to know where ob-
servations should be made and focus them in the location
where the fire is the most dynamic. For this purpose, our
system is endowed with fire models (Rothermel 1972; An-
derson 1983) that permit the simulation of the fire progress
from its last known position, taking into account the envi-
ronmental context including the wind, terrain and fuel. The
output of this process is a predicted evolution of the fire tak-
ing the form of a rasterized map in which each cell is asso-
ciated with its time of ignition (if any) as shown in Figure 1.

Figure 1: Fire map showing the expected evolution of a wild-
fire spreading over a hilly area from a single ignition point
(in red). Background colors reflect the elevation. Level lines
denote the expected fire front every 30 minutes. Grey ar-
rows represent the local wind field on the ground as given
by a local wind simulator for the purpose of simulating the
wildfire’s evolution.

In the current implementation of our system, each cell of the
fire map is a square with a side of 25 meters.

UAV model Aircraft dynamics are very complex due to
aerodynamics, atmospheric conditions and actuator perfor-
mance bounds; leading to complex non-linear models. The
planning algorithm introduced in this publication only re-
quires a lighter UAV model, that doesn’t encompass all the
dynamics, but describes its kinematics in a simple yet real-
istic manner.

The model we propose is that of a Dubins vehicle. A Du-
bins vehicle moves forward at constant speed V and with
bounded turn radius |u| ≤ ψ̇max:

ẋ = V cos(ψ)

ẏ = V sin(ψ)

ψ̇ = u

For such vehicles, the work of Dubins (1957) finds opti-
mal distance paths between two points with prescribed ori-
entation. As shown in Figure 2, those paths are composed
of a succession of circular arcs and straight lines. Using Du-
bins’ formulations we obtain a good estimate for the exe-
cution time of a UAV trajectory at constant altitude. As a
result, the waypoint used is a tuple (x, y, ψ) where x and y
denote the position relatively to a fixed landmark and ψ is
the heading of the UAV which is assumed to fly at a fixed
altitude.

Maneuvers The considered maneuvers are short (50 me-
ters) straight line trajectories. The rational behind this choice
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Figure 2: A Dubins path between two oriented waypoints.
Curvature of both circular arcs is given by the maximum
turn radius of the UAV.

lies in the limitations of the actual controller for the con-
sidered UAVs that supports either waypoint based trajecto-
ries or predefined maneuvers such as lawnmower or spirals.
While in general adapted to complete area coverage, the lat-
ter proved to be unadapted to the given observation task
since we are interested in taking pictures of the fire front
which, at a given time, is essentially a 2D line. Straight line
maneuvers were preferred to simple waypoints to account
for the specific constraints of the UAV whose camera points
forward and provides more stable images when not turning.

The space of maneuvers M is thus defined as the set of
segments of fixed length whose center is a cell of the fire
map. Even though the fire map is discretized, the segment’s
orientation that denotes the angle of approach of the UAV is
not and can take an arbitrary value in [0, 2π].

A maneuver m executed at time t is an observation of a
given cell c of the fire map if (i) the segment of m is centered
on c, and (ii) the fire front is active in cell c at time t.

Objective Function The objective function measures the
information gathered by a set of UAV trajectories with re-
spect to a full knowledge situation. Given C the set of cells
ignited during the planning window, our objective is to max-
imize the total information gathered over all cells in C:

utility(π) =
∑

c∈C

kl(c, π)

where kl(c, π) associates to each cell c an amount of knowl-
edge gathered by a plan π. It is defined through the inverse
of the distance from c to the closest observed cell o ∈ π:

kl(c, π) =
1

min
o∈π

dist(c, o)

As a result, observing the same cell twice is useless from
a utility point of view. Also, the utility brought by a new
observation depends on observations already in the plan: if
there is already a nearby observation in the plan, its utility
will be low. This formulation captures the important spatial
correlation of ignition times in the context of wildfires mon-
itoring. This correlation can later be exploited to reconstruct
fire fronts from observations.1

1More involved definitions of distance (i.e. similarity) based on
fire-related features of cells are also supported by our approach but
are beyond the scope of this paper and omitted.

VNS Configuration

Local Path Optimization Neighborhoods We include
two local path optimization neighborhoods.

The Ndub neighborhood aims at shortening Dubins trajec-
tories by changing the orientation of maneuvers. For a given
plan π, a neighbor π′ ∈ Ndub(π) is obtained by replacing a
maneuver m ∈ π by a new maneuver that only differs by its
orientation. The new angle is chosen either randomly or such
that the new maneuver is parallel to the line linking the end
of the previous maneuver to the start of the next one; as pro-
posed by Macharet and Campos (2014). gen-neighborNdub
randomly generates a fixed number of neighbors and returns
the first one that reduces the length of the trajectory.

The Nfire neighborhood transforms a maneuver into an ob-
servation by translating it on the fire front. Consider a ma-
neuver m ∈ π that is not an observation, i.e., the fire front
is not in the observed cell at time st(m). Then Nfire(π) con-
tains a plan π′ where either:

• m is recentered on a neighbor cell in which the fire is
active at st(m)

• m is removed from π′. This case is triggered when the
fire front is not in a neighbor cell at st(m) or such a
neighbor cell is already observed.

Insertion Neighborhoods Insertion neighborhoods work
by (i) non-deterministically choosing one maneuver over a
yet unobserved cell, and (ii) selecting an insertion location.
We define three neighborhoods depending on the strategy
for choosing the insertion location:

• N all-best
ins inserts the sampled maneuver in a plan π such

that the overall duration is minimized. All trajectories
are considered.

• N 1-best
ins inserts the sampled maneuver in a random tra-

jectory of π such that the duration of the trajectory is
minimized.

• N rand
ins inserts the sampled maneuver at a random loca-

tion in the plan.

For all three neighborhoods, gen-neighbor generates a
fixed number of neighbors and selects the valid one that has
the best utility.

Results

We evaluate our approach on a hundred randomly generated
instances of the fire mapping problem. Each instance is a 10
by 7 kilometers area where one to three fire start randomly
and spread over 1 hour. Each instance has one to three fixed-
wing UAVs with a ground speed of 18 m/s. Each UAV has a
flight window of 10 to 30 minutes and is based in a random
corner of the area. The code for fire simulation, planning and
problem generation is freely available.2

On average the fire front traverses 2243 cells of the fire
map during the plan window leading to as many possible
observations. Each possible observation can be made from
any angle, yielding a virtually infinite number of maneuvers
(note that even a coarse discretization of orientation would

2https://github.com/laas/fire-rs-saop
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yield a very large number of maneuvers). In practice, each
UAV can only access about 20% of the possible observations
due to the limitation on its flight window.

We evaluate different combinations of neighborhoods and
shuffling functions. The score of a solution plan π is given
by:

score(π) =
utility(π)
utility(π∗)

where π∗ is the best solution found for the problem instance.
Since VNS provides solutions in an anytime fashion, we
evaluate the evolution of the score of a given VNS configura-
tion over time, e.g., the average score of the solutions found
when allowed to plan for 1 second.

We evaluate the following VNS configurations:

Name Neighborhoods Shuffling

Call-best 〈Nfire,Ndub,N all-best
ins 〉 yes

C1-best 〈Nfire,Ndub,N 1-best
ins 〉 yes

Crand 〈Nfire,Ndub,N rand
ins 〉 yes

C∗ 〈Nfire,Ndub,N all-best
ins ,N 1-best

ins ,N rand
ins 〉 yes

Cno-dubins
rand 〈Nfire,N rand

ins 〉 yes

Cno-shuffling
rand 〈Nfire,Ndub,N rand

ins 〉 no

Table 1: Evaluated VNS configurations.

All configurations first consider local path optimization
neighborhoods (Nfire and Ndub). As a result, path optimiza-
tion neighborhoods are triggered each time a new inser-
tion occurs. The Nfire neighborhood is present in all tested
configurations, as omitting it strongly reduced the conver-
gence rate. This is because inserting a new maneuver delays
later maneuvers, possibly invalidating an observation. The
Nfire neighborhood precisely avoids this problem by locally
adapting the path to maintain an observation.

Configurations mostly diverge in the definition of the in-
sertion neighborhoods from the most involved (N all-best

ins ) to
the simplest (N rand

ins ). In addition, we introduced a configura-
tion C∗ that sequentially combines all three insertion neigh-
borhoods. The last two configurations aim at illustrating the
impact of the Ndub neighborhood and of the shuffling phase.

Average scores over the hundred instances are presented
in Figure 3 and Table 2. All benchmarks were executed on
an Intel Core i5-7200U cadenced at 2.5GHz with a single
thread and allowed to run for 30 seconds. As a result of the
local search approach taken, memory usage is kept low at all
times and is dominated by the encoding of the fire map. On
average, the best plan contained 68 observations.

Of the three first configurations (Call-best, C1-best, Crand),
Call-best uses the most complex neighborhood. Indeed
N all-best

ins preselects among all possible insertion locations the
one that induces the least detour. As a result, this neighbor-
hood favors quality at the expense of diversity. The opposite
choice is made for Crand that considers any insertion loca-
tion, while C1-best is a middle ground that considers the best
location in a given trajectory.
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Figure 3: Score of the VNS configurations as a function of
the planning time. Score is averaged over all problem in-
stances.

Time (s) 0.01s 0.1s 1s 10s 30s

Call-best .39 (.09) .55 (.09) .71 (.06) .83 (.04) .87 (.04)

C1-best .36 (.09) .50 (.10) .68 (.06) .85 (.02) .90 (.02)

Crand .36 (.09) .53 (.10) .74 (.05) .87 (.02) .92 (.01)

C∗ .39 (.09) .55 (.09) .71 (.05) .90 (.01) .95 (.01)

Cno-dubins
rand .36 (.09) .53 (.09) .74 (.04) .86 (.02) .91 (.01)

Cno-shuffling
rand .36 (.09) .52 (.09) .69 (.05) .76 (.04) .76 (.04)

Table 2: Scores for given planning times, averaged over all
problem instances. Best performance is in bold font. Vari-
ance is given in parenthesis.

These design choices have direct consequences on per-
formance. Call-best is faster at improving its solution during
the first second of search, leveraging its high quality neigh-
borhood. However this good performance rapidly ends. As
the current solution becomes more complex, the low diver-
sity in its neighborhood appears to be detrimental. On the
other hand, C1-best and Crand both have a slow start up but
provide better performance when allowed to plan for over
one second, arguably because of the higher diversity in their
neighborhoods.

Our C∗ configuration aims at combining the strengths of
the different approaches. For this purpose its first insertion
neighborhood is N all-best

ins which allows to quickly build an
initial solution by leveraging the high quality of the neigh-
bors. However, once N all-best

ins fails to generate improved so-
lutions, C∗ falls back to the more diverse N 1-best

ins and N rand
ins

neighborhoods. This combination allows C∗ to start as fast
as Call-best while still outperforming all other approaches in
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Figure 4: An example plan with 3 UAVs observing 3 wildfires on a 10 by 5 kilometers area. Our VNS is able to generate plans
that balance the information gathering effort between the three agents. In this example, the green UAV arrives early and maps
the right-most fire while it is still limited. The red and blue UAVs arrive later and cooperatively map all fires while focusing
on the most active areas. Important to note is that this plan was obtained by limiting the planning time to 20ms. With larger
planning times, additional maneuvers would have been inserted, resulting in much denser, and less intelligible, trajectories.

(a) With Ndub (b) Without Ndub

Figure 5: Typical trajectories found with and without the
Ndub local path optimization neighborhood.

the long run.
As could be expected, preventing the use of shuffling in

Cno-shuffling
rand prevents VNS from escaping the current local op-

timum reached during the descent phase. As a result, its
overall score quickly stagnates.

More surprising is the overall good performance of
Cno-dubins

rand . In Figure 5, it can be seen that, while the absence
of Ndub results in longer trajectories, this penalty is some-
what limited for sparse trajectories. Beside the positive indi-
rect effect on the objective function, a subjective yet impor-
tant benefit of Ndub is the production of trajectories that are
smooth and feel more natural to a human operator.

An example plan is shown in Figure 4. Important to note
is that, while having no global knowledge of the task, the
combination of VNS neighborhoods generates trajectories
that exploit the overall structure of the problem. As a result
a team of UAVs is able to follow fire front lines and coop-
eratively map wildfires. Essential in this result is the ability
to plan with fine-grained maneuvers instead of relying on
coarse predefined ones.

Furthermore, only one neighborhood (Nfire) is domain-
dependent. While essential for the good performance, its

definition and implementation are kept simple. Overall, the
good performance of the system is a result of the combina-
tion of simple and mostly generic building blocks.

Related Work

The problem we tackle in this paper features many similar-
ities with the Orienteering Problem (OP) of Operations Re-
search (Chao, Golden, and Wasil 1996). In the OP, a set of
vertices N is associated with a score score : N → R and
travel time tt : N × N → R. The objective of the OP is
to find a path visiting a subset of the vertices such that the
duration of the path is below a predefined time budget and
the collected score is maximized. While originating from the
sport game of orienteering, it can be used to model observa-
tion tasks by interpreting the score as a reward associated
with a given observation.

This simple formulation is however restrictive when con-
sidering more general observation problems such as our
own. In particular, our problem features (i) multiple agents;
(ii) a continuous space leading to a potentially infinite num-
ber of vertices; and (iii) a more general, possibly nonlinear,
utility function. In particular, our very loose definition of the
utility function allows to tie the reward associated with a
vertex to the time at which it is visited.

Many extensions to the orienteering problem have been
proposed that partially tackle those requirements. In partic-
ular, the team orienteering problem (Tang and Miller-Hooks
2005) considers multiple agents, the orienteering problem
with time windows (Tricoire et al. 2010) constrains the visit
of vertices to be in given time windows and the Generalized
OP considers nonlinear objective functions (Wang, Golden,
and Wasil 2008). Many variants of the OP and approaches
to tackle them are presented in the comprehensive survey
of Vansteenwegen, Souffriau, and Oudheusden (2011). Most
successful approaches are based on existing metaheuris-
tics such as TABU search, Genetic Algorithms and Vari-
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able Neighborhood Search (Tang and Miller-Hooks 2005;
Wang, Golden, and Wasil 2008; Geiger et al. 2009). These
approaches were an inspiration in the choice and design
of our VNS approach, however none of the surveyed algo-
rithms consider our three additional requirements to the OP.
In particular none of them was adapted to continuous or very
large space for the definition of the vertices.

Classical optimization problems including the OP and
the Traveling Salesman Problem have been extended to
consider Dubins vehicles (Macharet and Campos 2014;
Saska, Faigl, and Petr 2017). The former proposes heuris-
tics for finding good orientations of waypoints while the lat-
ter relies on graph search to find the best orientations for
a sequence of waypoints. Even when considering path op-
timization only, the comparison is however limited by the
simple waypoints used instead of our more involved maneu-
vers. For this reason, our Dubins path optimization neigh-
borhood combines a random orientation assignment and a
heuristic one by Macharet and Campos (2014)

Some formulations of the Search and Track (SaT) problem
also resemble our observation problem. Most work has fo-
cused on probabilistic reasoning which is leveraged by a
greedy search algorithm over a very short planning horizon
(Furukawa et al. 2006; Bourgault, Furukawa, and Durrant-
Whyte 2004). Instead, Bernardini, Fox, and Long (2017)
transform the problem of searching a target on a road net-
work into a deterministic planning problem where the re-
ward of observing a given road section depends on the prob-
ability of finding the target there. While the resulting prob-
lem bears many similarity with the observation problem con-
sidered in this paper, the approach taken is very different.
Bernardini, Fox, and Long translate their trajectory planning
problem into PDDL2.2 by precomputing a fixed set of spi-
ral maneuvers overlapping the road network and the shortest
paths between them. This compilation allows them to lever-
age domain-independent temporal task planners in a fully
automated way. The most important limitation lies in the
preprocessing steps that aggressively prunes many solutions
from the search space and preselects highly suboptimal ma-
neuvers. For instance, the authors only consider spiral ma-
neuvers for the observation of straight roads where a simple
fly over would have been vastly more efficient.

This approach of decomposing a continuous space into a
more manageable subset of large predefined areas and ma-
neuvers is considered by other authors (Lin and Goodrich
2014). Instead we do not require any coarse discretization
and escape the curse of dimensionality by sampling the pos-
sible maneuvers and leveraging point-to-point specialized
planners. The use of shuffling and dedicated path optimiza-
tion neighborhoods mitigate the shortcomings of sampling
while still allowing the use of fine-grained maneuvers as a
plan’s build blocks.

Beyond the classical Dubins model that we used to compute
point-to-point trajectories, more recent work has focused on
providing more expressive and realistic models.

Chitsaz and LaValle (2007) introduce the Dubins airplane
that extends the Dubins vehicle with independent altitude
control. Using optimal control techniques, they found the

requirements for the shortest Dubins airplane paths between
two oriented 3D points. Owen, Beard, and McLain (2015)
propose algorithms to generate some paths for the Dubins
Airplane – assuming the initial and goal positions are suffi-
ciently far – and the control strategy for a fixed-wing UAV
to follow them. Another approach to generate paths for the
Dubins airplane, that also accounts for initial and goal pitch
angles, is introduced by Hota and Ghose (2010).

When wind is considered during flight, the aircraft yaw
angle does not correspond to the direction it is heading to.
This changes the way of computing trajectories, as the de-
picted Dubins paths will get distorted in the presence of
wind, without reaching the desired goal. The Dubins vehi-
cle model is extended by McGee, Spry, and Hedrick (2005)
to deal with this situation. They introduce a strategy to gen-
erate Dubins paths in the presence of known arbitrary wind.
It models the case as a rendez-vous problem between the
aircraft and the goal as a moving target.

Our VNS framework already features an implementation
of the Dubins Airplane model which can be used inter-
changeably with the 2D version. We also plan to support
McGee, Spry, and Hedrick’s extension for wind in order to
further increase the realism of the solutions. As long as the
computational cost is kept low – as for the two mentioned
Dubins’ extensions – we do not foresee any difficulty in sup-
porting other motion models in our framework.

Conclusion

In this paper, we have presented an approach to obser-
vation planning with multiple UAVs based on Variable
Neighborhood Search (VNS). Our problem formulation is
kept generic with minimal assumptions on the UAV model,
search space and objective function. It is used to encode
a wildfire mapping problem in which a fleet of fixed-wing
UAVs cooperatively monitor an active wildfire.

The proposed VNS algorithm combines simple build-
ing blocks that are mostly domain-independent and easily
reusable. Of all the elements in the VNS search only one
neighborhood – projection on the fire front – is domain-
specific. Even then, the scope of its domain-specific knowl-
edge remains contained to a local path optimization. All
other components are fully generic and remain simple both
in definition and implementation. Each only focuses on a
particular subproblem with no knowledge of the global prob-
lem apart from black box sampling and utility functions.

Despite its simplicity, we showed our approach to pro-
duce good quality plans for a handful of UAVs in a matter
of seconds. This is done without any artificial coarse dis-
cretization of the search space. Instead, our algorithm han-
dles thousands of very primitive maneuvers through a com-
bination of sampling and local path optimization. This al-
lows us to quickly generate plans that are fine grained even
though they span over large areas and long times.
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