
AD*-Cut: A Search-Tree Cutting
Anytime Dynamic A* Algorithm

Maciej Przybylski
Institute of Automatic Control and Robotics

Warsaw University of Technology
ul. św. A. Boboli 8

02-525 Warsaw, Poland
maciej.przybylski@mchtr.pw.edu.pl

Abstract

This paper presents a new anytime incremental search al-
gorithm, AD*-Cut. AD*-Cut is based on two algorithms,
namely, Anytime Repairing A* (ARA*) and the novel in-
cremental search algorithm, D* Extra Lite. D* Extra Lite
reinitializes (cuts) entire search-tree branches that have been
affected by changes in an environment, and D* Extra Lite
appears to be quicker than the reinitialization during the
search utilized by the popular incremental search algorithm,
D* Lite. The search-tree branch cutting is a simple and ro-
bust technique that can be easily applied to ARA*. Conse-
quently, AD*-Cut extends D* Extra Lite in the same man-
ner, as the state-of-the-art Anytime D* (AD*) algorithm ex-
tends D* Lite. The benchmark results suggest that AD*-Cut
is quicker and achieves shorter paths than AD* when used
for path planning on 3D state-lattices (a 2D position with ro-
tation).

Optimal motion planning and re-planning in a changeable
environment related to the appearance and disappearance
of obstacles is a common problem in robotics. Incremen-
tal heuristic algorithms, such as the state-of-the-art D* Lite
(Koenig and Likhachev 2005b), help in this context. As they
can reuse knowledge from previous searches, substantially
less computation time is needed for re-planning.

In complex environments, where computation time is
more important than optimality, anytime planning can be
used. Anytime search algorithms aim to find any sub-
optimal solution as quickly as possible and to improve it
incrementally in the remaining time.

In addition, combining anytime and incremental search
algorithms helps solve complex problems in a changeable
environment. For example, Anytime D* (AD*) (Likhachev
et al. 2005), that combines Anytime Repairing A* (ARA*)
(Likhachev, Gordon, and Thrun 2004) and D* Lite algo-
rithms, was used for autonomous car navigation (Likhachev
and Ferguson 2009).

Recently, a new incremental search algorithm, D* Extra
Lite (Przybylski and Putz 2017), has been developed and
has outperformed D* Lite in most benchmark tests. Oppo-
site to D* Lite that performs node-by-node reinitialization
during a search, D* Extra Lite instantly reinitializes whole
search-tree branches that have been affected by changes in

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an environment. Thus, D* Extra Lite does not make super-
fluous operations on an open-list except for those that are
necessary to repair a frontier-gap created by branch cutting.

The present study proposes a new algorithm, AD*-Cut,
that combines a search-tree cutting utilized by D* Extra Lite
with the ARA* algorithm, resulting in a new anytime incre-
mental search algorithm.

The paper is organized as follows. The related work sec-
tion discusses the present state of knowledge in this area.
Next, the main idea behind the search-tree branch cutting
technique is outlined. Afterward, the AD*-Cut is presented
and discussed. Lastly, the results of the tests are presented
and discussed.

Related Work

The existing incremental search algorithms utilize three
main approaches that aim to reuse information from pre-
vious searches: a search-tree repairing and reuse (Stentz
1995; Podsedkowski et al. 2001; Trovato and Dorst 2002;
Koenig, Likhachev, and Furcy 2004; Koenig and Likhachev
2005b; Sun and Koenig 2007; Gochev, Safonova, and
Likhachev 2014; Przybylski and Putz 2017), heuristic im-
proving (Koenig and Likhachev 2005a; Sun, Koenig, and
Yeoh 2008), and heuristic improving combined with a reuse
of previously found paths (Hernández, Ası́n, and Baier
2015). As AD* and AD*-Cut algorithms are based on
search-tree reuse, only this approach is discussed further.

Focussed D* (Stentz 1995) and D* Lite (Koenig and
Likhachev 2005b) algorithms reinitialize nodes affected by
edge-cost changes during the search, i.e., before the new
node-cost is set, each node with an underestimated cost is
reset and pushed to an open-list. Consequently, some nodes
can be visited twice.

A different approach reinitializes the entire affected por-
tion of the search-space by cutting search-tree branches.
This approach is found in the work of (Podsedkowski et
al. 2001) and in the Differential A* algorithm proposed by
(Trovato and Dorst 2002). The idea of a reinitialization by
search-tree branch cutting has been recently improved and
used in D* Extra Lite (Przybylski and Putz 2017) that out-
performed D* Lite in most of 2D 8-connected grid path
planning problems.

Another category of algorithms based on search-tree reuse
includes algorithms that restore a search-tree to some ear-

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

494



lier stage, specifically, the stage when the search-tree did
not cover states affected by changes in the environment,
e.g., Fringe-Saving A* (Sun and Koenig 2007) and Tree-
Restoring A* (Gochev, Safonova, and Likhachev 2013).
This approach is similar to branch cutting, as it reinitializes
the entire affected area; however, it typically prunes much
larger parts of a search-space. A significant benefit of tree-
restoring algorithms is that they do not require the computa-
tion of affected edges, because computing them can be more
expensive than running searching algorithm from scratch.

As already mentioned, incremental search algorithms can
be combined with anytime search methods. AD* (Likhachev
et al. 2005) is the most recognizable contribution cur-
rently to address the problem of anytime incremental search.
Other incremental search algorithms are Anytime Truncated
D* (Aine and Likhachev 2013) and the most recent Any-
time Tree-Restoring A* (ATRA*) (Gochev, Safonova, and
Likhachev 2014) that extends Tree-Restoring A*. All three
algorithms and the AD*-Cut algorithm presented in this
work are based on the Anytime Repairing A* (ARA*) al-
gorithm (Likhachev, Gordon, and Thrun 2004). Concerning
presented findings, search-tree branch cutting has not been
used yet for anytime incremental search; hence, the AD*-
Cut algorithm presented in this paper is a novel approach.

Search-Tree Branch Cutting
Throughout the paper, the following notations are used. S
represents a set of all feasible states of a robot. Succ(s) ⊂
S represents a set of all states achievable from state s.
Pred(s) ⊂ S represents a set of all states from which state
s can be achieved (used in a backward-search). The transi-
tion between two states is possible by execution of an ap-
plicable action as,s′ ∈ A from an action set A. For each
action, a cost function is defined: cost(as,s′) ≡ cost(s, s′) :
A → R

+. Although within a single search episode action-
cost is constant, it may change as observations are made be-
tween search episodes. A state-space can be represented as
a directed graph; therefore, this paper uses the terms state,
node, action, and edge interchangeably. Typically, graph-
searching algorithms hold additional information for each
node, such as parent(s), which points to a node from which
node s has been expanded (necessary to recover a path), and
g(s), which is a value that represents the cost from the start-
ing node to s (or the cost from the goal-node to s in the case
of a backward-search).

If any change is observed to affect the explored search-
space, particularly, an edge-cost e(s1, s2) has changed, a
part of the visited search-space (a branch of the search-tree)
has become inconsistent and must be re-explored. The in-
consistent part of a search-tree can be defined as a branch
of a search-tree that contains nodes supported by an edge
e(s1, s2). A node s2 is supported by an edge e(s1, s2) if the
node s1 is a parent of node s2; furthermore, if a node s2 is
a parent of node s3 and s2 is supported by e(s1, s2), then s3
must also be supported by e(s1, s2).

The g values of nodes that belong to an inconsistent
search-tree branch are either too high or too low. In the sit-
uation in which the cost of an edge e(s1, s2) decreases, as g
values in the inconsistent part of the search-tree are higher

1 2 3 4 5

A

B

C

D

E

1 2 3 4 5

A

B

C

D

E

1 2 3 4 5

A

B

C

D

E

(a) (b) (c)

Figure 1: The robot (star), following the move from C1 to
C2, observes cell D4 to be occupied (a). The entire branch
supported by the edge e(sC4, sC5) must then be cut, and
nodes that neighbor the cut branch are re-opened (b). A new
optimal solution emerges that is on a different branch from
the initial branch (c). White inner shape — open nodes, gray
inner shape — closed nodes, arrows — parent node pointers,
cross — goal node, black squares — obstacles, dashed line
— affected edges.

than should be (nodes are over-consistent), it is sufficient to
reopen the s1 node and continue the search. In this situation,
the affected branch of the search-tree cannot shrink (it can
grow or stay unchanged).

If the cost of an edge e(s1, s2) increases, all nodes in the
branch of the search-tree supported by this edge become
under-consistent, meaning its g values are lower than they
should be. As the condition g(s2) > g(s1) + cost(s1, s2)
is not fulfilled, simple reopening of s1 does not lead the al-
gorithm to re-establish consistency. Therefore, before the al-
gorithm begins a new search, the algorithm must make such
nodes over-consistent by setting their g values to infinity or
by marking them as unvisited. If the cost of the e(s1, s2)
edge increases, the affected search-tree branch may shrink
or even disappear. Thus, the parent nodes of nodes that be-
long to the affected area may change radically, as shown in
Fig. 1. After the branch is cut, there is a gap in the frontier
fringe to be repaired. Therefore, all nodes neighboring with
a cut node need to be reopened.

AD*-Cut

AD*-Cut (Alg. 1) is designed to perform a time-limited
anytime search followed by a map update and reinitializa-
tion of the affected nodes (MAIN in Alg. 1). AD*-Cut com-
bines the search-tree cutting technique used by D* Extra Lite
with anytime repairing used by ARA*. procedures KEY, SO-
LUTIONFOUND, SEARCHSTEP, SEARCH and REEVALUA-
TEOPEN (lines 1–47 in Alg. 1) to a large extent correspond
to instructions of ARA* (cf. procedures fvalue, ImprovePath
and Main — Likhachev, Gordon, and Thrun 2004). Further-
more, procedures REINITIALIZE, CUTBRANCH, and CUT-
BRANCHES (lines 48–89 in Alg. 1) correspond to proce-
dures of D* Extra Lite (cf. Przybylski and Putz 2017). The
remainder of this section explains the overall operation of
the algorithm with a discussion of modifications specific to
AD*-Cut.

The algorithm performs a backward-search. An anytime
search loop (function SEARCH in Alg. 1) runs searches mul-
tiple times starting with ε = εinit and decreasing it by εstep

495



Algorithm 1 AD*-Cut. Required parameters: εinit, εstep.
1: function CALCULATEKEY(s)
2: return g(s) + ε · h(sstart, s)
3: function SOLUTIONFOUND()
4: kstart = CALCULATEKEY(sstart)
5: ktop = CALCULATEKEY(TOPOPEN())
6: return visited(sstart) AND kstart ≤ ktop

7: function INITIALIZE()
8: ε = εinit

9: visited(sgoal) = true
10: parent(sgoal) = NULL
11: g(sgoal) = 0
12: PUSHOPEN(sgoal, CALCULATEKEY(sgoal))
13: function SEARCHSTEP()
14: s =TOPOPEN()
15: POPOPEN()
16: closed(s) = true
17: for all s′ ∈ Pred(s) do

18: if NOT visited(s′) OR g(s′) > cost(s′, s) + g(s) then

19: parent(s′) = s
20: g(s′) = cost(s′, s) + g(s)
21: if NOT visited(s′) then

22: visited(s′) = true

23: if closed(s′) AND ε > 1 then

24: if NOT inconsistent(s′) then

25: inconsistent(s′) = true
26: PUSH(s′, INCONS)
27: else

28: PUSHOPEN(s′, CALCULATEKEY(s′))
29: function SEARCH()
30: found = false
31: while open-list is not empty do

32: if SOLUTIONFOUND() then

33: found = true
34: if ε = 1 then

35: return found

36: ε = ε− εstep
37: REEVALUATEOPEN()
38: if found AND time elapsed then

39: return found

40: SEARCHSTEP()
41: return found

42: function REEVALUATEOPEN()
43: TO OPEN = INCONS ∪OPEN ∪ SEEDS
44: INCONS = OPEN = SEEDS = ∅

45: for all s ∈ TO OPEN do

46: if visited(s) AND NOT open(s) then

47: PUSHOPEN(s, CALCULATEKEY(s))
48: function REINITIALIZE()
49: if any edge cost changed then

50: CUTBRANCHES()
51: if NOT visited(sstart) then ε = εinit

52: REEVALUATEOPEN()
53: function CUTBRANCH(s)
54: visited(s) = false
55: inconsistent(s) = false
56: parent(s) = NULL
57: REMOVEOPEN(s)
58: for all s′ ∈ Succ(s) do

59: if visited(s′) AND NOT parent(s′) = s then

60: SEEDS = SEEDS ∪ s′
61: for all s′ ∈ Pred(s) do

62: if visited(s′) AND parent(s′) = s then

63: CUTBRANCH(s′)
64: function CUTBRANCHES()
65: reopen start = false
66: for all directed edges (u, v) with changed cost do

67: if visited(u) AND visited(v) then

68: cold = cost(u, v)
69: update edge cost cost(u, v)
70: if cold > cost(u, v) then

71: if g(sstart) > g(v)+ cost(u, v)+ ε ·h(sstart, u) then

72: reopen start = true

73: SEEDS = SEEDS ∪ v
74: else if cold < cost(u, v) then

75: if parent(u) = v then

76: CUTBRANCH(u)
77: if reopen start = true AND visited(sstart) then

78: SEEDS = SEEDS ∪ sstart
79: function MAIN()
80: MAPUPDATE()
81: INITIALIZE()
82: while sstart �= sgoal do

83: if NOT SEARCH() then

84: return goal is not reachable
85: sstart =ACTIONSELECTION(sstart)
86: MAPUPDATE()
87: REINITIALIZE()
88: function ACTIONSELECTION(sstart)
89: return argmins′∈Succ(sstart)

(cost(sstart, s′) + g(s′))

in subsequent searches, which is merely ARA*. The ε value
is the factor by which the heuristic is inflated, making the
algorithm greedier and possibly quicker (line 2, Alg. 1).
Moreover, the algorithm does not allow for states reopen-
ing; instead, such states are placed in the list of inconsistent
nodes (lines 23–26, Alg. 1), additionally speeding up the al-
gorithm. After a solution with a given ε is found, ε is de-
creased (line 36, Alg. 1), and all nodes from OPEN and
INCONS lists are re-opened with new keys (lines 37 and
42–47, Alg. 1). The search loop runs until the optimal solu-
tion is found (then ε = 1) or granted time elapses but not
before the first solution is found (line 38, Alg. 1). To this
point, the only modification concerning ARA* is that each
node holds an additional flag visited(s) that is maintained
to recognize nodes cut in the reinitialization (lines 21–22
and 46, Alg. 1).

In the reinitialization, search-tree branch cutting is ex-

ecuted if the cost of any visited edge has changed (lines
49–50, Alg. 1). For each edge with changed cost, the CUT-
BRANCHES procedure does one of two possible operations.
If the cost of the e(u, v) edge has decreased, the v node
is added to the list of seeds to be reopened later (lines
70, 73 in Alg. 1). In the case of the edge-cost decreasing,
there may be a shorter path. Therefore, to preserve opti-
mality, the start node should be reopened. However, not in
every case of edge-cost decrease does the start node need
to be reopened. Assuming that h(sstart, u) is admissible,
for decreased e(u, v) edge cost, the start node sstart re-
quires reopening only if g(sstart) > g(v) + cost(u, v) +
ε · h(sstart, u) (lines 71–72 and 77–78, Alg. 1).

If the cost of the e(u, v) edge has increased and node v is
the parent of node u, the branch is cut starting from u (lines
74–76 in Alg. 1). The cutting operation marks node unvis-
ited, resets its parent, and removes it from either OPEN

496



or INCONS, whichever it is placed (lines 54–57, Alg. 1).
The CUTBRANCH() procedure is the recursive procedure
that traverses throughout the branch, i.e., a next node to cut
s′ must be such a predecessor of a current node s that the s is
the parent of s′ (lines 61–63 in Alg. 1). Each successor node
s′, such that s �= parent(s′) is placed in the list of seeds
(lines 58–60 in Alg. 1). Although seeds are simply nodes to
reopen, they cannot be merely pushed to the open-list as they
might be cut later.

After the branches are cut, the start state can be off the
search-tree. In such a case, the inflation factor ε is set to the
initial value (line 51 in Alg. 1).

Following the CUTBRANCHES() procedure, the REINI-
TIALIZE() procedure pushes to the open-list only these
nodes from the SEEDS list that remain visited and are not
already open (lines 52 and 43–47 in Alg. 1). This operation
repairs the frontier-gap made by branch cutting.

Discussion of the Algorithm

Regarding the reinitialization, AD*-Cut holds similar the-
oretical properties to D* Extra Lite on which it is based.
The properties of D* Extra Lite confronted with D* Lite
(on which AD* is based) have been discussed in (Przybylski
and Putz 2017), and this discussion also applies to AD*-Cut
and AD*. In a case of obstacles disappearance, both algo-
rithms have similar complexity as they simply reopen over-
consistent nodes. The discrepancies reveal in a case of obsta-
cles appearance. In contrast to AD* and AD*-Cut, ATRA*
reverts a search tree to some previous state in both cases.
While AD*-Cut cuts branches precisely, ATRA* reverts en-
tire search-tree. Therefore, typically, the search tree reinitial-
ized by ATRA* is smaller than the search tree reinitialized
by AD*-Cut.

The worst-case scenario for the discussed algorithms is
when a large part of a search tree is affected by detected
changes, for example, a dead end encountered close to the
goal (close to the search tree root). In such a case, while
AD*-Cut performs better if a long detour is necessary, AD*
and ATRA* may outperform AD*-Cut if the detour is short.
In general, as ATRA* does not require computation of
states nor actions affected by map changes, the superiority
of ATRA* is more pronounced with a growing number of
changed map cells and a length of motion primitives (state-
lattice arcs).

Experiments

The experiments compared AD*-Cut with AD* (Likhachev
et al. 2005). Both algorithms used the same implementation
of a heap and domain-specific functions such as successors
and predecessors generation, action cost, heuristic (the Eu-
clidean distance), and affected states computation. The im-
plementation of AD* and domain-specific functions were
obtained from the SBPL library (version 1.3.0)1. These tests
were run on a 2.90-GHz machine with 8-GB RAM running
64-Bit Linux.

The benchmark problems and map sets (Fig. 2) wc3,
rooms, random10 (10% of map cells are randomly situated

1The SBPL library http://sbpl.net/

obstacles), and mazes16 (mazes with the corridor width of
16 map cells) were obtained from the benchmark prepared
by Sturtevant (2012). The map sets provide a variety of envi-
ronmental changes that thoroughly test the algorithms. In ad-
dition, in the rooms and random10 map set, observed obsta-
cles do not affect the path significantly, while in the mazes16
set, which includes many dead ends, even a minor change in
the environment may introduce a long detour.

For each map set, 100 problems with distinct start-goal
pairs were solved (across the set of problems, different
maps were used). As suggested by Sturtevant, search results
should be grouped concerning the problem length. There-
fore, problems of similar length (ranging from 400 to 440
map-cells) were used.

The search-space was an (x,y,yaw)-state-lattice (a 2D po-
sition with rotation) with a total size of 512x512x16 states
(16 possible orientations) and seven applicable actions (mo-
tion primitives) per state. The longest motion primitive was 8
map-cells long. The simulated robot was 10 map-cells wide
and long, with the following exception for tests on the rooms
and random10 map-sets, in which the robot had a size of a
single map cell because of the narrow passages of a single-
cell width.

Each separate problem was solved based on MAIN func-
tion (lines 79–87 in Alg. 1); hence, a full navigation from
the start to the goal state was performed. After each step of
the robot (i.e., after an application of the next action), the
map update, reinitialization, and searching were performed.
The SEARCH function does multiple searches, decreasing ε
each time (εinit = 5 and εstep = 0.2) until the allocated
time elapses (1s). The algorithms could exceed the 1 second
time limit when they were searching for the first solution.

To ensure comparable conditions for both algorithms, a
robot moved along a pre-computed optimal path that is com-
monly assumed (Gochev, Safonova, and Likhachev 2014).
(This suppresses ACTIONSELECTION function from line 85
in Alg. 1). The MAPUPDATE function simulates 360 degrees
rangefinder working with a resolution of 0.33 degree and an
observation range of 100 map cells.

During a main function run, the following parameters are
logged: reinitialization time (excluding map update time),
time until the first solution, overall search time, loop time
(total time spent in a single iteration of the main loop, in-
cluding map updates), search steps count, number of reini-
tialized under-consistent nodes, average ε, and average path
cost.

The algorithms were tested in two settings: planning on
partially-known maps (random10 set with 5% of cells ran-
domly shifted) in which obstacles may appear or disappear,
and planning with a freespace assumption (wc3, rooms, and
mazes16 map sets) in which obstacles were only added.

The results presented in Table 1 were calculated as aver-
age values per single main loop after solving 100 problems
for each map-set. As expected, compared with AD*, AD*-
Cut spends more time on a reinitialization but less time on
searching. On average, in most cases, AD*-Cut computed
the first solution and improved paths and accomplished each
main loop iteration quicker than AD*.

As AD*-Cut had shorter search times, it could perform

497



a) b) c) d)

Figure 2: Sample maps used from the map sets used in tests: a) a portion of a random map, b) a portion of a rooms map, c) wc3
(World of Warcraft 3), d) maze.

Table 1: The experimental results for planning in a partially-known map and with a freespace assumption; Ratio denotes AD*
to AD*-Cut ratio.

Algorithm
Reinit.

time [ms]
First Solution

time [ms]
Search time

[ms]
Loop time

[ms] #Search
Steps

#Under-con.
nodes reinit.

Achieved
ε

Path
cost [s]Avg. Max Avg. Max Avg. Max Avg. Max

random 10 with 5% of randomly shifted cells (partially-known map)
AD*-Cut 99 1549 23 631 185 1036 298 1826 28965 19116 1.14 21.20
AD* 12 34 22 165 353 1017 366 1026 18100 636 1.15 21.26
Ratio 0.12 0.02 0.96 0.26 1.91 0.98 1.23 0.56 0.62 0.03 1.01 1

rooms (planning with freespace assumption)
AD*-Cut 101 1879 31 1006 316 1347 420 2281 31971 14724 1.28 11.41
AD* 3 19 67 887 582 1227 586 1237 24794 2855 1.23 11.59
Ratio 0.03 0.01 2.16 0.88 1.84 0.91 1.4 0.54 0.78 0.19 0.96 1.02

wc3 (planning with freespace assumption)
AD*-Cut 141 1525 56 1290 278 1592 532 2389 43456 21200 1.27 11.01
AD* 46 126 133 1667 614 1812 664 1893 38975 4392 1.57 12.34
Ratio 0.33 0.08 2.38 1.29 2.21 1.14 1.25 0.79 0.9 0.21 1.24 1.12

mazes 16 (planning with freespace assumption)
AD*-Cut 119 3523 36 1190 264 1429 411 4016 37845 29062 1.15 12.28
AD* 24 109 238 6077 651 6128 676 6196 36081 11521 1.52 12.43
Ratio 0.2 0.03 6.61 5.11 2.47 4.29 1.64 1.54 0.95 0.4 1.32 1.01

more searches with improved heuristic inflation factor (indi-
cated by the lower average ε), which is also reflected by the
higher search steps number. Consequently, average path cost
returned by AD*-Cut was lower than that of AD*. However,
the path cost ratios do not reveal the same scale of improve-
ment as the achieved inflation factor ratio. This is due to a
fact that an inflation factor is the upper-bound and, typically,
the sub-optimality of the computed paths is lower.

The possible advantage of AD* over AD*-Cut is seen
when the maximum times are analyzed. AD*-Cut is more
sensitive to situations in which a large part of the search-
tree needs to be cut without substantial change in a cost of
a re-planned path that can be observed for the random10,
rooms, and wc3 map sets. In contrast, for harder problems
such as problems from the mazes16 map set, the maximum
loop time of AD* is higher than that of AD*-Cut. This har-
diness of problems is also reflected by the number of under-
consistent nodes reinitialized by the algorithms. In easier
problems (random10, rooms, and wc3 map sets) AD* reini-
tialized several times less nodes than AD*-Cut, while in

harder problems, AD* reinitialized 2.5 times less nodes.

Conclusions and Future Work

Search-tree branch cutting is a simple reinitialization tech-
nique utilized by the recent incremental search D* Extra Lite
algorithm (Przybylski and Putz 2017). This paper shows that
this technique can be easily used in combination with the
ARA* algorithm (Likhachev, Gordon, and Thrun 2004), re-
sulting in AD*-Cut, a new anytime incremental search al-
gorithm. The results of planning on (x,y,yaw)-state-lattices
suggest that AD*-Cut is quicker and achieves shorter paths
than AD* (Likhachev et al. 2005).

Future studies will compare AD*-Cut with Anytime
Truncated D* (Aine and Likhachev 2013) and Anytime
Tree-Restoring A* (Gochev, Safonova, and Likhachev
2014), and to address the problem of time-consuming reini-
tialization. A practical evaluation of AD*-Cut on a real robot
is also planned.

498



References

Aine, S., and Likhachev, M. 2013. Anytime Truncated D*:
Anytime replanning with truncation. In Proceedings of the
Sixth Annual Symposium on Combinatorial Search, 2–10.
Palo Alto, Calif.: AAAI Press.

Gochev, K.; Safonova, A.; and Likhachev, M. 2013. Incre-
mental planning with adaptive dimensionality. In Proceed-
ings of the Twenty-Third International Conference on Au-
tomated Planning and Scheduling, ICAPS’13, 82–90. Palo
Alto, Calif.: AAAI Press.

Gochev, K.; Safonova, A.; and Likhachev, M. 2014. Any-
time tree-restoring weighted A* graph search. In Proceed-
ings of the Seventh Annual Symposium on Combinatorial
Search, 80–88. Palo Alto, Calif.: AAAI Press.

Hernández, C.; Ası́n, R.; and Baier, J. A. 2015. Reusing
previously found A* paths for fast goal-directed navigation
in dynamic terrain. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, Austin, Texas, USA, AAAI’15, 1158–
1164.

Koenig, S., and Likhachev, M. 2005a. Adaptive A*. In
Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, Utrecht,
Netherlands, AAMAS ’05, 1311–1312.

Koenig, S., and Likhachev, M. 2005b. Fast replanning
for navigation in unknown terrain. IEEE Transactions on
Robotics 21(3):354–363.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning A*. Artificial Intelligence 155(1):93–146.

Likhachev, M., and Ferguson, D. 2009. Planning long
dynamically–feasible maneuvers for autonomous vehicles.
The International Journal of Robotics Research 28(8):933–
945.

Likhachev, M.; Ferguson, D. I.; Gordon, G. J.; Stentz, A.;
and Thrun, S. 2005. Anytime Dynamic A*: An anytime, re-
planning algorithm. In Proceedings of the Fifteenth Interna-
tional Conference on Automated Planning and Scheduling,
Monterey, California, USA, ICAPS’05, 262–271. Palo Alto,
Calif.: AAAI Press.

Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In Ad-
vances in Neural Information Processing Systems, 767–774.

Podsedkowski, L.; Nowakowski, J.; Idzikowski, M.; and
Vizvary, I. 2001. A new solution for path planning
in partially known or unknown environment for nonholo-
nomic mobile robots. Robotics and Autonomous Systems
34(2):145–152.

Przybylski, M., and Putz, B. 2017. D* Extra Lite: a Dynamic
A* with search-tree cutting and frontier-gap repairing. In-
ternational Journal of Applied Mathematics and Computer
Science (AMCS) 27(2):273–290.

Stentz, A. 1995. The Focussed D* algorithm for real-time
replanning. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 2, Montreal,
Quebec, Canada, IJCAI’95, 1652–1659.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games, IEEE
Transactions on 4(2):144–148.
Sun, X., and Koenig, S. 2007. The Fringe-Saving A* search
algorithm—a feasibility study. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, Hy-
derabad, India, IJCAI’07, 2391–2397.
Sun, X.; Koenig, S.; and Yeoh, W. 2008. Generalized Adap-
tive A*. In Proceedings of the 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems -
Volume 1, Estoril, Portugal, AAMAS ’08, 469–476.
Trovato, K. I., and Dorst, L. 2002. Differential A*.
IEEE Transaction on Knowledge and Data Engineering
14(6):1218–1229.

499


