
A Log-Approximation for Coverage
Path Planning with the Energy Constraint

Minghan Wei, Volkan Isler
University of Minnesota

{weixx526, isler}@umn.edu

Abstract

We consider the problem of covering an environment with a
robot when the robot has limited energy budget. The environ-
ment is represented as a polygon with a grid, whose resolu-
tion is proportional to the robot size, imposed on it. There is a
single charging station in the environment. At each time step,
the robot can move from one grid cell to an adjacent one.
The energy consumption when moving in the environment is
assumed to be uniform and proportional to the distance trav-
eled. Our goal is to minimize both the total distance and the
number of visits to the charging station. We present a cover-
age path planning algorithm which has O(lnD) approxima-
tion factor for both objectives, where D is the distance of the
furthest cell in the environment measured on the grid.

Introduction

Many practical applications, such as autonomous sweep-
ing, vacuum cleaning, and lawn mowing, require robots to
fully cover an area. Coverage path planning is a well-studied
problem in robotics. The goal is to plan paths for the robots
so that the robot can visit every point in the area.

A common assumption when modeling the coverage
problem is that the robots have an unlimited energy bud-
get for moving arbitrary long distances. Therefore, a single
path is planned to cover the given environment. This ver-
sion of the problem is well studied in the literature (Galceran
and Carreras 2013). Many algorithms have been proposed,
where the robots know the boundaries (including obstacles)
of the environment, such as the boustrophedon decompo-
sition coverage with back-and-forth motion (Choset 2000)
(Mannadiar and Rekleitis 2010), the spiral path coverage
(Gonzalez et al. 2005), and the spanning-tree based cover-
age (Gabriely and Rimon 2001). Yoav and Elon restrict the
robot to move rectilinearly and prove that their algorithm
is optimal when there is no zero-thickness in the spanning
tree (Gabriely and Rimon 2001). The boustrophedon cover-
age and spiral path can be adapted to perform online (Viet et
al. 2015) (Choi et al. 2009). In the online setting, the robot
does not know the environment at the beginning, but it can
accumulate the knowledge of the environment.

In practice, robots operate with energy constraints. A
battery-powered robot needs to go back to the charging sta-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion to get recharged before the battery runs out. The cover-
age path planning problem with energy constraints is a rela-
tively new topic. With energy constraints, instead of a single
path, we need to plan multiple paths for the robot since the
robot cannot visit all the points in the environment after a full
recharge. As an example, consider an environmental moni-
toring application with an aerial robot, as shown in Fig. 1.
The battery can last 15 mins after a full recharge. We need
to plan multiple paths to fully cover the environment.

Existing literature has integrated energy constraints by
monitoring the energy level of the robot during the coverage.
Strimel et al. use boustrophedon cellular decomposition to
cover the environment. The robot returns to the charging sta-
tion when its energy level is too low to continue (Strimel and
Veloso 2014). Mishra et al. design a coverage system con-
sisting of multiple robots (Mishra et al. 2016). To continu-
ously cover the environment, the robots are divided into two
groups, namely workers and helpers. When a worker needs
to go back to recharge, an associated helper will continue
the worker’s coverage. These methods completely cover the
environment, but they do not compare the results with the
optimal solution to get a performance guarantee.

Shnaps and Rimon study this problem. They model the
energy consumption by the length of the path (Shnaps and
Rimon 2016). They present an approximation algorithm
with a factor of 1

1−ρ when the environment is known, where
ρ is the ratio between the furthest distance in the environ-
ment and half of the energy budget. This factor can be ar-
bitrarily large when ρ approaches 1. They also propose an

Figure 1: With energy constraints, the drone needs multiple
paths to cover the environment. Each path is shown with a
different color.

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

532

approximation algorithm and a lower bound for this prob-
lem in the online setting.

A related topic in the literature is the coverage of a
graph. The goal is to design paths to visit every vertex of
the given graph. Without energy constraints, it becomes the
well-known Traveling Salesperson Problem (TSP). With en-
ergy constraints, this coverage problem is Vehicle Routing
Problem (VRP) (Laporte 1992). One version of VRP is the
Distance Vehicle Routing Problem (DVRP), which models
the energy consumption proportional to the distance trav-
eled. For DVPR on tree metrics, (Nagarajan and Ravi 2012)
proposed a 2-approximation algorithm. Li et al. (Li, Simchi-
Levi, and Desrochers 1992) uses a TSP-partition method and
the algorithm has a similar approximation rate to the work
in (Shnaps and Rimon 2016).

Coverage with multiple robots has also received a lot of
attention. In some cases, the paths planned for a single robot
under energy constraints can also be executed by multiple
robots by assigning the paths to the robots. Using a single
robot or multiple robots does not affect the total energy cost.

Our contribution: We revisit the setting in Shaps and
Rimon’s work (Shnaps and Rimon 2016). We present a
O(lnD) approximation algorithm for the coverage path
planning problem under the energy constraint when the
robot is restricted to rectilinear motion. Compared with prior
work, the deviation of the cost of our algorithm from the op-
timal cost remains bounded. We also demonstrate our algo-
rithm with a simulation.

Problem Formulation

The environment P is represented as a unit-grid laid out on
a polygon with a single charging station S. The robot is rep-
resented as a unit square that moves rectilinearly in P . The
robot’s energy consumption is assumed to be proportional to
the distance traveled. We use path length and energy cost in-
terchangeably. The robot is subject to the energy constraint
and can only move at most B (the energy budget) units af-
ter a full charge. Then it has to go back to the charging
station to get recharged. The goal is to find a set of paths,

Π = {π1, π2, ..., πn}, for the robot such that
n⋃

i=1

πi = P

and the number of paths in Π is minimized. In addition, each
path should start and end at S and the path length of each πi

should be within the energy budget.
Use |πi| to denote the length of πi (|πi| ≤ B). A related

goal is to minimize the total length of paths in Π:
∑n

i=1 |πi|.

Preliminaries

In this section, we give the definition of contour-connected
environments. We also discuss the robot’s motion model.
Both are critical to our analysis.

We use approximate cellular decomposition method to
process the environment (Choset 2001). In other words, we
decompose the environment into unit grids of the same size
as the robot. We call these grids cells. Let S be the grid with
the charging station. An equi-distance contour is a polyline
where the cells on it have the same distance to S (as shown
by the lines in Fig. 2). In the rest of the paper we use the

S
1
2
3

1
2
3
4

2
3
4
5

3
4
5
6
7
8
9

4
5
6
7
8
9
10

5
6
7
8
9
10
11

S
1
2
3
4
5
6

1
2
3
4
5
6
7

2
3
4
5
6
7
8

3
4
5
6
7
8
9

4
5
6
7
8
9
10

5
6
7
8
9
10
11

S5
6
7
8

4
5
6
7

3
4
5
6

2
3
4
5
6
7
8

1
2
3
4
5
6
7

1
2
3
4
5
6

S
1
2
3

S 1
2
3
4
5
6
7

2
3
4
5
6
7
8

3
4
5
6
7
8
9

4
5
6
7
8
9
10

5
6
7
8
9
10
11

7
8

6
7

5
6

Figure 2: From left to right, (1)convex contour-connected.
(2) non-convex contour-connected. (3) non-contour-
connected. The value in each cell shows its L1 distance to
the charing station S.

(a) (b) (c)

Figure 3: The two types of split cells (as shown by the
square) (a), (b): type-i. The inner rectangle (yellow) repre-
sents an obstacle. (c) type-ii.

term contour for short. The cells on a contour can be or-
dered from one side to the other. It is easy to see that we
can also order the contours based on their distance to S in a
strictly increasing fashion.

We use d(·) to denote the distance to S. d(c) is the dis-
tance from a cell c to S, and d(C) is the distance from
a contour C (i.e., the distance of any cell on C) to S. If
d(Cj) = d(Ci) + 1, we say Cj is Ci’s next contour. We
refer to the contour C with d(C) = 1 as the first contour.

A split cell is a cell on a contour which is adjacent to the
boundary and not on the endpoints of the contour. Let v be
a split cell on a contour C. Based on C’s next contour, there
are two types of split cells. (i) From v the next contour splits
into two segments, as shown in Fig. 3(a) and 3(b). (ii) Two
contour segments merge into one at v, as shown in Fig. 3(c).

A contour-connected environment refers to an area with-
out split cells. That is, if two cells have the same distance to
S, they are on the same contour. Fig. 2 shows two contour-
connected environments and one non-contour-connected en-
vironment. Comparing the second and third subfigure, we
know that the contour-connected property also depends on
the location of the charging station S.

In our model, the robot moves rectilinearly in the environ-
ment without rotations. In our analysis, we assume that the
robot can cover a contour by moving along it though it is not
rectilinear. Under this assumption, the robot needs two units
of energy to visit a cell on the contour.

Environment Representation

In this section, we first introduce a sweeping algorithm to
partition a general environment into contour-connected sub-

533

S

C

vA1

(a)
S

C
v

A1

(b)

S

C

v

A1

A3

A2

(c)

Figure 4: Two cases of meeting a split cell in the sweeping
processes. The colored area is the contour-connected subar-
eas.

S

A1 A2A1

A3

A4

A5

A6

A7 A8

(a) (b)

Figure 5: (a) The partition of an environment into the
contour-connected subareas. The inner rectangle (black)
represents an obstacle. (b) The corresponding tree structure.

areas. After the partition, we present an ordering of these
areas represented as a tree. We also introduce two proposi-
tions which are necessary for the performance proof of our
algorithm.

Recall that the first contour is the one which has unit dis-
tance to S. The sweeping algorithm starts from this con-
tour, as shown in Fig. 4. The sweeping direction is along
the distance-increasing direction of the contours. When the
sweeping polyline meets a split cell v on the contour C,
we stop the sweeping process and form a contour-connected
subarea with the swept area. If there are multiple split cells,
we process them from one side of the contour to the other
side. There are two possible cases based on the types of
the split cell. (i) v is of type-i. We start two new sweep-
ing processes with the two segments of C split by v, as
shown in Fig. 4(a) and 4(b). (ii) v is of type-ii. We start one
new sweeping process with the merged contour, as shown in
Fig. 4(c). When there are no more contours in a sweeping
process, the area swept by this process forms a new subarea.

An example of partitioning an environment into contour-
connected subareas is shown in Fig. 5(a). The common
boundaries of two adjacent subareas correspond to the con-
tours which have split cells on them.

Next, we impose an ordering of the partitioned subareas,
which can be represented as a tree. Each node corresponds
to a contour-connected subarea. At the beginning the tree

has only one root node that represents the contour-connected
subarea with S. We build the tree recursively. If a node N
induces two subareas due to a split cell of type (i), we add
the two nodes that represent the induced subareas as child
nodes of N . If two nodes Ni and Nj induce a single subarea
due to a split cell of type (ii), we add the node that repre-
sents the induced subarea and arbitrarily set Ni or Nj as its
parent. We call this tree partition tree of the environment.
The partition tree of the example is shown in Fig. 5(b).

Let N be a node and {N1, N2, ..., Nk} be N ’s child nodes
in the partition tree. Let C be the furthest (last) contour to
S in N and Ci be the closest (first) contour to S in Ni, i =
1, 2, ..., k. It is easy to see that d(Ci) = d(C) + 1. In the
geometric setting, we can order these child nodes from one
side to the other based on the order of cells on C.

For simplicity, throughout the paper, when we refer to
covering an environment (or a subarea), we mean that the
robot goes to the closest cell which has not been visited, and
then follows the contours in distance-increasing order. When
all cells in the node are visited, the robot traverses the tree
in pre-order from leftmost child nodes to the rightmost and
continues to follow the contours in each node. Here the left-
most child node is defined to be the node closest to the robot
when it finishes following the furthest (last) contour of the
parent node.

To understand the coverage process without energy con-
straint, we present two properties next. The first property,
Proposition 1, focuses on covering contour-connected envi-
ronments. The second one is for general environments.
Proposition 1. Without considering the energy constraint,
the robot can fully cover a contour-connected environment
and each cell is visited only once if we do not require the
robot to return to S after fully covering the environment.

Proof. In contour-connected environments, the contours can
be ordered based on their distance to S. The robot can al-
ways enter the next contour from one side of the current
contour. So by following the contours in distance-increasing
order, the robot can fully cover the environment without re-
visiting any cell.

Proposition 2. Without considering the energy constraint,
the robot can fully cover any environment in such a way that
each cell is visited at most twice.

Proof. Let N be any node of the partition tree. Let N =
{N1, N2, ..., Nt} be the child nodes of N from left to
right (N is empty if N is a leaf node). Any cell in N is
visited the first time when following the contours in N .
Then the robot needs to traverse the subtrees rooted at N ’s
child nodes. When the robot transits from subTree(Ni) to
subTree(Ni+1) after subtree(Ni) is fully covered, the cells
on the furthest (last) contour in N which connect Ni and
Ni+1 are visited the second time (as shown by the colored
cell in fig. 6). When the last child node subTree(Nt) is fully
covered, the robot leaves N . In this process, the robot visits
one cell per contour in N and these cells are visited the sec-
ond time. After subTree(N) is fully covered, the robot no
longer needs to come to this subtree. Thus no cells will be
visited the third time in subTree(N). Fig. 6 demonstrates a

534

S

Ni

Ni+1

N

Figure 6: A coverage example without energy constraint.
The colored (blue) cell connects the two child nodes of N.

Figure 7: Many cells need to be revisited many times.

coverage example where the revisiting portion is shown by
dashed lines.

Shnaps and Rimon also use the method of following the
contours in their work (Shnaps and Rimon 2016). They state
that without ‘narrow’ corridors (an area of unit width) this
method visits a cell only once without considering the en-
ergy constraint. Here our Proposition 2 adds that in the gen-
eral case a cell can be visited at most twice.

With the energy constraint, the robot needs to go back
and forth in the environment. As a result, the cells may be
revisited many times. Consider the example shown in Fig. 7.
Each path needs to go through the shadowed area when it
goes to the further subareas. Thus the cells in the shadowed
area are visited many times.

Grouping Nodes of the Partition Tree

In this section, we introduce our algorithm to group the
nodes into subregions such that each subregion Ai, when
Ai is empty, cannot be fully covered by a single path. Here
empty means that no cells of Ai has been visited. Fully cover
means that all the cells of Ai are visited. The purpose of
forming the ‘large’ subregions is to allow each path to work
in the individual subregion without going to the others. Later
we show that if each path works in the ‘large’ subregions, the
newly visited cells by this path is comparable to that by the
optimal paths. We call the set of grouped subregions as the
working zone.

We reuse the notation d(·) for areas. d(A) denotes the dis-
tance of the closest uncovered cell in A to S.

The grouping algorithm is described in Algorithm 1. We
start grouping the nodes of the partition tree from bottom
upwards toward the top. Let {N1, N2, ..., Np} be the child
nodes of N . Recall that we can order these child nodes by
N ’s furthest (last) contour C. At each level of the tree, we

group nodes in the direction of C in two steps. First (line 3
to 9), if the subtree rooted at Ni cannot be fully covered by
a single path, we delete subTree(Ni) from T and add it as a
subregion in the working zone. In the second step (line 10 to
23), for the remaining nodes in this layer, we start from one
side of nodes and group it with its siblings until the grouped
forest cannot be fully covered by a single path (line 12 to
16). We add the grouped forest to the working zone. We do
nothing if all the siblings together can be fully covered by
a single path. After the two steps, the algorithm goes to the
upper layer and repeats the process.

Algorithm 1 Group nodes.
Input: The tree structure of the environment T .
Output: working zone A = {A1, A2, ..., Am}. Each Ai

cannot be covered by one path.
1: A = ∅; D= depth of T .
2: for k=D:-1:1 do
3: {N1, N2, ..., Np} are the nodes on depth k from left

to right;
4: for i=1:1:p do
5: if subTree(Ni) cannot be fully covered by a sin-

gle path then
6: Add subTree(Ni) to A;
7: Delete subTree(Ni) from T ;
8: end if
9: end for

10: {N ′
1, N

′
2, ..., N

′
p′} are the remaining nodes on depth

k from one side to the other;
11: while i ≤ p′ do
12: q ←the number of right siblings of N ′

j ;
13: N = Nj ; j = 1;
14: while N can be fully covered by one path do
15: N = N

⋃
Ni+j ; j = j + 1;

16: end while
17: if N cannot be fully covered by one path then
18: Add N to A;
19: Delete N from T ;
20: end if
21: i=i+j;
22: end while
23: end for
24: if T is not empty then
25: Add T to A;
26: end if

Lemma 1. Let A = {A1, A2, ..., Am} be the working zone
of any environment. There are three types of subregions in
A. (i) A single node, (ii) a subtree, and (iii) a forest. No
subregions in A can be fully covered by a single path.

The correctness of this lemma is easy to see based on how
we form subregions in the working zone in Algorithm 1.

Coverage Strategy

The general idea of our approach is as follows. We use Algo-
rithm 1 to group the nodes to form the working zone A. Each
path πi chooses the Ai from A that has the closest uncovered

535

S

Figure 8: An example of the coverage phase of a path. The
filled area is covered by previous paths. The coverage phase
of this path is drawn with solid lines.

cell c to S and covers Ai from c. Let Pi be the remaining un-
covered area after the first (i− 1) paths in our solution. Let
a∗i be the maximum number of cells visited by any path in
the optimal solution. We show that in Pi, the number of vis-
ited cells by the ith path in our solution is at least a constant
factor of a∗i (Lemma 3). Then we prove that this greedy ap-
proach has an O(log (D)) approximation factor compared to
the optimal solution, where D is the distance of the furthest
cell to S.

Our coverage algorithm is described in Algorithm 2. Each
path πk in the solution set Πsol1 chooses from the working
zone the subregion Ai which has the closest uncovered cell c
to S. Then it covers Ai from c until the energy is insufficient
to continue. After πk, we check if the remaining unvisited
cells of Ai can be fully covered by a single path. If it can,
we use an additional path to fully cover Ai and these addi-
tional paths are stored in a separate set Πsol2. Note that when
choosing c, if there are multiple cells with the same distance
to S, we choose the one which is adjacent to the cell where
a previous path retreats, or the one adjacent to the boundary.

Algorithm 2 Coverage Algorithm.
Input: The working zone A = {A1, A2, ..., Am}.
Output: Solution paths Πsol1,Πsol2.

1: Π1 = ∅; Π2 = ∅; i = 1; j = 1;
2: while P is not fully covered do
3: Start recording path πi;
4: c0 ∈ At ← closest uncovered cell in P ; Move to c0;
5: cover(Ar);
6: if remains(subTree(At)) can be fully covered by

one path then
7: Add πj to cover remains(subTree(At));
8: Add πj to Πsol2; j = j + 1;
9: end if

10: Add πi to Πsol1. j = j + 1;
11: end while

For the ith path πi in Πsol1, the environment is partially
covered by the previous paths {π1, π2, ..., πi−1}. We define
the coverage phase of πi to be the portion from the first un-
covered cell on πi to the cell where πi starts to retreat to S.
Fig. 8 illustrates a coverage phase example.

With the definition of the coverage phase, we have
Lemma 2.
Lemma 2. Each cell is visited at most twice by the coverage

phase of the paths in Πsol1.

Proof. Let Ai be a subregion from the working zone and
Πi = {π′1, π′2, ..., π′j} be the paths whose coverage phase
starts in Ai. The paths in Πi are in the same order as they are
in Πsol1. According to Lemma 1, Ai can be a single node, a
tree, or a forest. The lemma is proved by examining all the
three cases.

(i) Ai is a single node. Let π′j and π′j+1 be any two adja-
cent paths in Πi. π′j+1 starts its coverage phase from where
π′j retreats to S. Both the coverage phases of π′j and π′j+1
follow the contours in distance-increasing order. So if we
put the coverage phase of the paths in Πi together, they fol-
low the contours in distance-increasing order. The energy for
returning to S is not counted as coverage phase. By Proposi-
tion 1, each cell is visited at most once. An example of cov-
ering a single node (a contour-connected subarea) is shown
in Fig. 9(a).

(ii) Ai is a tree. Let Ni be the root node of Ai and
(Ai − Ni) be the other nodes in Ai. The paths in Ai must
start their coverage phase in Ni. Otherwise, let πt be a path
whose coverage phase starts in (Ai −Ni), then the remain-
ing uncovered area of Ai can be fully covered by πt, since
(Ai−Ni) can be fully covered by a single path according to
Algorithm 1. Then this path should not appear in Πsol1 by
Algorithm 2. Now similar to case (i), the coverage phase of
the paths in Πi, when connected together, covers Ai by fol-
lowing the contours in distance-increasing order. By Propo-
sition 2, each cell is visited at most twice. An example of
covering a subtree is shown in Fig. 9(b).

(iii) Ai is a forest. Let ai as the left most subtree of Ai

and (Ai−ai) be the other nodes in Ai. By Algorithm 1, both
(Ai − ai) and ai can be fully covered by a single path. So
actually Ai is fully covered by two paths while the second
path is not included in Πsol1. Each node in Ai is covered by
the coverage phase of the path by following the contours in
distance increasing-order. By Proposition 2, each cell in Ai

is visited at most twice. We should also note that when the
robot transits from one subtree of Ai to the next one, it will
visit the Ai’s parent node Np. The robot needs to visit the
furthest (last) contour in Np. It is easy to see that the cells
on the furthest (last) contour of Np will only be visited once
when the paths in Np follow the contours. And these cells
are visited the second time when the robot transits from one
child node of Np to the other child node. An example of
covering a forest is shown in Fig. 9(c).

By Algorithm 2, each path in Πsol2 has a precedent path
in Πsol1. For analysis purposes, now we combine Πsol1 and
Πsol2. That is, let πi2 be a path from Πsol2 whose precedent
path is πi1 from Πsol1. We attach πi2 to πi1, which means
the area covered by πi2 is regarded as being covered by πi1.

Lemma 2 states that a cell can be visited at most twice
by the coverage phase of two paths. Note that this does not
mean that a cell is visited at most twice by Πsol1 since the
coverage phase starts from the first uncovered cell on the
path.

536

S

Ai

(a) Coverage of a
single node

S

Ai
Ni

(b) Coverage of a
subtree

S

Ai

ai

(c) Coverage of a for-
est. The colored (yel-
low) area is the root of
this forest

Figure 9: The coverage examples of the subregions in the
working space. The coverage phases are drawn by solid
lines.

The next lemma counts the number of cells covered by the
coverage phase of each path in Πsol1. To prove it, we need
to specify this: for two paths whose coverage phases visit
the same cell, which path this cell should be allocated to as
a covered cell. A naive way is that this cell is allocated to
the path whose coverage phase visits this cell first. But for
analysis purposes, we do it in the following way. Let C be
the set of cells visited by the coverage phases of two paths
πi and πj . By Lemma 2, C is not visited by any other paths’
coverage phase. In our analysis, half of C is covered by πi,
and the other half is covered by πj . Then we have Lemma 3.

Lemma 3. Let Πsol1 = {π1, π2, ..., πn} be the first path set
from Algorithm 2. Let Pi be the remaining uncovered area
after the first (i− 1) paths in Πsol1. Let si be the number of
the covered cells (area) in Pi by πi. Let s∗i be the number of
the covered cells in Pi by any path in Π∗. Then si ≥ 1

8s
∗
i ,

for i = 1, 2, ..., n.

Proof. Since a cell is of unit size as the robot, the number of
visited cells is equal to the covered area measured in the unit
of the robot’s size. We use the number of cells and covered
area interchangeably. When the robot follows the path πi,
it needs d(ci) energy to go the the first uncovered cell in
Pi. B

2 energy is guaranteed to be enough for retreating to
S. The robot needs two units of energy to visit a cell when
following the contours. So πi’s coverage phase visits at least
(B− B

2 −d(ci))/2 = B
4 − d(ci)

2 cells in Pi before retreating.
According to Lemma 2, any cell on the coverage phase of πi

is visited at most twice by the coverage phases of the paths
in Πsol1. Let C1, C2, and C3 be the cell sets on the coverage
phase of πi, where C1 is the cell set visited only once by
πi, C2 is the cell set visited twice by πi itself, and C3 is
the cell set also visited by the coverage phases of the other
paths in Πsol1. Then πi covers si = |C1| + |C2|

2 + |C3|
2 ≥

((B2 − d(ci))/2)/2 = (B8 − d(ci)
4) cells in Pi.

For any path in Π∗, it needs at least d(ci) energy to go to
the first uncovered cell in Pi and needs at least d(ci) energy
to retreat to S. So any path in Π∗ can cover at most s∗i =
(B − 2d(ci)) cells in Pi. Thus si ≥ 1

8s
∗
i .

Theorem 1. Let n∗ be the number of paths in the optimal
solution Π∗. Let n be the total number of paths from Algo-

rithm 2. n ≤ 16n∗ ln |P |, where |P | denotes the total area
of the environment P .

Proof. Let Pi be the remaining uncovered area after the first
(i − 1) paths in Πsol1. Pi is fully covered by the n∗ paths
in Π∗. So on average each path in Π∗ covers |Pi|

n∗ area of
Pi. According to Lemma 3, the number of visited cells in Pi

by the ith path πi in Πsol1 is more than one eighth of that
by any path from Π∗. So πi covers at least |Pi|

8n∗ cells in Pi.
Thus,

|Pi+1| ≤ |Pi|(1− 1

8n∗
)

Let n1 be the number of paths in Πsol1. After n1 paths, the
remaining uncovered area should be less than 1. We get

|Pn1 | = |P |(1− 1

8n∗1
)n1 < 1 (1)

n1 <= 8n∗(ln |P |) (2)

Note that this analysis combines the paths from Πsol2 and
Πsol1. Each path in Πsol2 is attached to one path in Πsol1. It
is easy to see that no two paths in Πsol2 are attached to the
same path in Πsol1. So n ≤ 2n1. We get

n <= 16n∗(ln |P |) (3)

The theorem is proved.

Recall that D is the distance of the furthest cell to S
measured in the robot’s size. It is easy to see that |P | ≤
4 ∗ D(D+1)

2 = 2D(D + 1). So by Theorem 1, the approxi-
mation factor is O(lnD).

Theorem 2. Let l∗ be the total length of the paths in the
optimal solution, and l be the total length of the paths from
Algorithm 2. Then, l ≤ 32(ln |P |)l∗.

Proof. Let nl be the number of paths of the optimal solution
when minimizing the total length. Then nl ≥ n∗. No two
paths in the optimal solution can have the sum of length less
than B. Otherwise they can be combined to form a shorter
path. So

l∗ ≥ B

2
n∗

The total length of paths from Algorithm 2 is

l ≤ 16n∗(ln |P |)B
So

l ≤ 32(ln |P |)l∗

Similarly we know that the approximation factor is
O(lnD).

537

Figure 10: The simulated environment with two inner obsta-
cles. The value in each cell is its distance to S.

(a) (b)

Figure 11: (a) Decomposing the environment into contour-
connected subareas.(b) The corresponding partition tree of
the environment.

An Implementation Example

In this section we demonstrate a simulated execution of our
algorithm. The environment to cover is shown in Fig. 10.

In Fig. 11(a), the environment is partitioned into the
contour-connected subareas. The cells on the boundaries of
each subarea are included in that subarea. The correspond-
ing partition tree is shown in Fig. 11(b).

In the simulation, we set the energy budget B to be 80
units. Note that B has to be greater or equal to 2D to make
it possible to fully cover the environment. With B we can
run the grouping algorithm. The nodes N5, N3 can be fully
covered by a single path. The working zone of the environ-
ment is shown in Fig. 12.

Fig. 13 demonstrates the planned paths to cover the work-
ing zone. We plot the paths in each subregion together. Here
the paths are rectilinear, which means we plot the robot’s
actual trajectory when it follows the contours.

To improve the quality of the resulting paths, we use a
heuristic. As shown in Fig. 13(a), when the robot fully cov-
ers N1 and goes to N3, it takes the shortest path to N3
instead of following the last contour of N1 again. It is easy
to see that taking the shortest path to N3 results in less re-
visiting. So our previous analysis still holds.

Figure 12: The working zone of the environment in Fig. 11.

Conclusion and Future Work

In this paper, we presented an algorithm for the energy-
constrained coverage path planning problem and showed
that the cost of its solution is always within a factor of logD
of the optimal solution. In our model, we used a grid to rep-
resent the environment and restricted the robots motion to
the four main directions. In the future, we would like to gen-
eralize this result to continuous robot motion.

Our problem formulation further assumes that the en-
vironment’s boundary (including obstacles) is given. This
knowledge may not be always available in which case on-
line algorithms are needed. In (Shnaps and Rimon 2016) an
Ω(logD) lower bound is presented for the online version.
We would like to extend our algorithm to the online case
and match this lower bound.

Acknowledgment

This work is supported in part by NSF Award # 1525045, a
MnDrive RSAM Industrial Partnership grant with The Toro
Company, and a grant from Minnesota State LCCMR Pro-
gram.

References

Choi, Y.-H.; Lee, T.-K.; Baek, S.-H.; and Oh, S.-Y. 2009.
Online complete coverage path planning for mobile robots
based on linked spiral paths using constrained inverse dis-
tance transform. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 5788–5793. IEEE.
Choset, H. 2000. Coverage of known spaces: The bous-
trophedon cellular decomposition. Autonomous Robots
9(3):247–253.
Choset, H. 2001. Coverage for robotics–a survey of recent
results. Annals of mathematics and artificial intelligence
31(1):113–126.
Gabriely, Y., and Rimon, E. 2001. Spanning-tree based cov-
erage of continuous areas by a mobile robot. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
volume 2, 1927–1933. IEEE.
Galceran, E., and Carreras, M. 2013. A survey on cover-
age path planning for robotics. Robotics and Autonomous
Systems 61(12):1258–1276.
Gonzalez, E.; Alvarez, O.; Diaz, Y.; Parra, C.; and Bus-
tacara, C. 2005. Bsa: a complete coverage algorithm. In
IEEE International Conference on Robotics and Automa-
tion, 2040–2044. IEEE.

538

(a) Subregion (1) (b) Subregion (2)

(c) Subregion (3) (d) Subregion (4)

(e) Subregion (5) (f) Subregion (6)

Figure 13: Coverage of each subregion of the working zone.

Laporte, G. 1992. The vehicle routing problem: An
overview of exact and approximate algorithms. European
Journal of Operational Research 59(3):345–358.

Li, C.-L.; Simchi-Levi, D.; and Desrochers, M. 1992. On the
distance constrained vehicle routing problem. Operations
research 40(4):790–799.

Mannadiar, R., and Rekleitis, I. 2010. Optimal coverage of
a known arbitrary environment. In IEEE International Con-
ference on Robotics and Automation (ICRA), 5525–5530.
IEEE.

Mishra, S.; Rodriguez, S.; Morales, M.; and Amato, N. M.
2016. Battery-constrained coverage. In IEEE Interna-
tional Conference on Automation Science and Engineering
(CASE), 695–700. IEEE.

Nagarajan, V., and Ravi, R. 2012. Approximation algo-
rithms for distance constrained vehicle routing problems.
Networks 59(2):209–214.

Shnaps, I., and Rimon, E. 2016. Online coverage of pla-
nar environments by a battery powered autonomous mobile

robot. IEEE Transactions on Automation Science and Engi-
neering 13(2):425–436.
Strimel, G. P., and Veloso, M. M. 2014. Coverage planning
with finite resources. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2014), 2950–2956.
IEEE.
Viet, H. H.; Dang, V.-H.; Choi, S.; and Chung, T. C. 2015.
Bob: an online coverage approach for multi-robot systems.
Applied Intelligence 42(2):157–173.

539

