
Lazy Receding Horizon A* for Efficient Path Planning
in Graphs with Expensive-to-Evaluate Edges

Aditya Mandalika
University of Washington
adityavk@cs.uw.edu ∗

Oren Salzman
Carnegie Mellon University
osalzman@andrew.cmu.edu ∗

Siddhartha Srinivasa
University of Washington
siddh@cs.uw.edu ∗

Abstract

Motion-planning problems, such as manipulation in cluttered
environments, often require a collision-free shortest path to
be computed quickly given a roadmap graph G. Typically,
the computational cost of evaluating whether an edge of G
is collision-free dominates the running time of search algo-
rithms. Algorithms such as Lazy Weighted A* (LWA*) and
LazySP have been proposed to reduce the number of edge
evaluations by employing a lazy lookahead (one-step looka-
head and infinite-step lookahead, respectively). However, this
comes at the expense of additional graph operations: the larger
the lookahead, the more the graph operations that are typically
required. We propose Lazy Receding-Horizon A* (LRA*) to
minimize the total planning time by balancing edge evalua-
tions and graph operations. Endowed with a lazy lookahead,
LRA* represents a family of lazy shortest-path graph-search
algorithms that generalizes LWA* and LazySP. We analyze the
theoretic properties of LRA* and demonstrate empirically that,
in many cases, to minimize the total planning time, the algo-
rithm requires an intermediate lazy lookahead. Namely, using
an intermediate lazy lookahead, our algorithm outperforms
both LWA* and LazySP. These experiments span simulated
random worlds in R2 and R4, and manipulation problems us-
ing a 7-DOF manipulator.

1 Introduction
Robotic motion-planning has been widely studied in the last
few decades. Since the problem is computationally hard (Reif
1979; Sharir 2004), a common approach is to use sampling-
based algorithms which typically construct a graph where
vertices represent robot configurations and edges repre-
sent potential movements of the robot (Choset et al. 2005;
LaValle 2006). A shortest-path algorithm then computes a
path between two vertices on the graph.
There are numerous shortest-path algorithms, each suit-

able for a particular problem domain based on the compu-
tational efficiency of the algorithm. For example, A* (Hart,
Nilsson, and Raphael 1968) is optimal with respect to node
expansions, and planning techniques such as partial expan-
sions (Yoshizumi, Miura, and Ishida 2000) and iterative
∗This work was (partially) funded by the National Science Foun-

dation IIS (#1409003), and the Office of Naval Research.
Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

deepening (Korf 1985a) are well-suited for problems with
large graphs and large branching factors.
However, in most robotic motion-planning problems, path

validations and edge evaluations are themajor source of com-
putational cost (LaValle 2006). Our work addresses these
problems of quickly producing collision-free optimal paths,
when the cost of evaluating an edge for collision is a compu-
tational bottleneck in the planning process.
A common technique to reduce the computational cost

of edge evaluation and consequently the planning time is to
employ a lazy approach. Two notable search-based planners
that follow this paradigm are LazyWeighted A* (LWA*) (Co-
hen, Phillips, and Likhachev 2014) and LazySP (Dellin and
Srinivasa 2016; Haghtalab et al. 2017).
Both LWA* and LazySP assume there exists an efficient-

to-compute lower bound on the weight of an edge. This
lower bound is used as a lookahead (formally defined in
Section 4) to guide the search without having to explicitly
evaluate edges unless necessary. LazySP uses an infinite-step
lookahead which can be shown to minimize the number of
edge evaluations but requires large number of graph opera-
tions (node expansions, updating the shortest-path tree, etc.).
On the other hand, LWA* uses a one-step lookahead which
may result in a larger number of edge evaluations compared
to LazySP but with much fewer graph operations.
Our key insight is that there should exist an optimal looka-

head for a given environment, which balances the time for
edge evaluations and graph operations, and minimizes the
total planning time. We make the following contributions:
1. We present Lazy Receding-Horizon A* (LRA*), a family
of lazy shortest-path algorithms parametrized by a lazy
lookahead (Sections 4, 5) which allows us to continuously
interpolate between LWA* and LazySP, balancing edge
evaluations and graph operations.

2. We analyze the theoretic properties of LRA* (Section 6).
Part of our analysis proves that LazySP is optimal with
respect to minimizing edge evaluations thus closing a the-
oretic gap thatwas left open in (Dellin and Srinivasa 2016).

3. We demonstrate in Section 7, the efficacy of our algorithm
on a range of planning problems for simulated Rn worlds
and robot manipulators. We show that LRA* outperforms
both LWA* and LazySP by minimizing not just edge eval-
uations or graph operations but the total planning time.

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

476



2 Related Work
A large number of motion-planning algorithms consist of
(i) constructing a graph, or a roadmap, embedded in the
configuration space and (ii) finding the shortest path in
this graph. The graph can be constructed in a prepro-
cessing stage (Kavraki et al. 1996; Karaman and Fraz-
zoli 2011) or vertices and edges can be added in an in-
cremental fashion (Gammell, Srinivasa, and Barfoot 2015;
Salzman and Halperin 2015).
In domains where edge evaluations are expensive and

dominate the planning time, a lazy approach is often em-
ployed (Bohlin and Kavraki 2000; Hauser 2015) wherein the
graph is constructed without testing if edges are collision-
free. Instead, the search algorithm used on this graph is
expected to evaluate only a subset of the edges in the
roadmap and hence save computation time. While standard
search algorithms such as Dijkstra’s (Dijkstra 1959) and
A* (Hart, Nilsson, and Raphael 1968) can be used, specific
search algorithms (Cohen, Phillips, and Likhachev 2014;
Dellin and Srinivasa 2016) were designed for exactly such
problems. They aim to further reduce the number of edge
evaluations and thereby the planning time.
Alternative algorithms that reduce the number of edge

evaluations have been studied. One approach was by forego-
ing optimality and computing near-optimal paths (Salzman
and Halperin 2016; Dobson and Bekris 2014). Another ap-
proachwas re-using information obtained fromprevious edge
evaluations (Bialkowski et al. 2016; Choudhury, Dellin, and
Srinivasa 2016; Choudhury et al. 2017).
In this paper, we propose an algorithm that makes use of

a lazy lookahead to guide the search and minimize the total
planning time. It is worth noting that the idea of a looka-
head has previously been used in algorithms such as RTA*,
LRTA* (Korf 1990) and LSS-LRTA* (Koenig and Sun 2009).
However, these algorithms use the lookahead in a different
context by interleaving planning with execution before the
shortest path to the goal has been completely computed. Us-
ing a lazy lookahead has also been considered in the control
literature (Kwon andHan 2006). Receding horizon optimiza-
tion can be summarized as iteratively solving an optimal-
control problem over a fixed future interval. Only the first
step in the resulting optimal control sequence is executed
and the process is repeated after measuring the state that was
reached. Our lazy lookahead is analogous to the fixed horizon
used by these algorithms. Additionally, the lazy lookahead
can also be seen as a threshold that defines the extent to
which (lazy) search is performed. This is similar to the It-
erative Deepening version of A* (IDA*) (Korf 1985b) which
performs a series of depth-first searches up to a (increasing)
threshold over the solution cost.

3 Algorithmic Background
3.1 Single Source Shortest Path (SSSP) Problem
Given a directed graph G = (V,E) with a cost function w :
E →R+ on its edges, the Single Source Shortest Path (SSSP)
problem is to find a path of minimum cost between two given
vertices vsource and vtarget. Here, a path P = (v1, . . .,vk) on the
graph is a sequence of vertices where ∀i, (vi,vi+1) ∈ E. An

edge e = (u,v) belongs to a path if ∃i s.t. u = vi, v = vi+1. The
cost of a path is the sum of the weights of the edges along
the path:

w(P) =
∑
e∈P

w(e).

3.2 Solving the SSSP Problem
To solve the SSSPproblem, algorithms such asDijkstra (Dijk-
stra 1959) compute the shortest path by incrementally build-
ing a shortest-path tree T rooted at vsource and terminate
once vtarget is reached. This is done bymaintaining aminimal-
cost priority queue Q of nodes called the OPEN list. Each
node τu is associated with a vertex u as well as with a pointer
to u’s parent in T . The nodes are ordered in Q according to
their cost-to-come i.e., the cost to reach u from vsource in T .
The algorithm begins with τvsource (associated with vsource)

in Q with a cost-to-come of 0. All other nodes are initialized
with a cost-to-come of∞. At each iteration, the node τu with
the minimal cost-to-come is removed from Q and expanded,
wherein the algorithm considers each of u’s neighbours v,
and evaluates if the path to reach v through u is cheaper than
v’s current cost-to-come. If so, then τv’s parent is set to be
τu (an operation we refer to as “rewiring”) and is inserted
into Q.
The search, i.e., the growth of T , can be biased to-

wards vtarget using a heuristic function h : V → R which
estimates the cost-to-go, i.e., the cost to reach vtarget from
vertex v ∈ V. It can be shown that under mild conditions on
h, if Q is ordered according to the sum of the cost-to-come
and the estimated cost-to-go, then this algorithm, called A*,
expands fewer nodes, during search, than any other search
algorithm with the same heuristic (Dechter and Pearl 1983;
Pearl 1984).
A key observation in the described approach for Dijkstra

or A* is that for every node in Q, the algorithm computed
the cost w(e) of the edge to reach this node from its current
parent, a process we will refer to as evaluating an edge.
Edge evaluation occurs for all edges leading to nodes in the
OPEN list Q irrespective of whether there exists a better
parent to the node or whether the node will subsequently be
expanded for search. In problem domains where computing
the weight of an edge is an expensive operation, such as in
robotic applications, this is highly inefficient. To alleviate this
problem, we can apply lazy approaches for edge evaluations
that can dramatically reduce the number of edges evaluated.

3.3 Computing SSSP via Lazy Computation
In problem domains where computing w(e) is expensive, we
assume the existence of a function ŵ : E → R+ which (i) is
efficient to compute and (ii) provides a lower bound on the
true cost of an edge i.e., ∀e ∈ E, ŵ(e) ≤ w(e). We call ŵ a
lazy estimate of w.
Given such a function, Cohen, Phillips, and Likhachev

proposed LWA* which modifies A* as follows: Each edge
(u,v) is evaluated, i.e., w(u,v) is computed, only when the
algorithm believes that τv should be the next node to be
expanded. Specifically, each node in Q is augmented with a
flag stating whether the edge leading to this vertex has been

477



evaluated or not. Initially, every edge is given the estimated
value computed using ŵ for its cost and this is used to order
the nodes in Q. Only when a node is selected for expansion,
is the true cost of the edge leading to it evaluated. After the
edge is evaluated, its cost may be found to be higher than
the lazy estimate, or even∞ (if the edge is untraversable—a
notion we will refer to as “in collision”). In such cases, we
simply discard the node. If it is valid, we now know the true
cost of the edge, as well as the true cost-to-come for this
vertex from its current parent. The node is marked to have its
true cost determined and is inserted into Q again. Only when
this node is chosen from Q the second time will it actually be
expanded to generate paths to its neighbours. The algorithm
terminates when vtarget is removed from Q for the second
time.
This approach increases the size of Q as there can be

multiple nodes associated with every vertex, one for each in-
coming edge. Since the true cost of an edge is unknown until
evaluated, it is essential that all these nodes be stored. Al-
though this causes an increase in computational complexity
and in the memory footprint of the algorithm, the approach
can lead to fewer edges evaluated and hence reduce the over-
all running time of the search.

LWA* uses a one-step lookahead to reduce the number of
edge evaluations. Namely, every path in the shortest-path
tree T may contain one edge (the last) which has only been
evaluated lazily. Taking this idea to the limit, Dellin andSrini-
vasa proposed the Lazy Shortest Path, or LazySP algorithm
which uses an infinite-step lookahead. Specifically, it runs a
series of shortest-path searches on the graph defined using
ŵ for all unevaluated edges. At each iteration, it chooses the
shortest path to the goal and evaluates edges along this path1.
When an edge is evaluated, the algorithm considers the eval-
uated true cost of the edge for subsequent iterations of the
search. Hence, LazySP evaluates only those edges which po-
tentially lie along the shortest path to the goal. The algorithm
terminates when all the edges along the current shortest path
have been evaluated to be valid (namely, not in collision).
A naïve implementation of LazySPwould require running

a complete shortest-path search every iteration. However, the
search tree computed in the previous iterations can be reused:
When an edge is found to be in collision, the search tree com-
puted in previous iteration is locally updated using dynamic
shortest-path algorithms such as LPA* (Koenig, Likhachev,
and Furcy 2004).

3.4 Motivation
As described in Section 3.3, LWA* and LazySP attempt to re-
duce the number of edge evaluations by delaying evaluations
until necessary. As we shall prove in Section 6, LazySP (with
a lookahead of infinity), minimizes the number of edge eval-
uations, at the expense of greater graph operations. When an
edge is found to be in collision, the entire subtree emanating

1In the original exposition of LazySP, the method for which
edges are evaluated along the shortest path is determined using a
procedure referred to as an edge selector. In our work we consider
the most natural edge selector, called forward edge selector. Here,
the first unevaluated edge closest to the source is evaluated.

from that edge needs to be updated (a process we will refer
to as rewiring) to find the new shortest path to each node in
the subtree. On the other hand, LWA* which has a lookahead
of one, evaluates a larger number of edges relative to LazySP
but does not perform any rewiring or repairing. When an
edge to a node is found to be invalid, the node is simply
discarded and the algorithm continues.
Therefore, these two algorithms, LWA* and LazySP, with

a one-step and an infinite-step lookahead respectively, form
two extremals to an entire spectrum of potential lazy-search
algorithms based on the lookahead chosen. We aim to lever-
age the advantage that the lazy lookahead can provide to
interpolate between LWA* and LazySP, and strike a balance
between edge evaluations and graph operations to minimize
the total planning time.

4 Problem Formulation
In this section we formally define our problem. To make this
section self contained, we repeat definitions that were men-
tioned in passing in the previous sections. We consider the
problem of finding the shortest path between source and tar-
get vertices vsource and vtarget on a given graph G = (V,E).
Since we are motivated by robotic applications where edge
evaluation, i.e., checking if the robot collides with its envi-
ronment while moving along an edge, is expensive, we do
not build the graph G with just feasible edges. Rather, as in
the lazy motion-planning paradigm, the idea is to construct
a graph with edges assumed to be feasible and delay the
evaluation to only when absolutely necessary.
For simplicity, we assume the lazy estimate ŵ to tightly

estimate the true cost w for edges that are collision-free2.
Therefore ŵ is a lazy estimate of w such that

w(e) =
{
ŵ(e) if e is not in collision,
∞ if e is in collision. (1)

We use the cost functionw and its lazy estimate ŵ to define
the cost of a path on the graph. The (true) cost of a path P is
the sum of the weights of the edges along P:

w(P) =
∑
e∈P

w(e).

Similarly, the lazy cost of a path is the sum of the lazy
estimates of the edges along the path:

ŵ(P) =
∑
e∈P

ŵ(e).

Our algorithmwill make use of paths which are only partially
evaluated. Specifically, every path P will be a concatenation
of two paths P = Phead · Ptail (here, (·) denotes the concate-
nation operator). Edges belonging to Phead will have been
evaluated and known to be collision-free while edges be-
longing to Ptail will only be lazily evaluated. Notice that Ptail
may be empty. We also define the estimated total cost of a
path P = Phead ·Ptail as:

w̄(P) = w(Phead)+ ŵ(Ptail).

2We discuss relaxing the assumption that ŵ(e) tightly estimates
w(e) in Section 8. In the general case, we require only that it is a
lower bound i.e., ∀e ∈ E, ŵ(e) ≤ w(e).

478



α

border nodes

τstart

α-band

frontier

nodesexact

evaluation

lazy

evaluation

Figure 1: Search space of LRA*.

Although ŵ helps guide the search of a lazy algorithm, as
in LWA* or LazySP, as noted in Section 3.4, it can lead to ad-
ditional computational overhead when the estimate is wrong,
i.e., when the search algorithm encounters edges in collision.
In this work we balance this computational overhead with the
number of edge evaluations, by endowing our search algo-
rithmwith a lookahead α. In essence, the lookahead controls
the extent to which we use ŵ to guide our search.
As we will see later in Section 8, the lookahead α can

be interpreted in various ways. However, in this paper we
interpret the lookahead as the number of edges over which
we use ŵ to guide our search.

5 Lazy Receding-Horizon A* (LRA*)
5.1 Algorithmic Details
Our algorithm maintains a lazy shortest-path tree T over
the graph G. Every node in T is associated with a vertex
of G and the tree is rooted at the node τsource associated
with the vertex vsource. We define the node entry τ ∈ T as
τ = (u, p,c, �,b), were u[τ] = u is the vertex associated with τ,
p[τ] = p is τ’s parent in T which can be backtracked to
compute a path P[τ] from vsource to u. The node τ also stores
c[τ] = c and �[τ] = � which are the costs of the evaluated
and lazily-evaluated portions of P[τ], respectively. Namely,
c[τ] = w(P[τ]head) and �[τ] = ŵ(P[τ]tail). Finally, b[τ] = b is
the budget of P[τ] i.e., the number of edges that have been
lazily evaluated in P[τ] or equivalently, the number of edges
in P[τ]tail. Given a lookahead α, our algorithm will maintain
shortest paths to a set of nodes represented by the search
tree T , where ∀τ ∈ T , b[τ] ≤ α. The budget of any node
in T never exceeds α.
Given a node τ ∈ T , we call it a frontier node if b[τ] = α

(P[τ]tail has exactlyα edges). Additionally, τ is said to belong
to theα-band if b[τ] > 0.We call τ a border node if it does not
belong to the α-band but one of its children does. Finally, τ
is called a leaf node if it has children in G but not in T . Note
that all frontier nodes are leaf nodes. See Fig. 1 for reference.
The algorithm maintains a priority queue Qfrontier that

stores the frontier nodes ordered according to the estimated
cost-to-come w̄(P[τ]) = c[τ]+ �[τ]. This queue is used to
choose which path to evaluate at each iteration. For ease of
exposition, we present a high-level description of the algo-
rithm (Alg. 1). For detailed pseudo-code, see (Mandalika,
Salzman, and Srinivasa 2018).

Algorithm 1 LRA∗(G, vsource, vtarget, α)
1: Qfrontier, T := ∅ � Initialization
2: insert τvsource = (vsource, NIL, 0, 0, 0) into T
3: for each leaf node τ ∈ T do � Extend α-band
4: add all nodes at distance (α− b[τ]) edges into T
5: insert all frontier nodes in T into Qfrontier
6: while Qfrontier is not empty do � Search
7: remove τ with minimal key w̄(τ) from Qfrontier
8: evaluate first edge (u,v) along P[τ]tail � Expensive
9: if (u,v) is collision-free then
10: update τv
11: if v = vtarget then
12: return P[τvtarget ]
13: update descendants τ of τv s.t τ ∈ T
14: else � Edge is in collision
15: remove edge (u,v) from graph
16: for each descendant τ of τv s.t τ ∈ T do
17: rewire τ to the best parent τ′ ∈ T , τ′ � τvtarget
18: repeat steps 3-5 to extend the α-band
19: return failure

We are now ready to describe our algorithm, Lazy
Receding-Horizon A* (LRA*), which begins by initializing
the node τsource associated with vsource (line 2). Our algorithm
maintains the invariant that at the beginning of any itera-
tion all leaf nodes are frontier nodes. When the algorithm
starts, τvsource is a leaf node with b[τvsource] = 0 < α. Therefore
we extend the α-band (lines 3-4) and consequently the search
tree T , adding all the frontier nodes to Qfrontier (line 5).

The algorithm iteratively finds the frontier node τ with
minimal estimated cost (line 7) and evaluates the first edge
along the lazy portion P[τ]tail of the path P[τ] from τvsource
to τ in T (line 8). If a collision-free shortest path to vtarget
is found during this evaluation (line 11-12), the algorithm
terminates. Every evaluation of a collision-free edge (u,v)
causes the node τv , that was previously in the α-band, to be a
border node. Consequently the node entry is updated and this
update is cascaded to all the nodes in the α-band belonging
to the subtree rooted at τv (lines 10, 13). Specifically, the new
cost, lazy cost and budget of τv is used to update the nodes
in its subtree. However, if the edge (u,v) is found to be in
collision, the edge is removed from the graph, and the entire
subtree of τv is rewired appropriately (lines 14-17). This can
potentially lead to some of the nodes being removed from
theα-band. Both updating and rewiring subtrees can generate
leaf nodes with budget less than α. Therefore at the end of
the iteration, the α-band is again extended to ensure all leaf
nodes have budget equal to the lookahead α (line 18). See
Fig. 2 for an illustration.

As we will show in Section 6, the algorithm described is
guaranteed to terminate with the shortest path, if one exists,
and is hence complete for all values of α.

479



v3v2
v1

α-band

vtarget

vsource

v0

(a)

v3v2
v1

α-band

vtarget

vsource

v0

(b)

v3v2
v1

α-band

vtarget

v0

vsource

(c)

Figure 2: Visualization of LRA* running on G embedded in a workspace cluttered with obstacles (depicted in dark grey)
and α = 2. The regions where edges are evaluated and lazily evaluated are depicted by green and orange regions, respectively.
Shortest-path tree T in the two regions is depicted by solid and dashed blue edges, respectively. Finally, vertices associated with
border and frontier nodes are depicted by squares and crosses, respectively. Figure is best viewed in color. (a) Node associated
with v3 has the minimal key and the path ending with nodes v0,v2,v3 is evaluated. Edge (v0,v2) is found to be in collision.
(b) Node τ2 associated with v2 is rewired and the α-band is recomputed. Now τ2 has the minimal key and the path ending with
nodes v0,v1,v2 is evaluated and found to be collision free. (c) The α-band is extended from v2.

5.2 Implementation Details—Lazy computation
of the α-band

Every time an edge (u,v) is evaluated, a series of updates is
triggered (Alg. 1 lines 13 and 16-17) Specifically, let τ be
the node associated with v and T(τ) be the subtree of T
rooted at τ. If the edge (u,v) is collision-free, then the budget
of all the nodes T(τ) needs to be updated. Alternatively, if
the edge (u,v) is in collision, then a new path to every node
in T(τ) needs to be computed. These updates may be time-
consuming and we would like to minimize them. To this end,
we propose the following optimization which reduces the
size of the α-band and subsequently, potentially reduces the
number of nodes in T(τ).
We suggest that if we already know that a node τ′ in the α-

band will not be part of a path that is chosen for evaluation in
an iteration, then we defer expanding the α-band through this
node. The key insight behind the optimization is that there is
no need to expand a node τ′ in theα-band if its key, w̄(P[τ′]),
is larger than the key of the first node in Qfrontier. Using this
optimization may potentially reduce the size of T(τ) and
save computations.

5.3 Implementation Details—Heuristically
guiding the search

We described our algorithm as a lazy extension of Dijkstra’s
algorithm which orders its search according to cost-to-come.
In practice we will want to heuristically guide the search
similar to A*, which orders its search queues according to the
sum of cost-to-come to a vertex from vsource and an estimate
of the cost-to-go to vtarget from the vertex, i.e., a heuristic.
We apply a similar approach by assuming that the algo-

rithm is given a heuristic function that under estimates the
cost to reach vtarget. In Section 6 we state and prove that
as the heuristic is strictly more informative, the number of
edge evaluations and rewires further reduce, for a given lazy
lookahead.

5.4 Discussion—LRA* as an approximation of
optimal heuristic

In this section, we provide an intuition on the role lazy looka-
head plays when guided by a heuristic. Given a graph G, we
can define the optimal heuristic h∗

G
(v) as the length of the

shortest path from v to vtarget in G. Indeed, if all edges of G
are collision-free, an algorithm such as A* guided by h∗

G
will

only evaluate edges along the shortest path to vtarget. To take
advantage of this, LazySP proceeds by computing h∗

G
. If an

edge is found to be in collision, it is removed from G and h∗
G

is recomputed. This is why no other algorithm can perform
fewer edge evaluations (see Section 6).
Using a finite lookahead and a static admissible heuristic,

LRA* can be seen as a method to approximate the optimal
heuristic. Every frontier node τ is associated with the key
c[τ]+�[τ]+ h(u[τ]). The minimal of all such keys forms the
approximation for the optimal heuristic h∗

G
(vsource) i.e., if τv

associated with vertex v has the minimal key, we have,

h∗G(vsource) ≥ c[τv]+ �[τv]+ h(v) ≥ h(vsource)

and the algorithm chooses to evaluate an edge along the path
from vsource to v in T . This approximation improves as the
α-band approaches the target. When the algorithm starts, this
approximation may be crude (when a small lazy lookahead
is used). However, as the algorithm proceeds and α-band is
expanded, this approximation dynamically converges to the
optimal heuristic. We formalize this idea in Section 6 and
show this phenomenon empirically in Section 7.

5.5 Discussion—Is greediness beneficial?
A possible extension to LRA* is to employ greediness in edge
evaluation: Given a path, we currently evaluate the first edge
along this path (Alg. 1, lines 7 and 8). However, we can
choose to evaluate more than one edge, hence performing an
exploitative action. This introduces a second parameter β ≤ α
that indicates how many edges to evaluate along the path.

480



However, we can show that our current formulation using a
minimal greediness value of β = 1 always outperforms any
other greediness value. This is only the case when we seek
optimal paths. If we relax the algorithm to produce subop-
timal paths, greediness may be of use in early termination.
While this relaxation is out of the scope of the paper, proofs
pertaining to the superiority of no greediness are addressed
in (Mandalika, Salzman, and Srinivasa 2018) for the case
that optimal paths are required.

6 Correctness, Optimality and Complexity
In this sectionwe provide theoretical properties regarding our
family of algorithms LRA*. For proofs please see (Mandalika,
Salzman, and Srinivasa 2018). We start in Section 6.1 with a
correctness theorem stating that upon termination of the algo-
rithm, the shortest path connecting vsource and vtarget is found.
We continue in Section 6.2 to detail how the lazy lookahead
affects the performance of the algorithm with respect to edge
evaluations. Specifically, we show that for α =∞, the algo-
rithm is edge optimal. That is, it tests the minimal number of
edges possible (this notion is formally defined). Furthermore,
we examine how the lazy lookahead affects the number of
edges evaluated by our algorithm. Finally, in Section 6.3 we
bound the running time of the algorithm as well as its space
complexity as a function of the lazy lookahead α. Here, we
show that the running time (governed, in this case, by graph
operations) can grow exponentially with the lazy lookahead
α. This further backs our intuition that in order to minimize
the running time in practice, an intermediate lookahead is
required to balance edge evaluation and graph operations.
The following additional notation will be used throughout

this section: Let P∗
v denote the shortest collision-free path

from vsource to a vertex v and letw∗(v)=w(P∗
v) be theminimal

true cost-to-come to reach v from vsource. Finally, for the
special case of vtarget, we will use w∗ = w∗(vtarget). That is, w∗

denotes the minimal cost-to-come to reach vtarget from vsource.

6.1 Correctness
Lemma 1. Let (v0,v) be an edge evaluated by LRA* and
found to be collision free. Then the shortest path to the node τv
associated with vertex v has been found and c[τv] = w∗(v).
Replacing v with vtarget, we have,

Corollary 1. LRA* is complete, i.e., if an edge (v0,vtarget) is
found to be collision-free, the shortest path to τvtarget associ-
ated with vtarget has been found.

6.2 Edge Optimality
In this section we analyze how the lazy lookahead allows to
balance between the number of edge evaluations and rewiring
operations. We start by looking at the extreme case where
there is an infinite lookahead (α =∞). We define a natural
and general family of algorithms SP that solve the shortest-
path problem and show in Lemma 2 that when α = ∞, no
other algorithm in SP can perform fewer edge evaluations.
We then continue by showing in Lemma 3 that the larger
the lookahead, the fewer edge evaluations an algorithm LRA*
will perform.

Recall that a shortest-path problem consists of a graphG =
(V,E), a lazy estimate of the weights ŵ, a weight function w
and start and goal vertices, vsource and vtarget, respectively.
Let SP be the family of shortest-path algorithms that, given
a shortest-path problem, proceed by building a shortest-path
tree T rooted at vsource. Additionally, assume that for every
shortest-path problem, there are no two paths in G that have
the same weight3.
An algorithm ALG ∈ SP can only call the weight func-

tion w for an edge e = (u,v) where u ∈ T . Furthermore,
when terminating, it must report the shortest path from vsource
to vtarget and validate that no shorter path exists. Thus,
if P∗ = P∗

vtarget denotes the shortest path connecting vsource
to vtarget, then for any other path P connecting vsource to vtarget
with ŵ(P) < w(P∗), ALG must explicitly test an edge e ∈ P
with w(e) =∞. Notice that since ALG constructs a shortest-
path tree, this will be the first edge on P that is in collision.
Finally, an algorithm ALG ∈ SP is said to be edge-optimal

if for any other algorithm ALG’ ∈ SP, and any shortest-path
problem, ALG will test no more edges than ALG’.

Lemma 2. LRA* with α =∞ is edge-optimal.

An immediate corollary that follows is,

Corollary 2. LazySP is edge-optimal.

Lemma 3. For every graph G and every α1 > α2, we have
that E1 ⊆ E2. Here, Ei denotes the set of edges evaluated by
LRA* with α = i.

6.3 Complexity
In this section we analyse LRA* with respect to the space
(Lemma 4) and running time (Lemma 5) complexity.

Lemma 4. The total space complexity of our algorithm is
bounded by O(n+m), where n and m are the number of
vertices and edges in G, respectively.

Lemma 5. The total running time of the algorithm is
bounded by O(ndα · log(n)+m), where n and m are the num-
ber of vertices and edges, d is the maximal degree of a vertex
and α is the lookahead.

7 Results
In this section we empirically evaluate LRA*. We start by
demonstrating the different properties of LRA* as a family of
algorithms parameterized by α. Specifically, we show that to
minimize the total planning time, an optimal lookahead α∗
exists (where 1 < α∗ < ∞) that allows to balance between
edge evaluation and graph operations.
We then continue to evaluate properties of the optimal

lookahead α∗. While choosing the exact lookahead value is
out of the scope of the paper (see Section 8), we provide
general guidelines regarding this choice.

3It is required that no two paths have the same weight to avoid
handling tie-breaking in our proofs. Note that LRA* itself does not
require this assumption.

481



(a) LWA* (b) LRA* (α∗) (c) LazySP

Figure 3: Visualization of edge evaluations by (a) LWA*, (b) LRA* with an optimal lookahead α∗, and (c) LazySP. Source and
target are (0.1,0.1) and (0.9,0.9), respectively. Edges evaluated to be in collision and free are marked red and blue, respectively.

(a) (b)

Figure 4:Computation times (a) and number of operations (b)
of LRA* as a function of the lookahead α.

7.1 Experimental Setup
We evaluated LRA* on a range of planning problems in sim-
ulated random R2 and R4 environments as well as real-
world manipulation problems on HERB (Srinivasa et al.
2009), a mobile manipulator with 7-DOF arms. We im-
plemented the algorithm using the Open Motion Planning
Library (OMPL) (Sucan, Moll, and Kavraki 2012)4. Our
source code is publicly available and can be accessed at
https://github.com/personalrobotics/LRA-star.

Random environments Wegenerated 10 different random
environments for R2 and R4. For a given environment, we
considered 10 distinct random roadmaps for a total of 100
trials for each dimension. Each roadmap was constructed
by generating a set of vertices in a unit hypercube using
Halton sequences (Halton 1964), which are characterized by
low dispersion. The vertex positions were offset by uniform
randomvalues to generate distinct roadmaps.An edge existed
in the graph between every pair of vertices whose Euclidean
distance is less than a predefined threshold r . The value r was
chosen to ensure that, asymptotically, the graph can capture
the shortest path connecting the start to the goal (Janson et
al. 2015). The number of vertices was chosen such that the
roadmap contained a solution. Specifically, it was 2000 for
R
2 and 3000 for R4.
The source and target were set to (0.1,0.1, . . .,0.1)d and

(0.9,0.9, . . .,0.9)d , respectively, with d ∈ {2,4}. For the 2D

4Simulations were run on a desktop machine with 16GB RAM
and an Intel i5-6600K processor running a 64-bit Ubuntu 14.04.

environments, the obstacles were a set of axis-aligned hy-
percubes that occupied 70% of an environment to simulate a
cluttered space. One such randomly-generated environment
is shown in Fig. 3 along with the edges evaluated by LWA*,
LazySP and LRA* with an optimal lookahead. For the 4D
environments, we chose a maze generated similar to the re-
cursive mazes defined by Janson et al.. The choice of such a
maze in R4 is motivated by the fact that it is inherently a hard
problem to solve, since many lazy shortest paths need to be
invalidated before a true shortest path is determined by the
planner. A more detailed discussion about the complexity of
the recursive maze problem is found in Janson et al..

Manipulation Our manipulation problems simulate the
task of reaching into a bookshelf while avoiding obstacles
such as a table. We consider 10 different roadmaps, each
with 30,000 vertices constructed by applying a random off-
set to the 7D Halton sequence. Two vertices are connected if
their Euclidean distance is less than r = 1.3 radians. These
choices are similar to the simulated Rn worlds, where we
choose r using the bounds provided by Janson et al. and
enough vertices such that we are ensured a solution exists
on the roadmap. Fig. 5 illustrates the environment and the
planning problem considered.

7.2 Properties of LRA*

Figures 3 and 5 visualize the search space for our simu-
lated R2 environments and manipulation problems. For both
settings, we ran LRA* with a range of lookahead values.
Notice that the number of edge evaluations as a function of

the lookahead is amonotonically decreasing function (Fig. 4b
and Lemma 3). However, the time spent on edge evaluations
(Fig. 4a) is not monotonic since the time for evaluating an
edge depends on the edge length and if it is in collision.
Nevertheless, the overall trend of this plot decreases as the
lookahead increases. In addition, the time spent on rewiring
(Fig. 4a and 5d) roughly increases with lookahead. These
two trends show that in both experiments, an intermediate
lookahead does indeed balance edge evaluations and graph
operations, therefore reducing the planning time. For addi-
tional experiments, see (Mandalika, Salzman, and Srinivasa
2018).

482



(a) (b) (c) (d)

Figure 5: Manipulation experiments. (a-c) HERB is required to reach into the bookshelf while avoiding collision with the table.
(d) Edge evaluation, rewiring and total planning time as a function of the lookahead.

(a) R2 environments (b) R4 environments (c) Manipulation environments

Figure 6: Planning time vs. lookahead for similar problems on different environments.

7.3 Properties of Optimal Lookahead α∗
While determining how to choose the lookahead value for a
specific problem instance is beyond the scope of this paper
(see Section 8), we provide some insight on some properties
of optimal lookahead α∗. In Fig. 6 we plotted the planning
time as a function of the lookahead for different random
instances. We observe two phenomena: (i) the value of the
optimal lookahead α∗ has a very small variance when con-
sidering similar environments. Thus, if we will face multiple
problems on a specific type of environment, it may be ben-
eficial to run a preprocessing phase to estimate α∗. (ii) As
the dimension increases, the relative speedup over LazySP
diminishes. We conjecture that this is because the cost of
edge evaluation increases with the complexity of the robot.

8 Future Work
Setting the lazy lookahead Our formulation assumed that
the lazy lookahead α is fixed and provided by the user.
In practice, we would like to automatically find the value
of α and, possibly, change its value through the running time
of the algorithm. This is especially useful when the search
algorithm is interleaved with graph construction—namely,
when vertices and edges are incrementally added to G (see,
e.g., (Gammell, Srinivasa, and Barfoot 2015)).

Non-tight estimates of edge weights In this paper we as-
sumed ŵ tightly estimates the true costw (see Eq. 1), however
it can be easily extended to take into account non-tight es-
timates. Once an edge (u,v) is evaluated, if its true cost is

larger than the estimated cost, the entire subtree rooted at v
may need to be rewired to potentially better parents.

Alternative budget definitions and optimization criteria
In this paper, we defined the budget and the optimization cri-
teria in terms of number of unevaluated edges and path length
respectively. However, the same approach can be used for al-
ternative definitions. For example, we can define the budget
in terms of the length of the unevaluated path. This defini-
tion is somewhat more realistic since the computational cost
of evaluating an edge is typically proportional to its length.
A different optimization criteria that we wish to consider
is minimizing the expected number of edges checked given
some belief over the probability that edges are collision-free.
This can be further extended to balance between path length
(a proxy for execution time) and number of edge evaluations
(a proxy for planning time) where the optimization criteria
would be some combination of path length and probability
of being collision-free.

9 Acknowledgements
The authors would like to thank Shushman Choudhury, pre-
viously at Personal Robotics Lab, currently at Stanford Uni-
versity, for his valuable insights in the development of this
work.

References
Bialkowski, J.; Otte, M. W.; Karaman, S.; and Frazzoli, E.
2016. Efficient collision checking in sampling-based motion

483



planning via safety certificates. I. J. Robotics Res. 35(7):767–
796.
Bohlin, R., and Kavraki, L. E. 2000. Path planning using
lazy PRM. In ICRA, volume 1, 521–528. IEEE.
Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L. E.; and Thrun, S. 2005. Principles
of Robot Motion: Theory, Algorithms, and Implementation.
MIT Press.
Choudhury, S.; Salzman, O.; Choudhury, S.; and Srinivasa,
S. S. 2017. Densification strategies for anytime motion
planning over large dense roadmaps. In ICRA, 3770–3777.
Choudhury, S.; Dellin, C. M.; and Srinivasa, S. S. 2016.
Pareto-optimal search over configuration space beliefs for
anytime motion planning. In IROS, 3742–3749.
Cohen, B. J.; Phillips, M.; and Likhachev,M. 2014. Planning
Single-arm Manipulations with N-Arm Robots. In RSS.
Dechter, R., and Pearl, J. 1983. The Optimality of A*
Revisited. In AAAI, 95–99.
Dellin, C. M., and Srinivasa, S. S. 2016. A Unifying For-
malism for Shortest Path Problems with Expensive Edge
Evaluations via Lazy Best-First Search over Paths with Edge
Selectors. In ICAPS, 459–467.
Dijkstra, E.W. 1959. A Note on Two Problems in Connexion
with Graphs. Numer. Math. 1(1):269–271.
Dobson, A., and Bekris, K. E. 2014. Sparse roadmap span-
ners for asymptotically near-optimal motion planning. I. J.
Robotics Res. 33(1):18–47.
Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2015.
Batch Informed Trees (BIT*): Sampling-based optimal plan-
ning via the heuristically guided search of implicit random
geometric graphs. In ICRA, 3067–3074.
Haghtalab, N.;Mackenzie, S.; Procaccia, A. D.; Salzman, O.;
and Srinivasa, S. S. 2017. The Provable Virtue of Laziness
in Motion Planning. CoRR abs/1710.04101.
Halton, J. H. 1964. Algorithm 247: Radical-inverse Quasi-
random Point Sequence. Commun. ACM 7(12):701–702.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Hauser, K. 2015. Lazy collision checking in asymptotically-
optimal motion planning. In ICRA, 2951–2957.
Janson, L.; Schmerling, E.; Clark, A. A.; and Pavone, M.
2015. Fast marching tree: A fast marching sampling-based
method for optimal motion planning in many dimensions. I.
J. Robotics Res. 34(7):883–921.
Karaman, S., and Frazzoli, E. 2011. Sampling-based al-
gorithms for optimal motion planning. I. J. Robotics Res.
30(7):846–894.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans.
Robotics and Automation 12(4):566–580.

Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313–341.
Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
Planning A*. Artif. Intell. 155(1-2):93–146.
Korf, R. E. 1985a. Depth-first Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence 27:97–
109.
Korf, R. E. 1985b. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97 –
109.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2):189 – 211.
Kwon, W. H., and Han, S. H. 2006. Receding horizon
control: model predictive control for state models. Springer
Science & Business Media.
LaValle, S. M. 2006. Planning Algorithms. Cambridge
University Press.
Mandalika, A.; Salzman, O.; and Srinivasa, S. 2018.
Lazy Receding Horizon A* for Efficient Path Plan-
ning in Graphs with Expensive-to-Evaluate Edges.
https://personalrobotics.cs.washington.edu/publications/
mandalika2018lrastarfull.pdf. [Online; accessed 13-March-
2018].
Pearl, J. 1984. Heuristics - intelligent search strategies
for computer problem solving. Addison-Wesley series in
artificial intelligence.
Reif, J. H. 1979. Complexity of the mover’s problem and
generalizations. In FOCS, 421–427. IEEE.
Salzman,O., andHalperin, D. 2015. Asymptotically-optimal
Motion Planning using lower bounds on cost. In ICRA, 4167–
4172.
Salzman, O., and Halperin, D. 2016. Asymptotically Near-
Optimal RRT for Fast, High-Quality Motion Planning. IEEE
Trans. Robotics 32(3):473–483.
Sharir,M. 2004. Algorithmicmotion planning. InHandbook
of Discrete and Computational Geometry, Second Edition.
1037–1064.
Srinivasa, S. S.; Ferguson, D.; Helfrich, C. J.; Berenson, D.;
Collet, A.; Diankov, R.; Gallagher, G.; Hollinger, G.; Kuffner,
J.; andWeghe, M. V. 2009. HERB: a home exploring robotic
butler. Autonomous Robots 28(1):5.
Sucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The
Open Motion Planning Library. IEEE Robotics Automation
Magazine 19(4):72–82.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
Partial Expansion for Large Branching Factor Problems. In
AAAI, 923–929.

484


